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This article presents a Stefan problem including thermal conductivity and heat capacity as the functions
of temperature. At o = f, the exact solutions to the proposed problem are discussed for two different
specific cases, i.e. m =n =1 and m = n = 2. For the general case, estimation of the solution to the prob-
lem is deliberated with the help of shifted Chebyshev tau method. To exhibit the accurateness of the
obtained approximate solution, the comparison between exact and approximate solution are depicted
through tables which shows that the approximate results are in good agreement with the exact solution.
We also present the impact of parameters appeared in the considered problem on temperature profile
and location of moving interface. It is found that the melting of the material effectively enhances when
we increase either the value m or[spsbacksalsh]and n or Stefan number.
© 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Melting and freezing processes are encountered widely in nat-
ure and in many industrial processes, such as freezing of water,
casting of melted alloys, thawing of food products, welding, ther-
mal energy storage with phase change material, cryosurgery, pro-
duction of steel and plastic products. During these processes, the
material undergoes phase change includes a boundary that sepa-
rates the two different phases. This boundary propagates in the
material undergoing the phase change during the process. Mathe-
matical formulation of the melting and freezing processes is gov-
erned by Stefan problems. Stefan problem (a moving boundary
problem) describing the process of melting and freezing has been
studied since eighteen century. These kinds of problems always
attract interests due to the existence of one or more moving inter-
faces, inherent non-linear nature even in its simplest form and its
wide applications in many natural/industrial processes. A detail
discussion of various mathematical models related to the moving
boundary problems and its analytical and approximate solutions
is mentioned in the book of Crank (1984). The formulation of the
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problem with complicated boundary conditions can be seen in
(Carslaw and Jaeger, 1959; Cho and Sunderland, 1974; Hill, 1986;
Oliver and Sunderland, 1987; Petrova et al., 1994; Tritscher and
Broadbridge, 1994).

From last one decade, the Stefan problem involving variable ther-
mal coefficients (Briozzo et al., 2007; Briozzo and Natale, 2015;
Briozzo and Natale, 2017; Kumar et al., 2020) has attracted great
to Mathematicians as well as scientists because of its applicability
and difficulty in getting its solution. Recently, Ceretani et al.
(2018) considered a Stefan problem which involves thermal con-
ductivity as a function of temperature and a Neumann type bound-
ary condition at the left boundary and discussed the exact solution
to the problem. A temperature-dependent thermal conductivity
has been considered by Animasaun (2015) in his study of an incom-
pressible electrically conducting Casson fluid flow along a vertical
porous plate. Animasaun (2017) assumed temperature-dependent
thermal conductivity and fluid viscosity in his study of a problem
of steady mixed convection micropolar fluid flow towards stagna-
tion point formed on horizontal linearly stretchable melting surface.
Some more models involving temperature-dependent thermal con-
ductivity can also be found in (Koriko and Animasaun, 2017;
Makinde et al., 2018). Sandeep et al. (2017) presented a numerical
exploration to examine the momentum, thermal and concentration
boundary level behaviour of liquid-film flow of non-Newtonian
nanofluids by assuming space and temperature dependent heat
source/sink. Motivated by these works, we have discussed the fol-
lowing phase change problem in the domain x > 0 that includes
variable heat capacity and thermal conductivity:
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pc(T)%:%(l(T)%), 0 <x <s(b), (1)
T(0,t) = To, (2)
T(s(t), ) = Tw, 3)

where T(x,t) denotes the temperature profile in liquid region, x is
space variable, t is the time, T,, represents the phase change tem-
perature, T > Ty is the constant temperature at the left boundary
x =0, s(t) is the moving boundary and p denotes the density.

To govern the position of moving interface, we need one addi-
tional condition on the boundary x = s(t) which is known as the
Stefan condition of the problem and it is given by

aT ds
k(T(s(t),t)) — =—pl—, 4
IO =g )
where [ is latent heat. This condition describes the law of motion of
the interface between two different phases of the material and can
be derived from the energy balance equation on the moving bound-
ary (Briozzo and Natale, 2015; Briozzo and Natale, 2017; Briozzo
et al., 2007).
Besides conditions (2)-(4), an initial condition associated with
the moving boundary is

$(0) =0, (5)
In this paper, the heat capacity is assumed as

T—Ty\"
c(T)=co <1 + oc<T0 — TW> ), (6)
and also thermal conductivity k(T) is considered as

T-T,\"
k(T) = ko (1 + ﬁ(TO — TW> ) (7)
where ¢y >0, k>0 « >0, p >0 and m, n are non-negative
integers.

