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Abstract In this paper the notion of contraction mappings on probabilistic metric spaces and

probabilistic 2-metric spaces are applied. Several fixed point theorems for such mappings are

proved. One of them Theorem 1.1 is a stronger form of a result due to Sehgal and Bharucho-Reid

(1972).
ª 2010 King Saud University. All rights reserved.
1. Probabilistic metric spaces

The concept of probabilistic metric spaces have been intro-
duced by Menger (1942). In Menger’s theory the concept of a
distance is considered to be statistical or probabilistic, rather
than deterministic. In other words, given any two points p

and q of a metric space, a distribution function Fp;qðtÞ is
.com (M.S. Bakry).

ity. All rights reserved. Peer-

d University.
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introduced. This distribution function has the probability inter-
preted as that distance between p and q is less than tðt > 0Þ.

For more details about probabilistic metric spaces (cf.

Schweizer and Sklar, 1960, 1983).

Definition 1.1 Sehgal and Bharucho-Reid, 1972. Let R be the
set of real numbers. A mapping F : R! I ¼ ½0; 1� is said to be
a distribution function if it is non-decreasing, left continuous

with inf F ¼ 0 and Sup F ¼ 1. The set of all distribution
functions will be denoted by Dþ.

Remark 1.1. Since F is non-decreasing and Sup F ¼ 1, then

lim
t!1

FðtÞ ¼ 1

Definition 1.2 Sehgal and Bharucho-Reid, 1972. Let X be a
nonempty set. let n be a mapping from X� X into Dþ. (For
x; y 2 X we write Fp;qðtÞ instead of nðx; yÞ 2 Dþ.) The pair

ðX; nÞ is said to be a probabilistic metric space (PM-space,
for short) if n satisfies the following axioms:

mailto:monabak_1000@yahoo.com
http://dx.doi.org/10.1016/j.jksus.2010.05.001
http://www.sciencedirect.com/science/journal/10183647
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(PM-1) F x;yðtÞ ¼ 1 for all t > 0 iff x ¼ y.
(PM-2) F x;yð0Þ ¼ 0.
(PM-3) F x;y ¼ F y;x.
(PM-4) F x;yðtÞ ¼ 1 and F y;zðsÞ ¼ 1 then F x;zðt þ sÞ ¼ 1.
Definition 1.3 Schweizer and Sklar, 1960. A binary operation
� : ½0; 1� � ½0; 1� ! ½0; 1� is called a continuous t-norm if

ð½0; 1�; �Þ is a topological monoid with unit 1 such that
a � b 6 c � d whenever a 6 c and b 6 d for all a; b; c; d 2 ½0; 1�:

Definition 1.4 Sehgal and Bharucho-Reid, 1972. A Menger
space is a triple ðX; n; �Þ where ðX; nÞ is PM-space and � is a

t-norm satisfying the following triangle inequality:

(PM-40) F x;zðt þ sÞP F x;yðtÞ � F y;zðsÞ for all x; y; z 2 X and for

all s P 0; t P 0.

Schweizer and Sklar (1983) have proved that if ðX; n; �Þ is a
Menger PM-space with a continuous t-norm *, then ðX; n; �Þ is
a Hausdorff topological space with a topology s induced by
the family of neighborhoods fUpð�; kÞ : p 2 X; � > 0; k > 0g,
where Upð�; kÞ ¼ fx 2 X : Fx;pð�Þ > 1� kg. In this topology a
sequence fxng in X converges to a point x 2 X (written
xn ! x) if and only if for every � > 0 and k > 0, there exists an
integer Mð�; kÞ such that xn 2 Uxð�; kÞ for all n P Mð�; kÞ i.e,
Fxn ;xð�Þ > 1� k, whenever n P Mð�; kÞ. The sequence fxng in
X will be called a Cauchy sequence if for each � > 0; k > 0,
there is an integer Mð�; kÞ such that Fxn;xmð�Þ > 1� k,
whenever n;m P Mð�; kÞ.

