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Two-dimensional numerical simulations are performed on the Rayleigh-Bénard convection using the
finite element method, and the effect of the magnetic field on a thermally driven flow of a conducting
fluid in a rectangular enclosure is studied. The simulations are performed on liquid Sodium with a
Rayleigh number of 6 � 106 in a rectangular enclosure (aspect ratio – 4). The effects of the angle of decli-
nation of the enclosure and the influence of magnetic field in horizontal and vertical direction are exam-
ined. It is observed that the angle of declination of the enclosure (7�–28�) influenced the convection
configurations with larger angles restraining the fluid velocity and hampering the formation of vortices.
The applied magnetic field (0.001 T–0.003 T) too affected the formation of Bénard cells, and is dependent
on the direction and the magnitude of the external field. In the presence of a horizontal magnetic field, a
suppression of multiple vortices in favor of a singular cell structure is seen, and the degree of suppression
is directly proportional to the magnitude of the field. Higher magnitudes of magnetic field suppressed
convection with the isotherms showing lesser irregularities. However, vertical magnetic fields at smaller
declination angles improved the circulation inside the enclosure leading to multiple well-defined parallel
structures, which caused severe distortions in the temperature distributions. At large declination angles,
the vertical magnetic field too suppressed the formation of well-defined Bénard cells.
� 2018 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Thermal convection can be generalized as the heat transfer from
one place to another by fluid movement. Free or natural convection
takes places when the heat transfer occurs only due to the buoy-
ancy forces that arise due to the density differences found in the
fluid, which result from the temperature variations in the fluid.
There has been an extensive study on natural convection over
the years, and the Rayleigh-Bénard convection (Berge and
Dubois, 1984; Lord Rayleigh, 1916; Tomita and Abe, 1999) has
taken particular interest due to its simple mathematical formula-
tion and the remarkable applications it has in the fields of science
and engineering. In industrial applications, the Rayleigh- Bénard
convection is seen in heat exchangers, crystal growth process
and in cooling electrical components (Muthtamilselvan et al.,
2018).

Two-dimensional numerical simulations performed by
Ouertatani et al. (2008) demonstrated the influence of Rayleigh
number on the pattern formation and temperature distribution.
Chong et al. (2018) performed numerical simulations to study
the effect of Prandtl number of the fluid and the geometry of the
enclosure on natural convection. They stated that the aspect ratio
and the Prandtl number of the fluid played a crucial role in pattern
formation inside the enclosure. Muthtamilselvan and Sureshkumar
(2017) also made similar observations regarding the effect of
aspect ratio on natural convection.

Soong et al. (1996) investigated the effects of the inclination
angle of an enclosure on the natural convection of fluid using
numerical simulations. Multiple simulations with diverse Rayleigh
numbers demonstrated that at higher inclination angles, multiple
vortices are suppressed in favor of a singular cell structure. The
‘‘upslope and the downslope flow” at the walls of the enclosure
governed the dynamics of the single-cell structure. Crunkleton
and Anderson (2006) performed numerical simulations in a cubical
enclosure at different inclination angles, which also demonstrated
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the effect of inclination angle on the fluid physics. Experiments on
the free convection of liquid sodium in a long cylinder at different
inclination angles performed by Kolesnichenko et al. (2015) also
showed the dependence of inclination angle on heat transfer and
fluid flow.

Along with the regular Rayleigh-Bénard convection, there has
been a detailed study on the free convection in an electrically con-
ducting fluid under the influence of a magnetic field (Arnou and
Olsen, 2001; Chandrasekhar, 1961; Knobloch et al., 1981; Zierep,
2003). Magnetoconvection too has tremendous applications in
the casting industry, solar technologies and in crystal growth of
metals (Naffouti et al., 2014; Yu et al., 2018).

Libchaber et al. (1982) theorized that the free convection in the
presence of an external magnetic field is driven by the contest
between the flow steered by the temperature gradient and the
counterflow guided by the Lorentz force. It is well established that
the external magnetic field has a stabilizing effect on the convec-
tion flow (Arnou and Olsen, 2001; Burr and Müller, 2001;
Nandukumar and Pal, 2015) and is found that the fluid flow is
dependent on the direction and the magnitude of the applied field.
With larger magnitudes, the magnetic field tends to orient the flow
in the direction of the field. Tasaka et al. (2016) showed that the
vertical magnetic fields affected the primary instability while the
higher order instabilities are largely affected by the presence of a
horizontal magnetic field.