In this area, besides the mathematical model of the problem in
different physical process, the establishment of solution of the
mathematical model is also an exciting point of interest. Meek
and Norbury (1984) presented a moving boundary problem which
models the spreading of the viscous fluid under the gravitational
force above a smooth horizontal plane and used the modified Kel-
ler box method to find a numerical solution of the problem. There-
fore, many approximate, numerical and exact solutions of these
problems have been reported in (Savovic and Caldwell, 2003;
Natale and Tarzia, 2006; Rajeev et al., 2009; Stota and Zielonka,
2009; Rajeev, 2014; Fazio, 2013; Voller and Falcini, 2013; Zhou
and Li-jiang, 2015). As far as author’s knowledge, exact solutions
to the Stefan-type problems can be found by using similarity trans-
formations only. In this study, the appropriate similarity variables
are considered which allow us to convert the problem into an ordi-
nary differential equation (ODE) along with boundary conditions.
The exact solution to the proposed problem has been discussed
for m=n=1 and m =n = 2. In order to discuss the solution for
all positive integersm and n, the converted system of ODE is solved
by using the shifted Chebyshev spectral technique. Parand and
Razzaghi (2004) discussed to solve ordinary differential equations
of higher order by the rational Chebyshev tau method. The approx-
imate solution of ODE with the aid of shifted Chebyshev tau tech-
nique is described in (Doha et al. (2011a,b). An approximate
solution to partial differential equations with fractional derivative
by tau method is also discussed in (Vanani and Aminataei, (2011);
Doha et al. (2011a,b). Ghoreishi and Yazdani (2011) discussed a
generalization of the Tau method and presented its convergence
analysis to numerical solution of multi-order fractional differential
equations.

The paper has been arranged as follow: Section 2 demonstrates
some properties related to the shifted Chebyshev polynomials. We
have used this operational matrix of differentiation in our calcula-
tions. Next, the solution for all non-negative integers m and n is
discussed in section 3 by applying a shifted Chebyshev tau method.
Section 3 describes the exact solutions to the problem for two
cases,iee. m=n=1and m=n=2.

The existence and uniqueness of the exact solutions (obtained
in Section 3) are discussed in Section 4. Finally, Section 5 contains
the comparison of obtained approximate solution (given in Sec-
tion 3) with exact solution for some cases. The dependent of tem-
perature distribution and interface on m, n and Stefan number are
also discussed in Section 5. The effect of Stefan number on the evo-
lution of the moving boundary can be seen in the article of Savovic
and Caldwell (2003).

2. Some prelimaries

It is well known that the first kind Chebyshev polynomials
{Ti(t);i=0,1,...} are defined on [—1, 1]. We substitute a new vari-
able t =2—1 in Ti(t) to use these polynomials on the interval
x € [0,1]. The polynomials T;(%* — 1) are called as first kind shifted
Chebyshev polynomials. Let us denote shifted Chebyshev polyno-
mials by T;;(x) which satisfy the following recurrence formula
(Doha et al. (2011a,b):

Tl_,ur] (X) =2 (ZTX — 1>T“‘(X) — T[‘iq (X)7 i= ],27 . (8)

where Tg(x) =1 and T (x) =2 —
This work considers some properties of shifted Chebyshev poly-
nomials (Doha et al. (2011a,b) which are given below:

(a) In the interval [0,]], a function g(x) which is square inte-
grable can be expressed as:

B0 = > 0Ty ) ©)
where (]1; is defined by

a; :hlj /Olg(x)T,J»(x)wl(x)dx, j=0,1,2,... (10)
Where h; and wy(x) are given by ho=m, hj=3 j=1,2,..., and
wi(x) = ﬁ respectively.

For our calculation purpose, we consider the following partial
sum of the series (9):

N

gn(®) ~ > _aTij(x) = C'd(x), (11)
=0

where the coefficient vector €T and the shifted Chebyshev vector

¢(x) are defined by

(" =lao.@,...,ay] and ¢(x) = [Tio(x), Ti1(x), ... Tin(x)]" (12)

(b) The first derivative of ¢(x) and its relation with the opera-
tional matrix is described as:

dg(x)

dx

where the operational matrix D'V is given by

=DV (x), (13)

4 s {r:1,3,5,“.,N, when N is odd,
s J=1-T, .

gl r=1,3,5,...,N—1, when Niseven.
0, otherwise.

