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Abstract The (%) -expansion method is used for the first time to find traveling-wave solutions for
the sixth-order thin-film equation, where related balance numbers are not the usual positive inte-
gers. New types of exact traveling-wave solutions, such as — solitary wave solutions, are obtained

tion; the sixth-order thin-film equation, when parameters are taken at special values.

Solitary wave solution
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1. Introduction

Higher-order nonlinear partial differential equations have con-
siderable attention, because of their interesting mathematical
structures and surprising properties. One of the most famous
examples is the sixth-order thin-film equation (Flitton and
King, 2004).

% = %(unu,\'x.\fxx)7n > 07 (1)
which appears in flow modeling, and describes the spread of
thin viscous droplets under different driving forces. The
sixth-order thin-film equation has recently become more inter-
esting for obtaining exact analytical solutions to NLPDEs,
equations from the sixth-order thin-film wave phenomena,
by using appropriate techniques. Several important techniques
have been developed such as the tanh-method (Krisnangkura
et al., 2012), sine—cosine method (Shi et al., 2012), tanh—coth
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method (Jabbari and Kheiri, 2010), exp—function method
(Parand and Rad, 2012), homogeneous—balance method
(Elboree, 2012a), Jacobi—elliptic function method (Honga
and Lub, 2012), and first-integral method (Taghizadeh et al.,
2012). All methods have limitations in their applications. In
fact, no unified method can be used to handle all types of
NLPDEs.

One of the most effective direct methods to develop the
traveling-wave solution of NLPDEs is the (%)-expansion
method, which was first proposed by Wang et al. (2008). The
(%)-expansion method has been successfully applied to obtain
the exact solution for a variety of NLPDEs (Kim and
Sakthivel, 2010; Kilicman and Abazari, 2012; Ebadi et al.,
2012a,b; Ayhan and Bekir, 2012; Malik et al., 2012; Elboree,
2012b; Jafari et al., 2013; Taha and Noorani, 2013; Taha
et al., 2013). In this paper, the (%)-expansion method is used
to study the sixth-order thin-film equation in fluid mechanics
for the first time. Exact traveling-wave solutions are obtained
when the choice of parameters are taken at special values.
Moreover, the solution obtained via this method is in good
agreement with the previously obtained solutions of other
researchers. Our main objective in this study is to apply the
(%) method to provide the closed-form traveling-wave
solutions of the sixth-order thin-film equation. To the best of

p

our knowledge, our study is the first to apply the (E)-expan-

sion method to the sixth-order thin-film equation. In solving
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these equations, we find an instance where the related balance
numbers are not the usual positive integers (see Zhang, 2009;
Zayed and EL-Malky, 2011). New solitary wave solutions
are also for appropriate parameters. We compare our solutions
with the solutions previously obtained by Flitton and King
(2004). The closed-form solution obtained via this method is
in good agreement with the solutions reported in Flitton and
King (2004).

Our paper is organized as follows. Section 2, provides the
summary of the ( G) expansmn method. In Section 3, describes
the applications of the ( ) -expansion method for the sixth-or-
der thin-film equation. Finally, Section 4, concludes.

2. Summary of the(£)-expansion method

In this section, we describe the ( G) -expansion method for find-
ing the traveling-wave solutions of NLPDEs. Suppose that a
nonlinear partial differential equation, in two independent
variables, x and ¢, is given by the following

) =0, 2

where v = u(x,?) is an unknown function, p is a polynomial in
u = u(x,t) and its various partial derivatives, in which highest
order derivatives and nonlinear terms are involved.

The summary of the (%)-expansion method, can be pre-
sented in the following six steps:

P(“a Upy Uy Unyy Uy Uy - -

Step 1:
To find the traveling-wave solutions of Eq. (2), we introduce a
wave variable

u(x,t) =u(Q), {=(x—ct), (3)

where in the constant ¢ is the wave velocity. By substituting
Eq. (3) into Eq. (2), we obtain the following ordinary differen-
tial equations (ODEs) in { (which illustrate a principal advan-
tage of a traveling-wave solution, i.e., a partial differential
equation is reduced to an ODE).

plu,cd e’ P’ .. ) = 0. 4)
Step 2:

If necessary, we integrate Eq. (4) as many times as possible and
set the constants of integration as zero for simplicity.

Step 3:
We suppose the solution of nonlinear partial differential equa-
tion can be expressed by a polynomial in ( ) as the following:

0-5(5)

where G = G({) satisfies the second-order linear ordinary dif-
ferential equation

G"(0) +2G'(0) + uG(() =0, (6)
G'=%and G" = ‘(’19 a;,4, and p are real constants with a,, # 0.

Here, the prime denotes the derivative with respect to {. By
using the general solutions of Eq. (6), we obtain the following
expression:

s o o 5
SV ,,:%h{\/—};,,,]h{\/—} L A2—4u>0,
(¢)- e
G */+\/4_u~/ q‘;{{\/_s}};:{{\/?_ﬂ}} . 2—4u<0
(T)*z 22 —4p=0. (7)

The above results can be written in simplified forms as follows:

SV “” tanh { Y4 ‘Wc} 2 —4u>0,
G e —
(E) =\ F+ —4“ ~ tan {—4'2‘7'”2 C}, P2 —4u<0,

© _ .
e+l 27

—N

2 —4u=0. (8)

Step 4:

The positive integer m can be accomplished by considering the
homogeneous balance between the highest order derivatives
and nonlinear terms appearing in Eq. (4). If we define the
degree of u({) as D[u({)] = m, the degree of other expressions
is defined by the following:

d'u
ol o

D [u’ (j—;) X] =mr + s(q + m).

