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Neighbor balanced designs are useful to balance out the neighbor effects in field of agriculture, serology,
agro forestry, industry, etc. In most of the agriculture experiments blocks are formed in a line and there-
fore, neighbor balanced designs are required in linear blocks. In this article some classes of first order
neighbor balanced designs are presented in linear blocks of size three and four. A method to construct
the second order neighbor balanced designs through two minimal first order neighbor balanced designs
in linear binary blocks of size three is also developed here.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

If v treatments are arranged in b linear blocks of size k such that
each unordered pair of adjacent treatments appears an equal num-
ber of times, say k01, designs are called first order neighbor balanced
designs in linear blocks. If k01 = 1 then such designs are called min-
imal first order neighbor balanced designs in linear blocks. Kiefer
and Wynn (1981) introduced an algorithm to construct the neigh-
bor balanced designs (NBDs) in complete linear blocks. Cheng
(1983) generated NBDs in linear blocks for different cases. Azais
et al. (1993) constructed NBDs in complete blocks, in k = v � 1
and partially neighbor balanced designs in linear blocks. Jacroux
(1998) constructed NBDs for all v having blocks of size 3 which
are efficient under standard intrablock analysis as well as when
experimental units adjacent within blocks are correlated. Tomar
et al. (2005) constructed neighbor balanced block designs using
Mutually Orthogonal Latin Squares (MOLS) and compared their
designs with complete block designs balanced for neighbor effects.
Ahmed (2010) constructed NBDs in linear blocks for k even, k odd
&two different block sizes k1 and k2. Ahmed and Akhtar (2011)
constructed NBDs in linear blocks of equal sizes for (i) v = 4i + 1, i
integer, k = 3 with k0 = 1, (ii) v = 2i + 1, i (>1) odd, k = 3 with k0 = 2,
and (iii) v = 2i + 1 (prime) and k < v. They also constructed these
designs in linear blocks of unequal sizes for (i) v = 4i–1; in k1 = 3
and k2 = 2, k0 = 1, (ii) v = 4i + 2; in k1 = 3 and k2 = 2. Ahmed et al.
(2013) developed some infinite series to generate minimal neigh-
bor balanced designs for two and three different sizes in linear
blocks. They also constructed generalized neighbor designs
(GN2-designs) in proper linear blocks. They developed following
infinite series of minimal neighbor balanced designs in linear
blocks. Shahid et al. (2017) constructed some important classes
of generalized neighbor designs in linear blocks for four different
cases. Minimal designs are always considered as the most econom-
ical. In this article, some infinite series are developed to generate
the first order neighbor balanced designs for linear blocks of size
3 and 4. Catalogues are also presented of proposed designs. Two
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series are also developed to generate second order neighbor bal-
anced designs through two minimal first order neighbor balanced
designs in linear binary blocks of size three. These designs are
constructed using method of cyclic shifts which is explained in
Section 2. It is important to note that all proposed neighbor
designs, in this article, are assumed balanced for non-directional
neighbor effect. Non-directional neighbor effect means same effect
from right or left neighbor and direction of neighbor does not
matter.
2. Models and notations

Consider a class of designs Xðv ;b;kÞ with v treatments grouped in
b circular blocks of k experimental units per block.

Definition 1. A NBD at distance 1 is a binary design in which each
treatment appears as first order neighbor k0 times to all other
treatments.
Definition 2. A NBD at distance 2 is a binary design in which each
treatment appears as first order neighbor k01 times to all other
treatments and each treatment appears as second order neigh-
bork02. times to all other treatments.

NBD at distance 1 & 2 are constructed under the following mod-
els 1 & 2 respectively:

yij ¼ lþ bi þ sdði;jÞ þ k1dði;j�1Þ þ eij i ¼ 1;2; : � � � ; b; j
¼ 1;2; � � � ; k ð1Þ

yij ¼ lþ bi þ sdði;jÞ þ k1dði;j�1Þ þ k2dði;j�1Þ þ eij i ¼ 1;2; � � � ; b; j

¼ 1;2; � � � ; k ð2Þ
Models (1) and (2) can be written in vector as

Yd ¼ 1lþ Bbþ Tdsþ U1dk1 þ e ð3Þ

Yd ¼ 1lþ Bbþ Tdsþ U1dk1 þ U2dk2 þ e ð4Þ
where Y and 1 are vectors of observations and 1’s each of order (bk
� 1) respectively, Td, U1d and U2d are incidence matrices of order
(bk � v) for treatment, first order neighbor and second order
neighbor effects respectively, and B is the (bk � b) incidence matrix
for block effects. The vectors b; s; k1; k2 are the parameters of respec-
tive effects. e is the vector of error term with mean vector 0 and
variance-covariance matrix r2I. The complete information matrix
for model (3) is