DY = (dy) =

wherei=0,1,2,...,Nandj=0,1,2,...,N.
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(c) The nth derivative of ¢(x) in the terms of D" can written

as

d"¢(x) n

— 2t = (DY) p(x 14
v (D) ¢ (x), (14)

where n is a natural number (N) and (D))" denotes nth powers of
M that is

D™ — (D(l))"' (15)

3. Solution for general case

First of all, we use the transformation defined as follows:

_T(x,t)-T,
Q(va)*ﬁi (16)
the problem (1)-(5) becomes
m 00 0 0. 00
(1+ab )a ocoax<(1+[39)&>, 0<x<s(b), (17)
0(0,t) =1, (18)
0(s(t),t) =0, (19)
a0(s(t),t) 1 ds(t)
ox  opSte dt (20)
s(0) =0. (21)
where o = pT (thermal diffusivity for ko), and Ste = @To-™ js the
Stefan number.
Now, we take the similarity variable defined as
0(x,t) =f(n) with n=5 (22)

\/OF

and from (19), (20) and (22), we can conclude that s(t) must be pro-
portional to /ot and therefore given by

s(t) = 273/t (23)

Where 1 is a constant yet to be found.
Next, substituting the variables given in Eqgs. (22), (23) into the
Eqgs. (17)-(20), we have the following system consisting of ODE:

2n(1 4 of ™ )%+%(( +ﬂf)df>=0, 0<n<i, (24)

f('mnzo = 17 (25)

fml,-, =0, (26)
21

“anl,, " Sie (27)

Now, we can use the (N+1)th partial sum of the series
given in (11) for an approximate solution to the problem given in
Eqgs. (24)-(27). Therefore, the dependent variable f(#) can be stated
as:

N

NGRS ZCiT,;,k(l’]) =

k=0

C'o(n), (28)

where C" = [co,¢1,¢3-++++, e, and () = [T0(7), Tsa (1), -, Tan(m)]" -
As given in Eq. (14), the derivatives of dependent variable f can
be approximated as:

d*f 2

T _ poga), gz = 0" 900 (29)

dn
From Egs. (28) and (29), the residual Ry(x) corresponding to
Eq. (24) is given as:

R(x) = 2nC"DW () + 2am(CT ()" (C'DV (1)
+(CDP () +np(Cp()" " (D)’
+B(C ()" (€D (). (30)
The (N — 1) algebraic equations can be found by the condition

(Doha et al. (2011a,b) given below:

(Rn(x /RN T,xx)dx=0, k=0,1,....N—-2. (31)
Moreover, by substituting the Egs. (28) and (29) into the

Eqgs. (25)-(27), the following equations can be found:

C'p(0) =1, (32)
C'p(2)=0 (33)
and
D) = — 2. (34)
Ste
Beside (N — 1) equations generated by Eq. (31), three more alge-

braic equations can be generated by Eqs. (32)-(34). Now, the sys-
tem of (N + 2) algebraic equations with (N + 2) unknowns can
easily be solved which determines the unknown vector C and A.
Consequently, the temperature distribution in liquid region 0(x, t)
and s(t) can be determined with the help of Eqgs. (22), (23).

4. Exact solutions
In this section, we categorise the problem into two parts as:

Case 1: When m =n =1 and 8 = « then the Eqgs. (24)-(26) can
be written as:

2n(1+af(n ))d—{]+%((l+o¢f(n))g—£>=0, 0<n<i, (35)
fmlyo=1 and f(m),_, =0. (36)
and interface condition (27) becomes
af| 22
~dnl,_,  Ste’ 7
The general solution of Eq. (35) is
£01) = 3 (-1 y/1+22C, — VmaCierf () (38)

where C; and C, are arbitrary constants which can be determined
from the boundary conditions (36), which emerge out as:

2+
" Vet () .
G :2;“ (40)

After substituting the above values of C; and C;, the exact solu-
tion of the Eq. (35) along with boundary condition becomes:

f(n)_;<i+\/i+ac(2+a)“(2:r;‘()§)rf(’7)>, 41)
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Where erf(.) denotes the error function that is given by

erf() == [e “ae (42)

In view of Eqgs. (22)-(23) and (41), the solution of Eq. (17) at
m=n=1and o =  can be given by

0(x,t) = é (=14 (1+a(2+0) — o2+ ) erf(x/2vaob)/erf(2)").
(43)

Substituting Eqgs. (41) into Eq. (37), we get the following tran-
scendental equation:

2
e (2+a) 22
B 44

Vmerf(4)  Ste (44)

The solution of Eq. (44) gives 1 and by substituting this value
into (23), a tracking of the interface position s(t) with time can
be found.