An experiment performed by Burr and Müller (2001) investi-
gated the Rayleigh-Bénard convection in liquid metal under the
influence of vertical magnetic field and showed that the magnetic
field damped the heat transport and significantly affected the con-
vection patterns. Ece and Büyük (2006) performed numerical sim-
ulations on the natural convection under the influence of magnetic
field in an enclosure heated and cooled on adjacent walls. They
concluded that the convection flow inside the enclosure strongly
depended on the aspect ratio, inclination angle, and the direction
and magnitude of the magnetic field. Naffouti et al. (2014) studied
the effects of the direction (different inclination angles) and the
magnitude of magnetic field on convection by performing three-
dimensional numerical simulations in a cubical enclosure. They
too pointed out the dependence of the direction and magnitude
of the magnetic field on the flow patterns and heat transfer.
Selimli et al. (2015) studied numerically the combined effect of
the electric and magnetic field on an enclosure containing liquid
lithium. The results pointed out the dependence of direction and
magnitude of the magnetic field on fluid physics. Further, the
direction and magnitude of an electric field also altered fluid flow
by increasing or decreasing the fluid velocity. Three-dimensional
numerical simulations of Rayleigh-Bénard convection under the
influence of magnetic field performed by Yu et al. (2018) demon-
strated the effect of magnetic field on heat transfer and examined
the evolution of Nusselt number with respect to the Hartmann
number.

In the present study, two-dimensional simulations of the
Rayleigh-Bénard convection are performed in a rectangular enclo-
sure with a large aspect ratio using the finite element method. The
variable parameters in the study are the angle of declination of the
enclosure with the horizontal along with the direction and the
magnitude of the magnetic field. The study outlines the influence
of magnetic field and the angle of declination of the enclosure on
the convection configuration and the temperature distribution.

It is shown that a small change in the declination angle altered
the fluid physics and flow patterns. Larger declination angles
decreased the stability of vortices leading to a decrease of the total
number of vortices found inside the enclosure.

In the presence of a horizontal magnetic field, multiple vortices
are suppressed in favor of a singular structure and higher declina-
tion angles hastened the process of suppression of vortices.
Concerning the vertical magnetic field, it is found that there is
an increase in the number of Bénard cells at smaller declination
angles. However, at higher declination angles, the vertical mag-
netic field too suppressed well-defined cells and affected the over-
all stability of the system.

2. Theory and mathematical formulation

Rayleigh-Bénard convection is a wonderful example of a self-
organizing non-linear system and is a form of natural convection
primarily governed by vertical temperature gradient and the influ-
ence of the gravitational force over the horizontal layer of the fluid.
The fluid flow is symmetric and develops well-defined flow pat-
terns known as Bénard cells (Ouertatani et al., 2008), and is ana-
lyzed by solving a set of Navier-Stokes equations and the heat
equations simultaneously.

The Rayleigh number primarily governs the convention process
(Muthtamilselvan et al., 2018). It is the product of the Grashof
number and the Prandtl number and could be seen as a ratio of
buoyancy and viscous forces (Sandberg et al., 2011). The Rayleigh
number depends on the geometry on the enclosure, characteristic
length and also on whether the top-surface is either free or closed.

Ra ¼ GrPr ¼ gaDTL3

#j
where 0 is kinematic viscosity, a is the coefficient of thermal expan-
sion, Tis the temperature, j is the thermal diffusivity, and L is the
characteristic length.

The Prandtl number of fluid mentioned in the above equation is
the ratio of momentum diffusivity to thermal diffusivity. For fluids
with very low Prandtl numbers, the thermal diffusivity dominates
over the momentum diffusivity and plays a crucial role in the con-
vection process (Chandra and Chhabra, 2012; Chong et al., 2018;
Horanyi et al., 1999; Kolesnichenko et al., 2015).

With the flow primarily being driven by buoyancy, the Boussi-
nesq approximations (Mihaljan, 1962) are assumed valid and are
used in the Navier-Stokes equation. The approximation neglects
the variation of density of the fluids in all terms excluding the
gravitational term. The primary idea of the approximation is that
there are no significant deviations of temperature and density from
the mean value. The equations governing the Boussinesq approxi-
mation are represented below:

r:u ¼ 0

@u
@t

þ u:ru ¼ 1
q
rpþ #r2u� gaDT

@T
@t

þ u:rT ¼ jr2T

In electrically conducting fluids, the convective flows are largely
influenced by the presence of an external magnetic field. The mag-
netic field induces an electric current in a moving fluid, which
causes a Lorentz force and in turn induces a magnetic field and
alters the fluid flow. This type of flow is known as MHD flow.