Cd ¼

101 10B 10Td 10U1d

B01 B0B B0Td B0U1d

T0
d1 T0

dB T0
dTd T0

dU1d

U0
1d1 U0

1dB U0
1dTd U0

1dU1d

2
6664

3
7775

where 101 ¼ bk ¼ rv ¼ n, For an equireplicate designs with constant
block size k; B0B ¼ kIb and T0

dTd ¼ rIv , T0
dB ¼ N, U0

1dB ¼ 2N. Let
T0
dU1d ¼ L and U0

1dU1d ¼ M, the complete information matrix
becomes

Cd ¼

n 10B 10Td 10U1d

B01 kIb N0 2N0

T0
d1 N rIv L

U0
1d1 2N L M

2
6664

3
7775

After imposing restrictions and simplification, the joint infor-
mation matrix for treatment and neighbor effects is
Csu ¼ T0
dTd � ðT0

dBdKÞ�1ðB0
dTdÞ T0

dU1d � ðT0
dBdKÞ�1ðB0

dU1dÞ
U0

1dTd � ðU0
1dBdÞK�1ðB0

dTdÞ U0
1dU1d � ðU0

1dBdÞK�1ðB0
dU1dÞ

" #
Csu ¼ rIv � ð1=kÞNN0 L� ð2=kÞNN0

L� ð2=kÞNN0 M � ð4=kÞNN0

� �

Then information matrix for treatment is

Cs ¼ A� BD�1B0

where

A ¼ rIv � ð1=kÞNN0
B ¼ L� ð2=kÞNN0
D ¼ M � ð4=kÞNN0

Here NN0 is the treatment concurrence matrix whose diagonal
elements are repetitions of each treatment and off-diagonal ele-
ments are the number of times two treatments appear together
in same blocks. L is the incidence matrix of treatments versus
neighbors (left and right). Diagonal elements of L matrix, for a
design in which no treatment appears as neighbor to itself, are zero
and off-diagonal matrix are the number of times a pair of treat-
ments appear as neighbor to each other in same blocks. For further
detail see Iqbal et al. (2006, 2009). To achieve a NBD, all off-
diagonal elements of matrix L must be same. If off-diagonal ele-
ments of matrix L contain two or more distinct values, the design
is known as generalized neighbor design. Similarly, if off-
diagonal elements of concurrence matrix NN0 are same then the
design is BIBD otherwise PBIBD.

Information matrix for neighbor effect in model (3) and infor-
mation matrices for model (4) can be derived accordingly.

According to Hinkelmann and Kempthorne (2005), average
variance of treatment contrast is a function of information matrix
as

av:
i–i0

varðŝi � ŝi0 ÞIBD ¼ 2r2
eðIBDÞðv � 1Þ�1

Xv�1

i¼1

d�1
i

where di is the ith eigenvalue of Cs. Eigen values of Cs can be calcu-
lated using R-language.
3. Method of construction and efficiency factor

3.1. Method of cyclic shifts

Method of cyclic shifts introduced by Iqbal (1991) is simplified
here to construct neighbor balanced designs only in linear blocks”.
v treatments are labeled as 0, 1, 2, . . ., v � 1 under rule I and II
below.

Rule I: Let Sj = [qj1, qj2, . . ., qj(k-1)] be a set of shifts where 1 � qji

� v � 1. A design is first order neighbor balanced designs in linear

blocks if each element of Sj along with its complement contains all
elements 1, 2, . . ., v � 1 equally often, say, k1 times. In Rule I, com-
plement of qi is v � qi.