Definition 1.5 Schweizer and Sklar, 1983. A Menger space
ðX; n; �Þ is said to be complete if each Cauchy sequence in X
converges to a point of X.

Viored Radu (2002) proposed the following form for the
contraction condition for self-mapping T of a Menger space

ðX; n; �Þ:
FTx;TyðKrtÞP Fx;yðtÞ
Fx;yðtÞ þ K1�rð1� Fx;yðtÞÞ

8t > 0; 8x; y 2 X
for some r 2 ½0; 1� and some k 2 ð0; 1Þ.

We denote that the above contraction condition by Kr-con-
traction condition.

Theorem 1.1. Let ðX; n; �Þ be a complete Menger space. Let T
be a Kr-contraction mapping from X into itself. Then T has a

unique fixed point.

Proof. Let x0 be an arbitrary point in X and xn ¼ Tnx0 for all
n 2 N. Since T is a Kr-contraction mapping, we have
Fx1 ;x2 ðtÞ¼FTx0 ;Tx1 ðtÞP
Fx0 ;x1

t
Kr

� �
Fx0 ;x1

t
Kr

� �
þK1�r 1�Fx0 ;x1

t
Kr

� �� �

¼ að1Þx0 ;x1

t

Kr

� �

Fx2 ;x3 ðtÞ¼FTx1 ;Tx2 ðtÞP
Fx1 ;x2

t
Kr

� �
Fx1 ;x2

t
Kr

� �
þK1�r 1�Fx1 ;x2

t
Kr

� �� �
P

Fx0 ;x1
t

K2r

� �

Fx0 ;x1
t

K2r

� �
þK1�r 1�Fx0 ;x1

t

K2r

� �� �

Fx0 ;x1
t

K2r

� �

Fx0 ;x1
t

K2r

� �
þK1�r 1�Fx0 ;x1

t

K2r

� �� �þK1�r 1�
Fx0 ;x1

t

K2r

� �

Fx0 ;x1
t

K2r

� �
þK1�r 1�Fx0 ;x1

t

K2r

� �� �
2
4

3
5

¼
að1Þx0 ;x1

t
K2r

� �

að1Þx0 ;x1
t

K2r

� �
þK1�r 1�að1Þx0 ;x1

t
K2r

� �h i¼ að2Þx0 ;x1

t

K2r

� �

and so on we get by a simple induction the following

Fxn ;xnþ1ðtÞP að2Þx0 ;x1

t

Knr

� �
8n 2 N; t > 0 ð1:1Þ

Using (PM-40), for any positive integer p we have,

Fxn ;xnþpðtÞP Fxn ;xnþ1

t

p

� �
� Fxn ;xnþ2

t

p

� �
� . . . � Fxnþp�1 ;xnþp

t

p

� �

Using (1.1), we have

Fxn ;xnþpðtÞP aðnÞx0 ;x1

t

pKnr

� �
� aðnþ1Þx0 ;x1

t

pKðnþ1Þr

� �
� . . .

� aðnþP�1Þx0 ;x1

t

pKðnþP�1Þr

� �

Since lim
t!1

Fx;yðtÞ ¼ 1, consequently lim
t!1

aðnÞx0 ;x1
ðtÞ ¼ 1, then

lim
t!1

Fxn ;xnþp ðtÞP 1 � 1 � . . . � 1 ¼ 1;

i.e.,

lim
t!1

Fxn ;xnþp ðtÞ ¼ 1

It is follows that for all k 2 ð0; 1Þ, there exists an integer

Mðt; kÞ such that

Fxn ;xnþpðtÞ > 1� k 8n; p 2 N; n >Mðt; kÞ

Consequently, the sequence fxng is a Cauchy sequence. Since
ðX; n; �Þ is complete, then there exists a point x� 2 X such that

the sequence fxng converges to x� i.e.,

8k 2 ð0; 1Þ9 an integer Mðt; kÞ such that Fxn ;x� ðtÞ > 1� k

8n P Mðt; kÞ ð1:2Þ

Now we need to prove that Tx� ¼ x�. For this we need to
prove that the sequence fxng converges to Tx�.