Therefore, we obtain the value of m in Eq. (5).

Step 5:

Substitute Eq. (5) into Eq. (4), and use the general solutions of
Eq. (6). and collect all terms with the same order of ()
together. Setting each coefficient of this polynomial to zero
yields a set of algebraic equations for a;,¢c,4, and p.

Step 6:

Substitute a;,¢,4, and u obtained in Step 5 and the general solu-
tions of Eq. (6) into Eq. (5). Depending on the sign of the dis-
criminant (2% — 4u), we can obtain the explicit solutions of Eq.
(2) immediately.

3. Application of the (<)-expansion method

3.1. Sixth-order thin-film equation

To find the solitary wave solution of (1), we use the following
transformations.

u(x, 1) = u((), = (x — ). )
Substituting (9) into (1) is conducted in the following:
(u”u”m)l —al =0. (10)

By integrating (10) with respect to { and setting the integration
constant equal to zero, we obtain the following:

nm
7

Wu —cu=0. (11)
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According to the previous steps, by using the balancing proce-
dure between «"u and u, we obtain m = =2. Suppose that (10)
has the following formal solution:

u(() = E((é>5 (12)

where E is the unknown constant that needs to be determined
later.

By substituting (12) along with (6) into (11) and collecting
all terms with the same order of (%), the left hand side of
(11) is converted into a polynomial in (%) Equating each coef-
ficient of the resulting polynomials to zero yields a set of alge-
braic equations for E,A,c, and p.

5(n—1)

9’ 0

G
A%
(5) STI0E 7 22 i+ 6250 " n 2t i+ 125 E 2% un® + 12500 E" e 4 80 E" ' 1

cen® +3125E" — 6250 E"n+ 4372E"n? — 1250 E"n* + 120 E"n* =0,

—1000E" 1 1 + 1250E" 2*n® + 6250 E"n? 1% — 125E" 1 + 15625 E" *
—6250E" A n+93750E" 2 1% + 31250 E" 1i* + 15625 E" * + 31250 E" i
+SE" 2t a4 37500 E" 2 +- 110 E" n* 1222 +- 1875 E'n? 721
—37500E" 22 un— 1875 E" 72 un® + 1250 E" ) *

+13125E" 22 12n® + 13125E" 72 jn® =0,

@\ ; ,
(7) 3125E"2° +93750E" Jui + 3750E" 22 un® + 11250 E" fy*

+80E"n* 1 + 10E"n* 22 u+62500E" 2> p=0,

an=5

G’ O
(7) 1 —3500E"/n’ +300E"n* .+ 15625 E" u* + 14375 E" in* — 25000 E" An

+3500E" i + 14375 E" At > + 25000 E" At n =0,

-5
G\

(7) (1687502 — 2250 E" un® 4+ 250 E"n* 2% — 18750 E" un — 37500 E" 1*n
+31250E" %1% +200E" 1* 1+ 9375 E" un® + 18750 E" 1i* n+ 9375 E' i
+2250E" 1 it +200E"n it — 3375E" 1?42 + 15625 E" it + 31250 E" 4
+16875E" 2213 n? 4+ 3375 E" )21 n® +37500E" 22 1P n
+250E"n* 218 =0,

G\ R
<7> 231250 E" 22 12 — 1250 E" 22 ++ 62500 E" 142 — 25000 E" At
+8125E" 2% 120 +4000E" 24 n® 4+ 1250 E" 72 12 n® — 4000 E" Jun®
+25000E" 2 121+ 20000 E" Aun® — 50000 E" Jun + 75 E" 7% i n’
+300E"n* L+ 50000 E" ni g + 300 E"n* 4i* +20000E" /1 n* =0,
(7) J120E" 0 10 +4375E"n* 1 + 1250 "1 1° + 6250E" 1°n

+3125E" 15 =0.

By solving the above set of algebraic equations by Maple, we
obtain the following:

A=0, u=0, ¢

_ SE'(4n—5)(3n—5)(2n = 5)(n + 5) 13)

n’

where E and n are arbitrary constants.
Consequently, we obtain the exact traveling-wave solution
of (1) as follows:

u(C):E( e ) (14)

¢+l

where ¢; and ¢, are arbitrary constants
_ SE"(4n—5)(3n—5)(2n—5)(n+5)
=x+ P t.

If we set ¢; = 0 and ¢, = 1 in (14), we obtain the solitary

wave solution:

{=x—ct

u(x, 1) = u(Q) = EQO), (15)

where ( is the same as above. This solution is the exact same
solution obtained by Flitton and King (2004):

h(x) = Ao(t)(a — x)'as x — a”, (16)

1
5\' " P
where AO(’). = (75(4;;75)(3"15‘)(21175)(4+5)) and.s > 0.
If we integrate ¢ =s as in (13) into (16) and set

x = a + s(t) — z, we obtain the same result.

4. Conclusion

The applications of the (%)-expansion method are still limited
in fluid mechanics and nonlinear evolution equations, where
the balance numbers are not positive integers (see Zhang,
2009 and Zayed and EL-Malky, 2011). This paper presents a
wider applicability for handling nonlinear sixth-order thin-film
equations by using the (%)-expansion method. In the general
solution (14), we obtain the additional arbitrary constants ¢;
and c¢,. The special case of ¢; = 0 and ¢, = 1 reproduces the
results of Flitton and King (2004) with an appropriate choice
of ¢. The new type of exact traveling-wave solution obtained
in this paper for the sixth-order thin-film equation will be of
beneficial to future studies.
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