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The natural periods of water basin have a critical role in causing a resonance phenomenon. When the
external waves coming into the basin possess similar periods, an increment in the wave amplitude might
happen and give rise to serious damage to the surrounding environment. Many of the previous studies
focused on finding the resonant period in basins with rectangular width. However, only a few have
addressed the problem of basins with varying widths. Using a different analytical approach, we obtained
the fundamental resonant period of a rectangular and triangular semi-closed basin. The analytical solu-
tion is obtained from modified linear shallow water equations using the separation of variables method.
This new approach is simpler yet powerful in deriving the desired period. Furthermore, a modification of
the staggered finite volume method is also proposed to find the periods numerically. The proposed
scheme can be suitably applied to solve the discussed problem since it is conservative, robust, and free
from damping errors. The results show that our analytical solutions align with those obtained from
potential flow theory and the developed numerical scheme. Furthermore, we also compared the general
characteristics of the resonance phenomenon that occurs in basins with constant and varying width.
Since basins with non-constant width have lower fundamental resonant periods, the generated wave ele-
vations are higher than those in constant-width basins.
� 2022 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The study of resonant periods of various basin types is impor-
tant for observing natural phenomena affecting those water bodies,
including seiches or free-surface oscillations. This phenomenon
appears as a rise and fall of the water surface, and often results
in the increment of the wave amplitude over time. This happens
when external incoming waves have similar periods to the basin’s
resonant (natural) periods (or eigen frequencies). In semi-closed
basins such as harbours, the main factor generating oscillations is
long ocean waves caused by atmospheric disturbances that enter
through the open boundary. Harbour oscillations can cause
destructive damage to its surroundings, particularly to ship
mooring areas, that hold back many harbour activities (Wang
et al., 2020). Therefore, it is important to predict when the reso-
nance phenomenon occurs by finding the resonant periods of the
basins (Dong et al., 2020). Our particular interest in this study is
to find the fundamental resonant period, which is the longest per-
iod that can generate free-surface oscillations.

Numerous research have used the linear shallow water approx-
imation to determine the resonant periods in semi-closed basins
with constant width, (see Magdalena et al., 2020; Magdalena
et al., 2021; Wang et al., 2011; Wang et al., 2014; Wang et al.,
2015). They discovered the natural wave period is capable of gen-
erating resonance. Yet, with the exception of Lamb in 1895 (Lamb,
1906), the aforementioned analytical approach has never been
applied to basins of variable width. We will expand our earlier
work in this study to determine the periods in basins with triangu-
lar width. Water basins with this type of width are widely found in
parts of harbors and ports if we look closely from the top view.
Lamb (1906) was the first to discover the basic natural periods in
basins with this non-constant width (triangular width). In this
research, we will compare our findings to those of Lamb, who
deduced natural periods using potential flow theory. In Lamb’s
method, the water particle movement is expressed using a velocity
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potential function. In contrast, this study will obtain analytical fun-
damental natural periods from the shallow water equations that
take into account the impact of width as an external force on mass
conservation. This method is more simple and clear than the past
literature in a way that the proposed governing equations can act
as a formula to find the resonant period. Thus, this method pro-
vides a more flexible and straightforward way since we can apply
the equations to various shapes of basins.

In addition, we will also construct a numerical model to simu-
late the phenomenon and find the fundamental resonant periods
numerically. The scheme is based on the staggered finite volume
method proposed in Mungkasi et al. (2018) and Pudjaprasetya
et al. (2014). The method has been adjusted for simulating other
phenomena such as wave attenuation by porous medium
(Magdalena et al., 2021), wave refraction and shoaling
(Magdalena et al., 2014), wave run-up (Andadari et al., 2019),
and dam-break problem (Budiasih et al., 2016; Magdalena et al.,
2020). Nevertheless, none of those modifications consider the vari-
ation of the channel width as formulated in this paper. By using the
staggered finite volume method, which is free from damping
errors, we can obtain an accurate period that triggers the reso-
nance phenomenon in each basin type. Moreover, numerical simu-
lation is beneficial since it does not require an expensive set-up.