From (1.2) we have, for all k 2 ð0; 1Þ there exist an integer

Mðt; kÞ such that

Fxn ;Tx
� ðtÞ ¼ FTxn�1 ;Tx

� ðtÞP
Fxn�1 ;x�

t
Kr

� �
Fxn�1 ;x�

t
Kr

� �
þ K1�r 1� Fxn�1 ;x�

t
Kr

� �� 	

>
1� k

ð1� kÞ þ K1�rðkÞ
> 1� k 8n 2Mðt; kÞ

Then, the sequence fxng converges to Tx�. By the uniqueness

of the limit, hence Tx� ¼ x�.
Now we prove the uniqueness of the fixed point

Suppose that, there exist y� 2 X such that x� – y�;Tx� ¼ x�

and Ty� ¼ y�. By (PM-1) there exists real number t > 0 and d
with 0 6 d < 1 such that Fx� ;y� ðtÞ ¼ d.

One may notice that Tx� ¼ x� and Ty� ¼ y�, implies that
Tnx� ¼ Tn�1x� ¼ . . . ¼ Tx� ¼ x� and Tny� ¼ Tn�1y� ¼
. . . ¼ Ty� ¼ y�. It is follows that for each positive integer n
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we have,

and so on we get by a simple induction the following
d ¼ Fx� ;y� ðtÞ ¼ FTnx� ;Tny� ðtÞP
FTn�1x� ;Tn�1y�

t
Kr

� �
FTn�1x� ;Tn�1y�

t
Kr

� �
þ Kð1�rÞ 1� FTn�1x� ;Tn�1y�

t
Kr

� �� 	 ¼ að1Þ
Tn�1x� ;Tn�1y�

t

Kr

� �

P

F
Tn�2x� ;Tn�2y�

t

K2r

� �

F
Tn�2x� ;Tn�2y�

t

K2r

� �
þKð1�rÞF

Tn�2x� ;Tn�2y�
t

K2r

� �

F
Tn�2x� ;Tn�2y�

t

K2r

� �

F
Tn�2x� ;Tn�2y�

t

K2r

� �
þKð1�rÞF

Tn�2x� ;Tn�2y�
t

K2r

� �þ K1�r 1�
F
Tn�2x� ;Tn�2y�

t

K2r

� �

F
Tn�2x� ;Tn�2y�

t

K2r

� �
þK1�rF

Tn�2x� ;Tn�2y�
t

K2r

� �
2
4

3
5

¼
að1Þ
Tn�2x� ;Tn�2y�

t
K2r

� �

að1Þ
Tn�2x� ;Tn�2y�

t
K2r

� �
þ K1�rað1Þ

Tn�2x� ;Tn�2y�
t

K2r

� � ¼ að2Þ
Tn�2x� ;Tn�2y�

t

K2r

� �
d P aðnÞx� ;y�
t

Knr

� �

Since lim
t!1

aðnÞx� ;y�
t

Knr

� �
¼ 1, then d P 1. This contradicts the selec-

tion of d. Therefore, the fixed point is unique. h

If we let r ¼ 1 in Kr-contraction condition we have the con-
traction condition due Sehgal and Bharucho-Reid (1972) as in
the following definition.

Definition 1.6 Sehgal and Bharucho-Reid, 1972. A mapping T

of a PM-space ðX; n; �Þ into itself is said to be contraction
mapping if there exists a constant k 2 ð0; 1Þ, such that for each
x; y 2 X,

FTx;TyðKtÞP Fx;yðtÞ

The expression FTx;TyðKtÞP Fx;yðtÞ means that the prob-

ability that the distance between the image points Tx;Ty is less
than Kt is at less equal to the probability that the distance
between the points x; y is less than t.

If we let r ¼ 1 in Theorem 1.1 we get the following theorem.