To model an MHD flow, one must solve the Navier-Stokes equa-
tion and Maxwell’s equations simultaneously. The dimensionless
equations of MHD are (Gangl, 2016):

@B
@t

¼ r� ðu� BÞ þ 1
Rem

DB

@u
@t

þ ðu:rÞu� 1
Re

Duþrp ¼ NJ � B

where Re is Reynold’s number and N ¼ rB2L=qV is the interaction
term. Rem ¼ VLlr is the magnetic Reynold’s number, which gives
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an estimate of the relative effects of induction of magnetic field by
fluid flow to the magnetic diffusivity. V is the characteristic velocity,

ðlrÞ�1 is the magnetic diffusivity and B is the magnetic field term.
In this study, the equations concerning convection using the

Boussinesq approximation and the ideal MHD flow equations are
solved at the same time.
3. Problem description and simulation

3.1. Description of the problem

A 2D rectangular enclosure is created and a geometrical repre-
sentation of the problem with a declination angle of 7� is illus-
trated in Fig. 1. The length of the enclosure is L, while the height
of the cavity is L/4 (aspect ratio – 4).

While performing the simulations, the declination angle of the
enclosure is varied from 7� to 28� in the steps of 7�. The corner
at the point A in Fig. 1 is taken as the pivot, and the declination
angle with respect to the X-axis (angle XAB) is varied at this point.

Both the sides AB and CD are isothermal in nature, and a 1 K
temperature difference is maintained between these sides of the
enclosure. The other walls of the enclosure (sides BC and AD in
Fig. 1) are considered to be adiabatic. The gravitational force is act-
ing along the negative Y-axis.

Horizontal and vertical magnetic fields of magnitudes ranging
from 0 T to 0.003 T are applied on the enclosure in all the four con-
figurations to study the variation in the convection patterns seen in
the fluid.

The fluid under the study is liquid sodiumwith a Rayleigh num-
ber of 6 x 106. The physical properties of the fluid are taken from
the empirical relationships developed by Fink and Leibowitz
(1995), and Sobolev (2010).
3.2. Simulation methodology

The geometry is drawn and meshed in Gmsh. A 2D unstructured
mesh is generated using the ‘‘MeshAdapt” algorithm (Geuzaine
and Remacle, 2009).

The simulation is performed in Elmer, which is an open source
multiphysical simulation software mainly developed by CSC - IT
Center for Science (CSC). Elmer employs Galerkin finite element
approximation of weak for modeling the problem (Råback et al.,
2017). A transient analysis is performed in the software where
all the equations of fluid flow, heat transfer, and the MHD flow
equations were coupled and solved simultaneously using the Flow-
Solve, HeatSolve and MagneticSolve modules (Råback et al., 2017).
Fig. 1. Geometrical represen
The solutions to the equations used in the study are obtained
via an iterative approach using Generalized Conjugate Residual
algorithm (GCR), which is one of the Krylov subspace methods
available in Elmer package (Ruokolainen et al., 2017). The conver-
gence tolerance for all the solvers is set to 1.0 � 10�5.

In the simulation, all the approximations of MHD and the
Boussinesq approximations are taken into consideration with the
absence of Joule heating as Joule heating is a second order term
in the equation and has a negligible effect on the fluid flow
(Vaux et al., 2015). A full-factorial design approach is employed
(Pálfi and Geier, 2016) for the simulation to capture all the possible
variations. The results are visualized in Elmer VTK and ParaView.

3.3. Model and solver validation

Simulations involving fluid flow (Safinowski et al., 2017), heat
flow (Orlik-Ko _zdoń and Belok, 2017; Saldi and Wen, 2017) and
MHD (Bondarenko et al., 2017) using Elmer have been studied in
detail, and the capability of the solvers has been well established.
Nevertheless, the accuracy of the solvers is checked by comparing
the observations made using the software with the results found in
the existing literature.

A simulation is performed on a fluid with Ra � 106 and Pr = 0.71
in a square enclosure. The Nusselt number is calculated at the hot
wall to be 6.2257, which is in good agreement with the benchmark
solutions proposed by Ouertatani et al. (2008), showing a deviation
of 1.29%.