Rule II: Let Sj = [qj1, qj2, . . ., qj(k-2)]t be a set of shifts where 1 �
qji � v � 2. A design is first order neighbor balanced designs in lin-

ear blocks if each element of Sj along with its complement contains
all elements 1, 2, . . ., v � 2 equally often, say, k1 times. In Rule II,
complement of qi is v � 1 � qi.
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3.2. Efficiency factor (Ef)

In literature, neighbor designs in incomplete block designs are
compared with (i) complete block designs and (ii) complete block
design balanced for neighbor effects. Hinkelmann and Kempthorne
(2005) suggested former approach to calculate relative efficiency,
Efficiency Factor Ef. The approach allows comparing an incomplete
block design (IBD) with CRD or RCBD and two competing IBDs with
each other. The residual variances (r2

c ) is assumed same for both
digns to be compared. For equal blocks of size k the information
matrix of a model without and interference effect can be defined
as:

C ¼ R � 1
k
NN0

where, R is a diagonal matrix of order (v � v) with diagonal ele-
ments (r-number of replications). The matrix C has one Eigen value
(root) dv ¼ 0 with normalized associated Eigenvector Dv ¼ ð1=vÞJ
and the other non-zero roots will be d1; d2; � � � ; dv�1 with orthonor-
mal associated Eigenvectors D1;D2; ��;Dv�1. For a BIBD,
d1 ¼ d2 ¼ �� ¼ dv�1 whereas in PBIBD, number of different values
of d1; d2; ��; dv�1 relate with association scheme. Consider same
residual variances r2

e for CRD and IBD;
Then

E ¼
av:
i–i0

varðŝi � ŝi0 ÞCRD=RCBD
av :
i–i0

varðŝi � ŝi0 ÞIBD
¼ 2=r

2=c
¼ 2=r

2=ðrEf Þ where r2
eðCRDÞ ¼ r2

eðIBDÞ

The quantity c ¼ rEf is harmonic mean of non-zero Eigen values
of matrix C. While comparing two competing IBDs having same
number of observations (n), each IBD will have associated with
an efficiency factor Ef, the IBD having higher Ef is considered as bet-
ter design.

3.3. Upper bound (UB) for efficiency factor

In mathematics, an upper bound of a subset S of some partially
ordered set P is an element which is greater than or equal to every
element of S. The upper bound given by Hinkelmann and
Kempthorne (2005) for an incomplete block designs is

Ef ¼ ðk� 1Þv
ðv � 1Þk S:

A balanced incomplete block design always achieve its upper
bound equal to efficiency factor while partially balanced incom-
plete block design attain smaller Ef value than the upper bound.
4. First order neighbor balanced designs in linear blocks of size
three

In this section, some infinite series to generate the first order
neighbor balanced designs are developed in linear blocks of size
three.

Series 4.1. Minimal first order NBDs can be constructed for v =
4i, i integer, k = 3 and k1 = 1 in i(v � 1) linear blocks from the fol-
lowing i sets of shifts.

Sj = [p, p + 1]; j = 1, . . ., i � 1 and p = 2j � 1.
Si = [(v � 2)/2]t
Example 4.1. Following is minimal first order NBD for v = 8 and k
= 3 with k1 = 1 generated through the sets of shifts [1, 2] and [3]t
mod 7.
B1
 B2
 B3
 B4
 B5
 B6
 B7
 B8
 B9
 B10
 B11
 B12
 B13
 B14
0
 1
 2
 3
 4
 5
 6
 0
 1
 2
 3
 4
 5
 6

1
 2
 3
 4
 5
 6
 0
 3
 4
 5
 6
 0
 1
 2

3
 4
 5
 6
 0
 1
 2
 7
 7
 7
 7
 7
 7
 7
Series 4.2. First order NBDs can be constructed for v = 2i, i integer
greater than 1 and k = 3 with k1 = 2 through the following sets of
shifts mod v � 1.

Sj = [j, j]; j = 1, 2,. . ., i � 2.
Si-1 = [(v � 2)/2]t, Si = [v/2]t
Example 4.2. First order NBD for v = 10 and k = 3 with k1 = 2 can
be generated through the sets of shifts [1, 1], [2, 2],[3, 3], [4]t
and [5]t mod 9.

5. First order neighbor balanced designs in linear blocks of size
four

In this section, some infinite series to generate the first order
neighbor balanced designs are developed in linear blocks of size
four.

Series 5.1. Minimal first order NBDs can be constructed for v =
6i + 1,iinteger and k = 4 with k1 = 1 through the following i sets of
shifts.

Sj = [3j � 2, 3j � 1, 3j]; j = 1, . . ., i.
Example 5.1. Minimal first order NBD for v = 13 and k = 4 with k1
= 1 can be generated through the sets of shifts [1, 2, 3] and [4, 5, 6]
mod 13.