Theorem 1.2. Let ðX; n; �Þ be a complete Menger space. Let T

be a mapping from X into itself satisfy the following contraction
condition FTx;TyðKtÞP Fx;yðtÞ for each x; y 2 X. Then T has a
unique fixed point.

Theorem 1.2 is a stronger form of the following theorem.

Theorem 1.3. (Sehgal and Bharucho-Reid, 1972). Let ðX; n; �Þ
be a complete Menger space, where * is a continuous t-norm

satisfy the additional condition: x � x P x for each x 2 ½0; 1�.

Let T be a mapping from X into itself satisfy the following
contraction condition.

FTx;TyðKtÞP Fx;yðtÞ for each x; y 2 X. Then T has a unique
fixed point.
2. Fixed-point theorems in probabilistic 2-metric spaces

Gähler (1963) investigate the concept of 2-metric space is a
natural generalization of a metric space. Some fixed-point the-
orems in 2-metric spaces are obtained in Iseki (1975), Rhoades
(1979). The probabilistic 2-metric spaces where first introduced

in Golet (1988a), Golet (1988b) study a fixed point theorem in
probabilistic 2-metric spaces. In this section we introduce some
fixed-point theorems in probabilistic 2-metric space by using
Kr-contraction condition in 2-metric spaces.

Definition 2.1 Gähler, 1963. A 2-metric space is an ordered

pair ðX; dÞ where X is an abstract set and d is a mapping from
X3 into the positive real numbers, i.e., d : X3 ! Rþ; d associ-
ates a real number dðx; y; zÞ with every triple ðx; y; zÞ. The

mapping d is assumed to satisfy the following conditions:

(1) For distinct points x; y 2 X , there exists a point z 2 X
such that dðx; y; zÞ– 0,

(2) dðx; y; zÞ ¼ 0 if at least two of x; y and z are equal,
(3) dðx; y; zÞ ¼ dðx; z; yÞ ¼ dðy; z; xÞ 8x; y; z 2 X ,
(4) dðx; y; zÞ 6 dðx; y; uÞ þ dðx; u; zÞ þ dðu; y; zÞ
8x; y; z; u 2 X .

The function d is called a 2-metric for the space X and the
pair ðX; dÞ denotes a 2-metric space. It has shown by Gähler
(1963) that a 2-metric d is non-negative and although d is a

continuous function of any one of its three arguments, it need
not be continuous in two arguments. A 2-metric d which is
continuous in all of its arguments is said to be continuous.

Geometrically a 2-metric dðx; y; zÞ represents the area of a tri-
angle with vertices x; y and z.

Definition 2.2 Golet, 1995. A probabilistic 2-metric space
(P2M-space, for short) is an order pair ðX; nÞ where X is an

abstract set and n is a mapping from X3 into Dþ. In other
words, nðx; y; zÞ 2 Dþ, for all ðx; y; zÞ 2 X3, We shall denote
the distribution function nðx; y; zÞ by Fx;y;z, where the symbol

Fx;y;zðtÞ will denote the value of Fx;y;z at the real number t.
The function Fx;y;z are assumed to satisfy the following
conditions.

(P2M-1) F x;y;zðtÞ ¼ 1 for all t > 0 iff at least two of the three
points x; y; z are equal, F x;y;zðtÞ ¼ 0 for all
t 6 0 8x; y; z 2 X .

(P2M-2) For distinct points x; y 2 X there exists a point
z 2 X such that F x;y;zðtÞ – 1 if t > 0.

(P2M-3) F x;y;z ¼ F x;z;y ¼ F y;z;x.

(P2M-4) F x;y;wðt1Þ ¼ 1; F x;w;zðt2Þ ¼ 1 and F w;y;zðt3Þ ¼ 1 then
F x;y;zðt1 þ t2 þ t3Þ ¼ 1.