Further, 2D simulations are carried out in the presence of verti-
cal magnetic field at Chandrasekhar numbers 670 and 1210, and
Rayleigh numbers between 1.0 � 104 and 3.4 � 104 using liquid
Gallium as the working fluid. Naffouti et al. (2014) showed that
the 2D assumptions remain valid for simple 3D cases and hence,
the results of the 2D simulation are compared with the experimen-
tal values. The Nusselt numbers obtained are in good agreement
with the observations made by Aurnou and Olsen (2001).

4. Results and discussions

The term velocity ratio appearing in the subsequent discussion
is the ratio of the velocity magnitude at a singular point on the axis
to the maximum magnitude of the velocity observed across the
entire reference axis of the enclosure. Peaks in the velocity ratio
plots indicate higher magnitudes of the velocity of the fluid in that
particular region, drawing to a conclusion that there was dominant
flow perpendicular to the reference axis. The term ‘Tm’ in the sub-
sequent discussion refers to the mean temperature of the enclo-
sure. The term ‘primary cell’ refers to the first cell in the
enclosure from the left in case of the presence of multiple vortices.
tation of the problem.
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The glyphs representing the fluid flow in the discussion are scaled
according to the velocity magnitude observed in that particular
trial.

It is interesting to note that the flow maintained symmetricity
in all the test cases.
4.1. Absence of magnetic field

The distribution of velocity ratio along the longer axis of the
enclosure in the absence of a magnetic field at the end of the sim-
ulation time is plotted in Fig. 2.

The velocity magnitude of the fluid flow across the transverse
axis of the enclosure showed a declining trend with an increase
in the declination angle of the enclosure. Moreover, this effect
was prominent in the latter half of the enclosure. The velocity ratio
at the end of the enclosure (near side BC) dropped with an increase
in the declination angle.

The stability found at the center of the vortices is reduced when
the angle of declination is changed to 28�, and the same is evident
in the plot, where the valleys throughout the graph ended at a
higher value.

Visualizations in Fig. 3 better explain the drop in velocity ratios
depicted in Fig. 2. The primary cell had a clockwise rotation and the
subsequent cells showed anticlockwise and clockwise patterns in
an alternating fashion.

At 7� declination, four well-defined cells with recirculating
motion are observed. Along with these, two minor eddies are
developed at the top of the enclosure. Increasing the declination
angle to 14� also showed the development of four cells. However,
eddies in the top of the enclosure seen are largely destroyed, and
two new eddies are developed in the bottom half of the enclosure.
At 21� declination, the boundary layer of the initial cell moved clo-
ser to the wall, while generating two eddies on top of each other at
the bottom portion of the enclosure.
Fig. 2. Velocity ratio distribution in
The last trail with 28� declination angle showed completely dif-
ferent behavior. Rather than the traditional four cells, only three-
well defined cells are observed along with an elongated eddy at
the bottom of the enclosure.

An increase in the declination angle moved the cells away from
the right wall (BC) and closer to the left wall (AD). The void gener-
ated near the right wall is filled with irregular eddies. Moreover, in
all the cases, the outer rims of the well-defined cells showed
greater magnitudes of velocities compared to the outer rims of
the irregular eddy.

The temperature distributions in the absence of a magnetic field
are displayed in Fig. 4. At 7� declination, the first cell exhibited lar-
ger distortions, which are suppressed with an increase in the decli-
nation angle. Moreover, at higher declination angles, the latter half
of the enclosure is dominated by temperatures well below the
mean temperature, with the effect being more prominent in larger
declination angles. The presence of irregular eddies and an
increased downward fluid flow due to gravity at these locations
caused the variation in temperature distributions. The temperature
distribution plots of the well-defined cells observed in all the trials
at the end of the simulation showed similarities with the observa-
tions made by Crunkleton and Anderson (2006), Ouertatani et al.
(2008), and Soong et al. (1996).
4.2. Influence of horizontal magnetic field

The flow patterns are highly influenced by the introduction of a
horizontal magnetic field. Fig. 5 shows the velocity ratio distribu-
tion present in the presence of a horizontal magnetic field. In all
the cases, the boundary layer of the fluid flow is closer to the walls
compared to what is seen in the absence of magnetic field.

The external magnetic field worked against the formation of the
Bénard cells, and higher magnitudes of the magnetic field (0.002 T
and 0.003 T) destroyed the multiple vortices in the enclosure that
the absence of magnetic field.