The rest of the paper is organised as follows. The mathematical
model is presented in Section 2. The governing equations are
solved analytically in Section 3, and numerically in Section 4. The
numerical results along with several comparisons regarding the
resonant periods are discussed in Section 5. Finally, the concluding
remarks are provided in the last section.

2. The Governing Equations

In this section, we explain the modified shallow water equa-
tions to study the resonance phenomenon in a canal with a non-
constant width. The shallow water equations have been widely
used to observe many phenomena other than described in this
work, such as submarine landslide (Magdalena et al., 2022), wave
propagation in channel junction (Briani et al., 2022), tsunami and
storm surge (Arpaia et al., 2022), and the interaction between
waves resonance and submerged breakwater (Magdalena et al.,
2022). As written by Mungkasi et al. (2018), the non-linear shallow
water equations (NSWE) to model wave propagation in a channel
with varying width and topography are

ht þ ðhuÞx ¼ � bxhu
b

; ð1Þ

ðhuÞt þ ðhu2 þ 1
2
gh2Þ

x
¼ � bxhu

2

b
þ ghdx; ð2Þ

in which hðx; tÞ ¼ gðx; tÞ þ dðxÞ is the total water depth calculated
from the bottom (�dðxÞ) to the wave elevation (gðx; tÞ). The channel
width is represented by bðxÞ. In this paper, we only consider basins
with a triangular width. Also, we assume that the water has con-
stant vertical velocity, therefore, only horizontal movement with
velocity uðx; tÞ is addressed.

By simplifying Eqs. 1,2 and consider only a small perturbation of
the steady state, we will have

gt þ ðhuÞx þ
bxhu
b

¼ 0; ð3Þ

ut þ ggx ¼ 0; ð4Þ
which are the modified LSWE for varying-width basin. In this linear
model, we presume that the total water depth can be approximated
2

as hðx; tÞ � dðxÞ since the wave elevation is relatively small
compared to the water depth. Hence, we write the water depth sim-
ply as hðxÞ.

3. Analytical Solution

In this part, we will solve Eqs. 3,4 for rectangular and triangular
semi-closed basin with triangular width using separation of vari-
ables method. In order to obtain the analytical solution, we define
the following ansatz

gðx; tÞ ¼ FðxÞe�ixt; ð5Þ

uðx; tÞ ¼ GðxÞe�ixt ; ð6Þ
based on the oscillating movement of monochromatic wave with
angular frequency x. By substituting Eqs. 5,6 to Eqs. 3,4, we have
two equations relating the function F and G as follows

�ixF þ hxGþ hGx þ bx

b
hG ¼ 0; ð7Þ

G ¼ � igFx

x
: ð8Þ

Then, we substitute Eq. (8) to Eq. (7) to get a second-order ordi-
nary differential equation

x2F þ gFxðhx þ bx

b
hÞ þ gFxxh ¼ 0; ð9Þ

which will be analysed in the following parts.

3.1. Rectangular longitudinal profile with triangular width

In the first configuration, the basin has a constant depth of h1

and a varying width following the function bðxÞ ¼ b1x=L. Therefore,
we can write down Eq. (9) as

x2F þ gFx
h1

x
þ gh1Fxx ¼ 0: ð10Þ

This type of equation can be considered in the form of Bessel
differential equation, which is known to have a solution as written
below,

FðxÞ ¼ C1J0
xxffiffiffiffiffiffiffiffi
gh1

p
 !

þ C2Y0
xxffiffiffiffiffiffiffiffi
gh1

p
 !

; ð11Þ

for arbitrary constants Ci; i ¼ 1;2 and the first and second kind Bes-
sel functions of order 0. Differentiating Eq. (11) with respect to x
yields the following linear combination of the Bessel functions of
order 1:

FxðxÞ ¼ � xffiffiffiffiffiffiffiffi
gh1

p C1J1
xxffiffiffiffiffiffiffiffi
gh1

p
 !