220 Mona. S. Bakry, H.M. Abu-Donia
Example 2.1.

Let nðx; y; zÞðtÞ ¼ Fx;y;zðtÞ ¼
t

tþminfjx�yj;jx�zj;jy�zjg ; if t > 0

0; i t 6 0



,

for all ðx; y; zÞ 2 X3. Then ðX; nÞ is P2M-space.

Definition 2.3 Golet, 1995. A mapping � : ½0; 1�3 ! ½0; 1� is
said to be 2-t-norm if

(2T-1) a � 1 � 1 ¼ a,
(2T-2) a � b � c ¼ a � c � b ¼ c � b � a,
(2T-3) a � b � c 6 d � e � f , if a 6 d; b 6 e and c 6 f ,
(2T-4) ða � b � cÞ � d � e ¼ a � ðb � c � dÞ � e ¼ a � b � ðc�

d � eÞ for all a; b; c; d; e 2 ½0; 1�.
Definition 2.4 Golet, 1995. A 2-Menger space is a triple

ðX; n; �Þ where ðX; nÞ is P2M-space, and � is a 2-t-norm satis-
fying the following triangle inequality:

(P2M-40) Fx;y;zðt1 þ t2 þ t3ÞP Fx;y;wðt1Þ � Fx;w;zðt2Þ�
Fw;y;zðt3Þ 8x; y; z;w 2 X

Definition 2.5. Let ðX; n; �Þ be a 2-Menger with a continuous 2-
t-norm �. The sequence fxng in X is said to be converges to a

point x 2 X if for every � > 0 and k > 0, there exists an integer
Mð�; kÞ such that Fxn ;x;að�Þ > 1� k, whenever n P Mð�; kÞ

Definition 2.6. The sequence fxng in X is said to be Cauchy

sequence if for every � > 0 and k > 0, there exists an integer
Mð�; kÞ such that Fxn ;xm ;að�Þ > 1� k, whenever n;m P Mð�; kÞ

Definition 2.7. A 2-Menger space ðX; n; �Þ will be complete if
each Cauchy sequence in X converges to a point of X.

Now, we introduce some fixed-point theorems in P2M-
space analogous to Theorem 1.1 as the following.

Theorem 2.1. Let ðX; n; �Þ be a complete 2-Menger space. Let T
be a mapping from X into itself. satisfying the following
condition:

FTx;Ty;aðKrtÞP Fx;y;aðtÞ
Fx;y;aðtÞ þ K1�rð1� Fx;y;aðtÞÞ

8t > 0;

8x; y; a 2 X

for some r 2 ½0; 1� and some k 2 ð0; 1Þ. Then T has a unique

fixed point.

Proof. Let x0 be an arbitrary point in X and xn ¼ Tnx0 for all
n 2 N. From the given condition, we have

Fx1 ;x2 ;aðtÞ¼FTx0 ;Tx1 ;aðtÞP
Fx0 ;x1 ;a

t
Kr

� �
Fx0 ;x1 ;a

t
Kr

� �
þK1�r 1�Fx0 ;x1 ;a

t
Kr

� �� �¼ að1Þx0 ;x1 ;a

t

Kr

� �

Fx2 ;x3 ;aðtÞ¼FTx1 ;Tx2 ;aðtÞP
Fx1 ;x2 ;a

t
Kr

� �
Fx1 ;x2 ;a

t
Kr

� �
þK1�r 1�Fx1 ;x2 ;a

t
Kr

� �� �

P

Fx0 ;x1 ;a
t

K2r

� �

Fx0 ;x1 ;a
t

K2r

� �
þK1�r 1�Fx0 ;x1 ;a

t

K2r

� �� �

Fx0 ;x1 ;a
t

K2r

� �

Fx0 ;x1 ;a
t

K2r

� �
þK1�r 1�Fx0 ;x1 ;a

t

K2r

� �� �þK1�r 1�
Fx0 ;x1 ;a

t

K2r

� �

Fx0 ;x1 ;a
t

K2r

� �
þK1�r 1�Fx0 ;x1 ;a

t

K2r

� �� �
2
4

3
5

¼
að1Þx0 ;x1 ;a

t
K2r

� �

að1Þx0 ;x1 ;a
t

K2r

� �
þK1�r 1�að1Þx0 ;x1 ;a

t
K2r

� �h i¼ að2Þx0 ;x1 ;a

t

K2r

� �
and so on we get by a simple induction the following

Fxn ;xnþ1 ;aðtÞP að2Þx0 ;x1 ;a

t

Knr

� �
8n 2 N; t > 0 ð2:1Þ

Now, we prove that the sequence fxng is a Cauchy sequence.