Fig. 3. Fluid flow in the absence of magnetic field.

Fig. 4. Temperature contours in the absence of magnetic field.

Fig. 5. Velocity ratio distributions in the presence of horizontal magnetic field.
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are found in trials without a magnetic field (Fig. 3). Larger magni-
tudes of the magnetic field favored the formation of a single-cell
flow over the formation of complex patterns.

The effect seen in this scenario is due to the stabilization effect
of the horizontal magnetic field (Nandukumar and Pal, 2015). The
stabilization effect happened due to MHDwhere the magnetic field
acts on the fluid flow that is perpendicular to it, and the Lorentz
force opposes the flow caused due to buoyancy forces. From
Fig. 5, it is seen that at higher magnitudes, the influence of mag-
netic force becomes an important factor in determining the fluid
physics.

Fig. 6 shows the convection patterns observed in the enclosure.
An increase in the declination angle of the enclosure adversely
affected the pattern formations in the presence of the horizontal
magnetic field. Multiple vortices are present in the presence of
weak magnetic field. At 7� declination, four cells are observed. As
one moved towards larger declination angles, the Bénard cells
decreased in number and showed elongations along the transverse
axis of the enclosure. Elongated cells are observed at angles 14�
and 21�. However, at 28� declination, three highly irregular eddies
are observed indicating to the possibility that higher angles of
declination would destroy multiple well-defined cells.

Larger magnitudes of magnetic field suppressed the vortices in
favor of a singular-cell flow irrespective of the declination angle.
The degree of suppression of multiple cells to a single-cell struc-
ture is directly proportional to the declination angle, which is
observed by comparing the flow structures at 0.002 T across all
configurations (Fig. 6).

In trials that exhibited multiple vortices, the primary cell
showed a clockwise rotation. However, in one particular case at
Fig. 6. Fluid flow in the presence
7� declination, an increase in the magnitude of the magnetic field
to 0.002 T showed flow reversal as described by Tasaka et al.
(2016) with the primary cell exhibiting anti-clockwise rotation.

In all the cases that had a singular structure, the direction of the
fluid flow is in the clockwise direction. The heated fluid ascended
along the adiabatic wall at the higher end of the enclosure and then
descended with a drop in temperature at the bottom half of the
enclosure. This is captured in the isotherms presented in Fig. 7.

Fluctuations in the temperature distribution are severely
damped in the presence of magnetic field (Ece and Büyük, 2006;
Naffouti et al., 2014), and the effect is directly proportional to
the magnitude of the magnetic field. The isotherms of the single-
cell pattern showed similarities to the observations made by
Soong et al. (1996). In trials that exhibited multiple irregular pat-
terns (21� declination and 28� declination at 0.001 T), clear and
prominent fluctuations of the temperature along the transverse
axis of the enclosure are absent.
4.3. Influence of vertical magnetic field

Similar to what is seen in the presence of a horizontal magnetic
field, the vertical magnetic field also influenced the flow patterns
but in a drastically different way. Fig. 8 plots the velocity ratio dis-
tributions along the reference axis while Fig. 9 demonstrates the
fluid flow in the enclosure.

Rather than suppressing the Bénard cells, the vertical magnetic
field favored the formation of the vortices that showed clear paral-
lel structures, and is in agreement with the observations made by
Yu et al. (2018).
of horizontal magnetic field.



Fig. 7. Isotherms in the presence of horizontal magnetic field.
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From Fig. 8, it is seen that the higher magnitudes of the vertical
magnetic field suppressed the local velocity deviations seen in the
outer rims of the Bénard cells giving rise to symmetrical peaks and
valleys in the plot. Even at larger angles, the valleys in the plot
ended at the same value of velocity ratio, which is caused due to
the stabilization effect of the magnetic field. Furthermore, the
mean transverse length of the vortices showed a reduction in mag-
nitude as described by Burr and Müller (2001).

The primary cell in all the cases exhibited clockwise rotation.
The subsequent cells in the enclosure exhibited anticlockwise rota-
tion and clockwise rotation in an alternating fashion. At 7� and 14�
declination, the presence of 0.001 T magnetic field caused the for-
mation of three elongated eddies. An increase in the magnitude of
the magnetic field led to the formation of five well-defined convec-
tion patterns. This number is greater than what is observed with-
out a magnetic field (Fig. 3). This was due to the vertical
magnetic field severely suppressing the horizontally aligned flow
structures, which is in good agreement with the observations made
by Naffouti et al. (2014).