Case 2: If m=n =2 and g = « then the Eqgs. (24)-(27) become:

2, df d 2,04 _
2n(1 + of (71))@+@ ((1 +of (17))@> =0, O<n<i (45
fly—o=1, and f(n),_, =0. (46)
and interface condition (27) becomes
df 22
~dan - = Ste- (47)

The solution of Eq. (45) with the boundary conditions (46) is
given by

-1
3

2702 (24+ 8a)erf (1)
erf(2) +g(oc,/1)>
270%(24+ 8a)erf (n)
erf(4)

fan=-6x2'7 (27a2(24+8a) -
+g(.))
(48)

(270224 +80) -
6x2”3o<< ( )

where

2
g(o, 1) = \/ 18662403 + <27zx2(24 | gy 272224+ Bxjerf ('7)> .

erf(4)
(49)

Consequently, the 0(x,t) at m=n =2 and o = § can be deter-
mined by substituting # = x/2/0t in the Eq. (48).
The Eqs. (47), (48) produce the following transcendental
equation:
2
e (24 +8a) 22
-+ —=0. 50
12V7 erf(7) | Ste (50)
Solving (50) for A, will, on substitution into (23), provide the
phase front s(t).

5. The existence and uniqueness

to validate the existence and uniqueness of solution established
previously, we discuss as follows:

For case 1, we consider the transcendental equation given in Eq.
(44) and suppose

2. e’(2+0)
fl(l)zﬁf\/ﬁeirm_ov (51)

Where Ste is a positive constant and o > 0.

It is obvious that f, (%) is defined and continuous on (0, co0) and

figfo )=~ &2
limf, () = . (53)

J—0o0

From Eq. (52) and (53), it is clear that f,(Z) = 0 has at least one
solution in (0, ).

Now, for all Ste > 0, it is clear that
di 2 20%Q2+a) 2e72+n)i
di " Ste " T (erf(2)) * VT erf(2) >0, on

Hence, f, (/) is strictly increasing and this shows the uniqueness
of /. Existence of unique /4 which satisfies the transcendental equa-
tion (44) assures the existence and uniqueness of solution to the
problem (9)-(13)form=n=1and f=«a.

For case 2, we define f,(1) on (0, c) with the help of transcen-
dental Eq. (50) as

_ e”(24+80) 2
f22) = 12y/merf(7) | Ste’ (53)

Clearly, f,(4) is continuous on (0, ) and

(0,00). (54)

limf, (1) = ~cc, (56)
limf, (1) = cc. (57)

A—0o0

Hence f, (1) = 0 has a solution in (0, o). Moreover, f/,(1) > 0 on
(0,00) for all positive Stefan number which shows that f,(2) is
strictly monotonically increasing function. Hence, f,(Z) = 0 has a
unique solution on (0,00). Consequently, there exists unique
solution to the problem (9)-(13) form=n=2 and g = a.

6. Comparisons and discussion

In this paper, all the computations for temperature distribution
0(x, t) and moving interface s(t) have been made with the help of
Wolfram Research (8.0.0) software at fixed value of oy = 1.0.

We first present accurateness of the approximate solution
described in section 3 through the figures for the proposed prob-
lem by considering the following matrices:

0000 0000
201 0 0 0 , a4lo 0 00
ph = DMy = = d
loaool @)V =74 0 00 ™
3060 024 00
1
21 _1
sn=| e w (58)

Tables 1 represents the comparisons of approximate tempera-
ture 0a(x,t) and exact temperature distribution 0g(x,t) in
0<x<s(t)att=1.0 for m=n=1 and m=n= 2. The correctness
of proposed approximate solution s4(t) for the moving interface
atm=n=1and m=n=2 is shown in Table 2. From these tables,
it can be seen that our proposed approximate solutions are near
to exact solutions sg(t) in the considered cases. Therefore, to
explore the Stefan problem involving non-linear heat equation, this
simple approach (stated in Section 3) can be useful to solve the
problem.