Series 5.2. First order NBDs can be constructed for v = 3i + 1 and
k = 4 with k1 = 2 through the following sets of shifts mod v.

Sj+1 = [(3j)/2 + 1, (3j)/2 + 2, v � ((3j)/2 + 3)]; j = 0, 2, . . ., i.
Sj+1 = [3(j � 1)/2 + 3, 3(j � 1)/2 + 2, v � (3(j � 1)/2 + 3)]; j = 1,
3, . . ., i � 1.
Example 5.2. First order NBD for v = 7 and k = 4 with k1 = 2 can
be generated through the sets of shifts [1, 2, 6] and [3, 2, 4]
mod 7.

Series 5.3. Minimal first order NBDs can be constructed for v =
6i + 3 and k = 4 with k1 = 1 through the following sets of shifts
mod v.

Sj+1 = [3j + 1, v � (3j + 2), 3j + 3]; j = 0, 1, . . ., i � 1.
Si+1 = [(v � 1)/2, (v � 1)/2, (v � 1)/2](1/3) (Every third block be
taken from).
Example 5.3. Minimal first order NBD for v = 15 and, k = 4 with k1
= 1 can be generated through the sets of shifts [1, 13, 3] and [4, 10,
6] and [7, 7, 7](1/3) (Consider every third block) mod 15.

Series 5.4. Minimal first order NBDs can be constructed for v =
6i + 4 and k = 4 with k1 = 1 through the following sets of shifts mod
v � 1.

Sj+1 = [3j + 1, v � (3j + 2), 3j + 3]; j = 0, 1, . . ., i � 1.
Si+1 = [(v � 2)/2, v/2, (v + 2)/2](1/2)
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Example 5.4. Minimal first order NBD for v = 16 and k = 4 with k1
= 1 can be generated through the sets of shifts [1, 14, 3], [4, 11, 6]
and [7, 8, 9](1/2) mod 16.

Series 5.5. Minimal first order NBDs can be constructed for v =
3i, i even and k = 4 with k1 = 1 through the following sets of shifts
mod v � 1.

Sj = [p, p + 1, p + 2]; j = 1, . . ., c � 1 and p = 3j � 2.
Sc = [(v � 4)/2, (v � 2)/2]t, where c = i/2
Example 5.5. Minimal first order NBD for v = 12 and k = 4 with k1
= 1 can be generated through the sets of shifts [1, 2, 3] and [4, 5]t
mod 11.

Series 5.6. First order NBDs can be constructed for v = 6i + 2 and
k = 4 with k1 = 3 through the following sets of shifts mod v � 1.

Sj = [j, j, j]; j = 1, . . ., 3i � 2.
S3i-1 = [(v � 4)/2, (v � 4)/2]t,
S3i = [(v � 4)/2, (v � 2)/2]t,
S3i+1 = [(v � 2)/2, (v � 2)/2]t
Example 5.6. First order NBD for v = 8 and k = 4 with k1 = 3 can be
generated through the sets of shifts [1, 1, 1] + [2, 2]t + [2, 3]t + [3, 3]t
mod 7.

A catalogue of First order NBD is developed for linear blocks of
size three using Series 3.1 & 3.2 and of size four using series 4.1,
4.2, . . ., 4.6 which is given as Supplementary Material.

6. Second order NBD in linear blocks of size three

In this Section, a method to construct the second order neighbor
balanced designs through combining two minimal first order
neighbor balanced designs in linear binary blocks of size three is
developed.

A design is called second order neighbor balanced in linear
blocks if each unordered pair of distinct treatments appears:

i) An equal number of times, say, k1 as first order/ adjacent
neighbors, and

ii) An equal number of times, say, k2 as second order neighbors.

A minimal second order neighbor balanced designs will be with
k1 = 2 and k2 = 1.

Theorem 6.1. If v = 4i + 1, i odd then second order neighbor
balanced designs with k2 = 1 can be constructed in linear binary
blocks of size three by combing two first order neighbor balanced
minimal designs through the following sets of shifts.

Design I (first order neighbor balanced minimal design):

Sj+1 = [2j + 1, 2j + 2]; j = 0, 1, . . ., i � 1.