At 0.001 T magnetic field, the 21� enclosure displayed four
highly irregular eddies with one well-defined elongated cell at
the middle. Increasing the magnetic field to 0.003 T made the flow
more regular with five well-defined Bénard cells.

At 28� declination angle, the magnetic field distorted the vor-
tices, which led to formation of two regular vortices and two irreg-
ular eddies in the presence of 0.001 T magnetic field. With 0.003 T
magnetic field, the flow is disturbed further and the enclosure is
void of the clear parallel structures seen in earlier observations.
Two transversely elongated eddies along with one highly distorted
eddy are observed.

Interestingly, a peculiar behavior is observed when the declina-
tion angle was higher than 14� and a 0.002 T magnetic field was
applied. The top portion of the enclosure has well-defined convec-
tive flow patterns, while the bottom portion of the enclosure is
completely void of it. The behavior in the latter part of the enclo-
sure is similar to what was seen in the presence of a horizontal
magnetic field. This could be due to the different equilibriums
maintained by the buoyancy-driven flow with the magnetic field
in the top and the bottom halves of the enclosure. This phe-
nomenon is dependent on the magnitude of the magnetic field
and no clear relationship could be established in this study, as a
larger magnetic field did not exhibit this occurrence. Further sim-
ulations with different fluids and diverse Rayleigh numbers need to
be conducted to further understand this phenomenon.

The temperature distributions are shown in Fig. 10. Several
temperature distortions are observed in the presence of a vertical
magnetic field with the regions with well-defined convection pat-
terns showed larger distortions in temperature distributions. The
distortions are much larger in the presence of a higher number
of vortices in the enclosure.

The regions of extended vortices at 21� declination and 28�
declination (0.002 T magnetic field) exhibited similar distributions



Fig. 8. Velocity ratio distribution in the presence of vertical magnetic field.

Fig. 9. Fluid flow in the presence of vertical magnetic field.
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Fig. 10. Temperature distributions in the presence of vertical magnetic field.
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of a singular cell seen in the presence of horizontal magnetic field.
At 28� declination, the isotherms showed irregular patterns unlike
any other, which is due to ill formation of well-defined vortices.

5. Conclusions

Two-dimensional simulations of Rayleigh-Bénard convection in
an inclined enclosure under the influence of magnetic field is per-
formed using the finite element method, and the following conclu-
sions can be drawn:

1. In the absence of magnetic field, a four-cell pattern and a three-
cell pattern with irregular eddies are observed. The simulations
showed that the declination angle affected the pattern-
formation inside the enclosure. The eddies present in the upper
half of the enclosure vanished with the formation of irregular
eddies in the lower half of the enclosure as one moved towards
larger declination angles. The trend observed indicated that an
increase in the angle of declination first destabilizes the well-
defined vortices found the bottom half of the enclosure. Higher
quantities of fluid flow due to gravity in enclosures with large
declination angles is the primary driving force of this
phenomenon.

2. The magnetic field in the horizontal direction suppressed the
pattern formation. The magnetic field stabilized the fluid flow
even at smaller declination angles. This effect is compounded
with larger declination angles, which led to the formation of
single symmetric cells due to the presence of a strong trans-
verse flow. In addition, the temperature distributions showed
smaller distortions in the presence of the horizontal magnetic
field.

3. At small magnitudes, the Lorentz force due to the vertical mag-
netic field reduced the total number of vortices found in the
enclosure. However, unlike the case of the horizontal magnetic
field, higher magnitudes worked in favor of the formation of
well-defined Bénard cells, which is seen at 7� and 14� declina-
tions. Five well-defined cells are observed when the magnitude
of the magnetic field was greater than 0.001 T.

4. At 28� declination, the vertical magnetic field suppressed pat-
tern formation leading to the ill formation of well-defined cells
indicating that the effect of gravitational force and the
Lorentz force is greater than Buoyancy force. The temperature
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distributions at this angle exhibited far fewer distortions com-
pared to what is seen for angles below 28�.

5. Looking at the trend found in the observations of this study, a
further increase in the declination angle of the enclosure would
destroy multiple cells in favor of a single cell irrespective of the
direction and magnitude of the magnetic field. Presence of a
magnetic field would only hasten this process.
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