þ C2Y1
xxffiffiffiffiffiffiffiffi
gh1

p
 ! !

: ð12Þ

There are several conditions to consider in order to obtain the
function FðxÞ. The first condition is related to the basin boundary
at x ¼ 0. Since we assume that there is an infinitely-high wall at
that point, the water velocity swiftly becomes zero. It can be
expressed mathematically by setting Fxð0Þ ¼ 0 which yields

C1J1ð0Þ þ C2Y1ð0Þ ¼ 0: ð13Þ
The second kind of the first order Bessel function Y1ðxÞ tends to

infinity as x goes to zero. In contrast to that, the first kind of Bessel
function J1ðxÞ has a value of zero at x ¼ 0. Therefore, Eq. (13) is sat-
isfied when C2 ¼ 0 and C1 – 0. Fig. 1.



Fig. 1. The sketch of the one-dimensional fluid flow in a semi-closed basin.
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The second condition involves Eq. (11). According to the nodal
line position of the semi-closed basin in its fundamental mode
described by Rabinovich et al. (2009), the water elevation at the
basin mouth must be zero for all time. This results in the function
FðxÞ having a value of zero at x ¼ L, according to Eq. (5). It is math-
ematically written as

J0
xLffiffiffiffiffiffiffiffi
gh1

p
 !

¼ 0: ð14Þ

Since our aim is to find the lowest natural frequency, we seek
the smallest root of the Bessel function, that is

xLffiffiffiffiffiffiffiffi
gh1

p ¼ 2:4048; ð15Þ

where x ¼ 2p=T1 for the fundamental resonant period T1. By rear-
ranging the terms, we obtain. Fig. 2.

T1 ¼ 1:306
2Lffiffiffiffiffiffiffiffi
gh1

p : ð16Þ
Fig. 2. First basin configuration. (a) Longitudinal section (rectangular). (b) Top view

3

3.2. Triangular longitudinal profile with triangular width

Now, we will analyse the second type of basin as shown in
Fig. 3. The basin depth is increasing gradually following the func-
tion hðxÞ ¼ h1x=L, whereas the basin width has the same configura-
tion as in the previous subsection. Eq. (9) is then rewritten as
follows

x2F þ gFx
2h1

L

� �
þ gFxxh1

x
L
¼ 0: ð17Þ

The solution of Eq. (17) is

FðxÞ ¼ 1ffiffiffi
x

p K1J1 2x

ffiffiffiffiffiffiffiffi
xL
gh1

s !
þ K2Y1 2x

ffiffiffiffiffiffiffiffi
xL
gh1

s ! !
; ð18Þ

where Ki; i ¼ 1;2 are arbitrary constants. The first derivative of F
with respect to x is

FxðxÞ¼ 1ffiffiffiffiffi
x3

p K1ðc
ffiffiffi
x

p
J0ð2c

ffiffiffi
x

p Þ� J1ð2c
ffiffiffi
x

p ÞÞþK2ðc
ffiffiffi
x

p
Y0ð2c

ffiffiffi
x

p Þ�Y1ð2c
ffiffiffi
x

p ÞÞ� �
;

ð19Þ

where c ¼ x
ffiffiffi
L

p
=
ffiffiffiffiffiffiffiffi
gh1

p
.

The two conditions explained before hold for both types of
basins discussed in this paper. Therefore, the following equation
has to be satisfied

J1
2xLffiffiffiffiffiffiffiffi
gh1

p
 !

¼ 0: ð20Þ

In order to find the non-trivial solution of the fundamental res-
onant period T1, we choose the nearest root of the Bessel function
to the origin, which can be written as

2xLffiffiffiffiffiffiffiffi
gh1

p ¼ 3:8317: ð21Þ
of the basin (triangular). (c) Three-dimensional overview of basin configuration.