For any t > 0 and a natural number p P 2. One can write

t ¼ t0 þ t1 þ t2 þ t3 þ . . .þ t2p�2 þ t2p�1 þ tkp where t0 ¼
tð1 � k

1
2Þ; t1 ¼ tk

1
2ð1 � k

1
2Þ; t2 ¼ tkð1 � k

1
2Þ; t3 ¼ tk

3
2ð1 � k

1
2Þ,

. . ., t2p�2 ¼ tkp�1 1 � k
1
2

� �
and t2p�1 ¼ tk

2p�1
2 1 � k

1
2

� �
, i.e.,

t ¼ tð1 � k
1
2Þ þ tk

1
2 1 � k

1
2

� �
þ tk 1 � k

1
2

� �
þ tk

3
2 1 � k

1
2

� �
þ

. . . þ tkp�1 1 � k
1
2

� �
þ tk

2p�1
2 1 � k

1
2

� �
þ tkp. Using (P2M-40),

for any positive integer p we have,

Fxn ;xnþp ;aðtÞP Fxn ;xnþ1 ;aðt0Þ � Fxn ;xnþp ;xnþ1ðt1Þ � Fxnþ1 ;xnþ2 ;aðt2Þ
� Fxnþ1 ;xnþ2 ;xnþpðt3Þ � . . . � Fxnþp�2 ;xnþp�1 ;aðt2p�2Þ
� Fxnþp�2 ;xnþp�1 ;xnþpðt2p�1Þ � Fxnþp�1 ;xnþp ;aðtk

pÞ

Using (2.1), we have

Fxn ;xnþp ;aðtÞP aðnÞx0 ;x1 ;a

t0
Knr

� �
� aðnÞx0 ;x1 ;xnþp

t1
Knr

� �
� aðnþ1Þx0 ;x1 ;a

t2

Kðnþ1Þr

� �

� aðnþ1Þx0 ;x1 ;xnþp

t3

Kðnþ1Þr

� �
� . . . � aðnþp�2Þx0 ;x1 ;a

t2p�2

Kðnþp�2Þr

� �

� aðnþp�2Þx0 ;x1 ;xnþp

t2p�1

Kðnþp�2Þr

� �
� aðnþp�1Þx0 ;x1 ;a

tKp

Kðnþp�1Þr

� �

Since lim
t!1

Fx;y;aðtÞ ¼ 1, consequently lim
t!1

aðnÞx0 ;x1 ;a
ðtÞ ¼ 1, then

lim
t!1

Fxn ;xnþp ;aðtÞP 1 � 1 � . . . � 1 ¼ 1;

i.e.,

lim
t!1

Fxn ;xnþp ;aðtÞ ¼ 1

It is follows that for all k 2 ð0; 1Þ, there exists an integer
Mðt; kÞ such that

Fxn ;xnþp ;aðtÞ > 1� k 8n; p 2 N; n >Mðt; kÞ:

This means that, the sequence fxng is a Cauchy sequence.

Since the 2-Menger space ðX; n; �Þ is complete, then there exists
a point x� 2 X such that the sequence fxng converges to x� i.e.,

8k 2 ð0; 1Þ9 an integer Mðt; kÞs: t: Fxn ;x� ;aðtÞ
> 1� k 8n P Mðt; kÞ ð2:2Þ

Now we need to prove that Tx� ¼ x�. For this we need to
prove that the sequence fxng converges to Tx�.