Design II (first order neighbor balanced minimal design):

Sj+1 = [(2j + 2), 2j + 3]; j = 0, 1, . . ., i � 2 where j– (i � 3)/2.
Si-1 = [3i + 2, i] for i > 1
Si = [1, 2i + 1]
Required Design (first-order and second order neighbor bal-
anced minimal design):

Si+1 = [2j + 1, 2j + 2]; j = 0, 1, . . ., i � 1.
Sj+ i+1 = [2j + 2, 2j + 3]; j = 0, 1, . . ., i � 2 where j– (i � 3)/2.
S2i-1 = [3i + 2, i]
S2i = [1, 2i + 1] for i > 1
Example 6.1. For v = 5 the following are two different first order
neighbor balanced designs in linear binary blocks of size three
where each pair of distinct treatments appears twice as first order
neighbors.
Design I
 Design II
B1
 B2
 B3
 B4
 B5
 B1
 B2
 B3
 B4
 B5
0
 1
 2
 3
 4
 0
 1
 2
 3
 4

1
 2
 3
 4
 0
 1
 2
 3
 4
 0

3
 4
 0
 1
 2
 4
 0
 1
 2
 3
Combing these two designs, we get required design which is also
second order neighbor balanced design with k1 = 2 and k2 = 1
B1
 B2
 B3
 B4
 B5
 B6
 B7
 B8
 B9
 B10
0
 1
 2
 3
 4
 0
 1
 2
 3
 4

1
 2
 3
 4
 0
 1
 2
 3
 4
 0

3
 4
 0
 1
 2
 4
 0
 1
 2
 3
Theorem 6.2. If v = 8i + 1, i be an integer then second order
neighbor balanced designs k2 = 1 can be constructed in linear
binary blocks of size three by combing two minimal first
order neighbor balanced designs through the following sets of
shifts.

Design I (first order neighbor balanced minimal design):

Sj+1 = [2j + 1, 2j + 2]; j = 0, 1, . . ., 2i � 1.

Design II (first order neighbor balanced minimal design):

Sj+1 = [2j + 2, 2j + 3]; j = 0, 1, . . ., 2i � 2 where j– i � 1.
S2i-1 = [6i + 1, 2i + 1] S2i = [1, 4i].

Required Design (first-order and second order neighbor bal-
anced minimal design):

Sj+1 = [2j + 1, 2j + 2]; j = 0, 1, . . ., 2i � 1.
Sj+2t+1 = [2j + 2, 2j + 3]; j = 0, 1, . . ., 2i � 2 where j– i � 1.
S4i-1 = [6i + 1, 2i + 1] S4i = [1, 4i].
Example 6.2. For v = 9 the following are two different first order
neighbor balanced designs in linear binary blocks of size three
where each pair of distinct treatments appears twice as first order
neighbors.



Design I
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8 0 3 4 5 6 7 8 0 1 2
3 4 5 6 7 8 0 1 2 7 8 0 1 2 3 4 5 6

Design II
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8 0 3 4 5 6 7 8 0 1 2
3 4 5 6 7 8 0 1 2 7 8 0 1 2 3 4 5 6
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Combing these two designs, we get required design which is also
minimal second order neighbor balanced design with k1 = 2 and
k2 = 1.
B1
 B2
 B3
 B4
 B5
 B6
 B7
 B8
 B9
 B10
 B11
 B12
0
 1
 2
 3
 4
 5
 6
 7
 8
 0
 1
 2

1
 2
 3
 4
 5
 6
 7
 8
 0
 3
 4
 5

3
 4
 5
 6
 7
 8
 0
 1
 2
 7
 8
 0
B13
 B14
 B15
 B16
 B17
 B18
 B19
 B20
 B21
 B22
 B23
 B24
3
 4
 5
 6
 7
 8
 0
 1
 2
 3
 4
 5

6
 7
 8
 0
 1
 2
 1
 2
 3
 4
 5
 6

1
 2
 3
 4
 5
 6
 3
 4
 5
 6
 7
 8
B25
 B26
 B27
 B28
 B29
 B30
 B31
 B32
 B33
 B34
 B35
 B36
6
 7
 8
 0
 1
 2
 3
 4
 5
 6
 7
 8

7
 8
 0
 3
 4
 5
 6
 7
 8
 0
 1
 2

0
 1
 2
 7
 8
 0
 1
 2
 3
 4
 5
 6
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