Fig. 3. Second basin configuration. (a) Triangular longitudinal section. (b) Triangular basin width. (c) Three-dimensional visualization of the basin.

Table 1
Comparisons between the analytical fundamental resonant periods obtained using
LSWE and potential flow theory.

Longitudinal
section

T1 (LSWE) T�
1 (potential flow theory) Relative

error

Rectangular 1:306 2Lffiffiffiffiffiffi
gh1

p 1:308 2Lffiffiffiffiffiffi
gh1

p 0.001529

Triangular 1:640 2Lffiffiffiffiffiffi
gh1

p 1:653 2Lffiffiffiffiffiffi
gh1

p 0.007864
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Finally, the highest natural period of the second basin type is

T1 ¼ 1:640
2L
gh1

: ð22Þ

Note that for both types of basins, the fundamental resonant
periods are independent of the basin’s maximum width b1.

Table 1 summarizes our analytical results along with their rel-
ative errors when compared to the solutions obtained from the
potential flow theory (Lamb, 1906). The relative error is calculated

using T1�T�1
T�1

��� ���, which is very small for both basin types (below 1%). It

indicates that our mathematical model can be a good alternative to
Fig. 4. Illustration of finite volume
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derive the basin’s natural period other than using potential flow
theory, which is more complex to solve.

4. Numerical method

This section provides the proposed numerical model to find the
fundamental resonant period of the discussed basins. As depicted
in Fig. 4, mass conservation Eq. (3) is stored within the green cells,
while the other cells are used to calculate momentum balance Eq.
(4). Hence, the half-grid points (xjþ1=2) which are the center of
momentum cells will contain the information of uðx; tÞ, and the
value of gðx; tÞ is stored at full-grid points (xj). Similar to the wave
elevation, hðxÞ will also be calculated at full-grid points.

The constructed numerical scheme to simulate wave resonance
in basins with varying width is

gnþ1
j � gn

j

Dt
þ
ðh�uÞnjþ1

2
� ðh�uÞnj�1

2

Dx
þ ðh�uÞnj�1

2

ðbjþ1
2
� bj�1

2
Þ

Dxbj
¼ 0; ð23Þ

unþ1
jþ1

2
� un

jþ1
2

Dt
þ g

gnþ1
jþ1 � gnþ1

j

Dx
¼ 0; ð24Þ
method on a staggered grid.



Fig. 5. Resonance phenomenon in a rectangular (a) and triangular (b) basin with
non-constant width using analytical fundamental resonant period derived from
LSWE and potential flow theory (Table 1).
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where

h�
jþ1

2
¼ hj þ hjþ1

2
: ð25Þ

The symbol gn
j represents gðxj; tnÞ, that is the free-surface

elevation at x ¼ jDx (j ¼ 0;1;2; . . . ;Nx) and t ¼ nDt
(n ¼ 0;1;2; . . . ;Nt). To satisfy the Courant-Friedrichs-Lewy stability
condition, several parameters are chosen so that
ðDt=DxÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
ghmax

p
6 1, for g ¼ 9:81 m/s2.
Table 2
Comparisons between the numerical and analytical resonant periods.

Basin type T1 T�
1

Rectangular 17.0229s 17.0489s
Triangular 21.3764s 21.5458s

5

5. Simulation results and discussion

Using the presented numerical scheme from the previous sec-
tion, we ran several simulations to find the numerical fundamental
resonant period of each basin. The parameters used for the simula-
tions are: L ¼ 25 m; h1 ¼ 1:5 m; b1 ¼ 1:5 m; Dx ¼ 0:1; and
Dt ¼ Dx=

ffiffiffiffiffiffiffiffi
gh1

p
. The basin length and depth are chosen based on

the shallow water criteria, that is, the total water depth must not
exceed 1/20 of the wavelength. We observe the resonance phe-
nomenon after 300 s at the basin boundary (x ¼ 0).