With the help of proposed approximate solution, the variations
of temperature distribution 6(x, t) and moving interface s(t) are
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Table 1

Exact and approximate values of temperature distribution 6(x,t) for different x at oo =1 and t = 1.

m,n o, B, Ste X Op(x,t) 0a(x,t) Absolute error
m=n=1 a=p=2, 0.0 1.000000 1.000000 0.0000e—0
Ste=1.0 0.1 0.948498 0.948765 2.6647e—4
0.2 0.895368 0.896559 1.1909e—3
0.3 0.840694 0.843262 2.5677e-3
0.4 0.784560 0.788751 4.1914e-3
0.5 0.727047 0.732907 5.8596e—3
m=n=2 a=p=1, 0.0 1.000000 1.000000 0.0000e—0
Ste=0.2 0.1 0.895802 0.893501 2.3006e—3
0.2 0.780190 0.772801 7.3889e—3
0.3 0.651389 0.639219 1.2170e-2
0.4 0.507803 0.494075 1.3727e-2
0.5 0.349012 0.338691 1.0321e-2
Table 2
Exact and approximate values of moving boundary s(t) for different time at oy = 1.
m,n o, B, Ste t sg(t) sa(t) Absolute error
m=n=1 a=p=2, 0.1 0.506345 0.504351 1.9933e-3
Ste=1.0 0.2 0.716080 0.713261 2.8190e-3
0.3 0.877015 0.873562 3.4525e—3
0.4 1.012690 1.008700 3.9867e—3
0.5 1.132220 1.127760 4.4572e-3
m=n=2 a=p=1, 0.1 0.221606 0.221807 2.0080e—4
Ste=0.2 0.2 0.313398 0.313682 2.8398e—4
0.3 0.383833 0.384181 3.4780e—4
0.4 0.443212 0.443614 4.0160e—4
0.5 0.495526 0.495975 4.4901e—4
shown in Figs. 1 and 2. In Fig. 1, the dependence of temperature
10 2 p=2.5 distribution 6(x, t) on x is depicted at t = 1.0 and o, = 1.0 for vari-
b Rt i B L B
ous values of m, n (m=n=1, m=n=2 and m=n =3) and p
08 - — — m=n=2=15 (B =0.5,1.5,2.5). From this figure, it can be seen that the temper-
ature is maximum at x = 0 and is continuously decreasing to zero at
S o m=n=1F=05 the moving interface. Moreover, it is clear that the temperature
= decreases in molten region as the value of m andfor n or g
R decreases. Fig. 2 shows the trajectory of moving interface s(t) at
04 % = 1.0 and o = 0.5 for different m, n and . This figure confirms
that the velocity of moving interface s(t) improves when we
02 increase either m and/or n or g .This implies that the melting of
material enhances when the parameters m or n or f rises. The
effect of Stefan number on the moving phase front is depicted in
. 2 4 . . . . .
o . 0 s s 1 Figs. 3 and 4 form=n=1 and m = n = 2, respectively. These figures
P S show that the larger values of Stefan numbers accelerate the move-
ment of phase front which makes the process of melting fast. This
Fig. 1. Plot of 0(x,t)vs. x at Ste=0.5 and « = 0.5. is similar result as reported in the paper of Savovic and Caldwell
(2003).
25 - -
—= - Ste=5.0
e
=
20 = 20 ¢
-
-
-
-~
~ 15 =7, m=n=3f3=25 15 Ste=10
~— -
“ // —_———m=n=2=15 E
" z . 10}
K 7 m=n=13=05 ’ Ste=02
05 0.5
N > 3 " 5 02 04 06 08 10
t—> t —>

Fig. 2. Plot of s(t)vs. t at Ste=0.5 and « = 0.5.

Fig. 3. Plot of phase front for different values of Steatm=n=1,a=p=1and oo = 1.
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Ste=15.0
20
- L5t Ste=1.0
N
@
10 +
Ste=0.2
05
02 04 0.6 0.8 1.0

t —>

Fig. 4. Plot of phase front for different values of Steatm=n=2,a=pB=1and oo = 1.

7. Conclusion

In this study, the one-phase Stefan problem of melting process
with variable thermal conductivity and heat capacity is discussed.
Two exact solutions of the problem are presented for particular
cases with the help of similarity variables method. Existence and
uniqueness of exact solutions are also discussed. It is found that
the movement of moving boundary s(t) is proportional to v/ in
the proposed model and this result was well established earlier
for the Stefan problem with o« = g = 0 (Crank, 1984; Carslaw and
Jaeger, 1959).

Besides exact solutions, an approximate approach based on
similarity transformation and spectral tau method has been suc-
cessfully applied to obtain the solution to the problem for general
case. From section 6, it has been observed that the growth in the
rate of change of temperature in molten region and the melting
process are found if the value of m and/or n or g increases. It is also
observed that the proposed approximate approach is efficient,
accurate and easy to apply on Stefan problems. The authors believe
that this scheme is helpful for the researchers working in the field
of moving boundary problem.
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