From (2.2) we have, for all k 2 ð0; 1Þ there exist an integer

Mðt; kÞ such that

Fxn ;Tx
� ;aðtÞ ¼ FTxn�1 ;Tx

� ;aðtÞ

P
Fxn�1 ;x� ;a

t
Kr

� �
Fxn�1 ;x� ;a

t
Kr

� �
þ K1�r 1� Fxn�1 ;x� ;a

t
Kr

� �� 	

>
1� k

ð1� kÞ þ K1�rðkÞ
> 1� k 8n 2Mðt; kÞ

Then, the sequence fxng converges to Tx�. By the uniqueness
of the limit, then Tx� ¼ x�.

Now we prove the uniqueness of the fixed point.
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Suppose that, there exist y� 2 X such that x� – y�;Tx� ¼ x�

and Ty� ¼ y�.

By (P2M-2) there exists real number t > 0 and d with

0 6 d < 1 such that Fx�;y� ;aðtÞ ¼ d 8 a – x� and a – y�.

One may notice that Tx� ¼ x� and Ty� ¼ y�, implies that

Tnx� ¼ Tn�1x� ¼ . . . ¼ Tx� ¼ x� and Tny� ¼ Tn�1y� ¼ . . . ¼
Ty� ¼ y�. It is follows that for each positive integer n we have,

d ¼ Fx� ;y� ;aðtÞ ¼ FTnx� ;Tny� ;aðtÞ

P
FTn�1x� ;Tn�1y� ;a

t
Kr

� �
FTn�1x� ;Tn�1y� ;a

t
Kr

� �
þ Kð1�rÞ 1� FTn�1x� ;Tn�1y� ;a

t
Kr

� �� 	
¼ að1Þ

Tn�1x� ;Tn�1y� ;a

t

Kr

� �

¼
að1Þ
Tn�2x� ;Tn�2y� ;a

t
K2r

� �

að1Þ
Tn�2x� ;Tn�2y� ;a

t
K2r

� �
þ K1�rað1Þ

Tn�2x� ;Tn�2y� ;a
t

K2r

� �

¼ að2Þ
Tn�2x� ;Tn�2y� ;a

t

K2r

� �

and so on we get by a simple induction the following

d P aðnÞx� ;y� ;a

t

Knr

� �

Since lim
t!1

aðnÞx� ;y� ;a
t

Knr

� �
¼ 1, then d P 1. This contradicts the

selection of d. Therefore, the fixed point is unique. h

If we let r ¼ 1 in Theorem 2.1 we get the following theorem.

Theorem 2.2. Let ðX; n; �Þ be a complete 2-Menger space. Let T
be a mapping from X into itself satisfy the following contraction
condition

FTx;Ty;aðKtÞPFx;y;aðtÞ 8t> 0; 8x;y;a2X for some K2 ð0; 1Þ:

Then T has a unique fixed point.
3. Conclusion

Fixed-point theorems have proved to be a useful instrument in

many applied areas such as mathematical economics, non-
cooperative game theory, dynamic optimization and stochastic
games, functional analysis, variational calculus and etc. How-

ever, for many practical situations, the conditions in the fixed-
point theorems are too strong, so there is then no guarantee
that a fixed point exists. Menger introduced the notion of a

probabilistic metric space in 1942 and since then the theory
of probabilistic metric space has developed in many directions.

The idea of Menger was to use distribution functions instead
of non-negative real numbers as values of the metric. The no-
tion of a probabilistic 2-metric space corresponds to situations
when we do not know exactly the distance between three

points, but we know probabilities of possible values of this dis-
tance. Such a probabilistic generalization of 2-metric spaces
appears to be interest in the investigation of physical quantities

and physiological threshold. It is also of fundamental impor-
tance in probabilistic functional analysis, non-linear analysis
and applications (Chang et al., 1996, 2001; Khamsi and

Kreinovich, 1996; Schweizer et al., 1998).
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