To test whether the scheme (Eqs. (23)–(25)) can simulate the
phenomenon well, we first try to observe the wave propagation
using the analytical periods as depicted in Fig. 5. For both basin
types, the numerical simulations using both analytical periods
indicate an increment of the wave amplitude at x ¼ 0 over the time
given, which characterizes a resonance. It shows that the numeri-
cal scheme is a good approximation for studying the phenomenon.

Next, we conducted a numerical experiment to find the highest
basins’ natural period. We use the sought analytical periods as our
initial guess and then increase the values slowly until the wave
amplitude becomes constant over time, meaning that the reso-
nance no longer occurs. Hence, the maximum periods obtained
are the fundamental resonant periods because they are the highest
periods that can generate resonance. Table 2 shows the compar-
ison between the obtained numerical periods (�T1) and analytical
periods (T1: LSWE and T�

1: potential flow theory). Since the relative
errors are below 1%, we can say that our numerical approach
aligns with the analytical approximations.

Further, we also compared the wave amplitude rise due to res-
onance in basins with varying widths and constant width using
data from (Magdalena et al., 2020). Fig. 6 presents the wave prop-
agation in both basin types, while the details regarding the maxi-
mum wave amplitudes are given in Table 3. The resonance
phenomena in basins with non-constant width produce higher
maximum wave amplitudes. The difference is greater for the trian-
gular basin compared to the rectangular one, as shown by the ratio
numbers listed in Table 3.

These results are related to the fundamental resonant periods of
both basin types. Overall, the periods of varying-width basins are
lower than basins with constant width. As derived by Magdalena
et al. (2020), the period of the constant-width rectangular basin
is 2ð2L=

ffiffiffiffiffiffiffiffi
gh1

p
Þ which is 0.694 higher than the varying-width type.

Since waves with lower periods carry more energy, the incoming
waves generating resonance in varying-width basins will have
greater amplitude. As a result, the maximum wave amplitude at
the basin boundary will also be higher. On the other hand, the dif-
ference in the triangular basin is 0.9728. We can see that it is
greater than the rectangular one and, thus, the ratio number show-
ing the increment of the maximum wave amplitude is also higher
for the triangular basin.

From these findings, one should be more aware of basins with
triangular width, since the maximum wave elevation for this type
is higher than for regular width. One way to be more aware of this
basin type is by incorporating tools to the basin configuration that
can dampen the effect of the resonance phenomenon such as
breakwater, revetment, or porous media.
�T1 Relative error

�T1�T1
T1

��� ��� �T1�T�
1

T�
1

��� ���
17.0881s 0.003830 0.002299
21.4676s 0.004266 0.003629



Fig. 6. Resonance phenomenon in a rectangular (a) and triangular (b) basin with
varying width compared to resonance in basin with constant width.

Table 3
Comparisons between the maximumwave elevation in basins with varying width and
constant width.

Basin type Maximum wave elevation (m) Ratio (g=g�)

Varying width (g) Constant width (g�)

Rectangular 0.8922 0.4595 1.9417
Triangular 1.0480 0.4269 2.4549
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6. Conclusion

A modification of linear shallow water equations that includes
the effect of varying widths has been applied to derive the funda-
mental resonant period in several basin types. The governing equa-
tions are solved analytically using the separation of variables
method and numerically by applying the staggered finite volume
method. According to the analytical results, the sought resonant
6

periods align with the results obtained from the potential flow
theory. Similar outcomes are also produced from numerical simu-
lations. Since the simulations using the two analytical resonant
periods indicate resonance phenomena, we conclude that the
scheme can approximate the governing equations well and, thus,
we proceed to find the numerical resonant periods using the
scheme. As expected, the relative errors between the numerical
and the two analytical resonant periods are below 1%which shows
that our numerical results align with the analytical ones. Further-
more, we also compared the resonance phenomenon that occurs in
constant-width and varying-width basins. Since the resonant peri-
ods are lower for basins with non-constant width, the incoming
waves causing the resonance will have higher energy. Therefore,
a higher wave elevation is produced at the basin boundary.
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