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Abstract Use of aqueous extracts of leaves, stems, and roots of the pernicious aquatic weed ipo-

moea (Ipomoea carnea) drawn from different locations was explored in the biomimetic extracellular

synthesis of silver nanoparticles (SNPs). It was found that despite the natural variability in the

chemical content of ipomoea growing in different locations, certain extract–metal stoichiometries

can be identified which give strikingly reproducible results in terms of the size and the shape of

the SNPs. This is one of the first reports of its type in which possible role of natural variability

in the chemical composition of a given botanical species on nanoparticle synthesis involving that

species has been assessed.

The use of the SNPs was explored in the degradation of typical organic pollutants––the dyes Aliz-

arin Red S and Remazol Brilliant Blue R. The SNPs were found to speed up the dye degradation.
ª 2014 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

These authors (Abbasi et al., 2012a,b) have recently estab-

lished the feasibility of using aqueous extracts of the highly
pernicious and dominant weed ipomoea (Ipomoea carnea) in
generating silver nanoparticles (SNPs). It is a biomimetic pro-

cedure because it mimes the way in which chemicals present in
the body of ipomoea reduce metal ions to nanoparticles and
then stabilize those nanoparticles by forming a coating around

them. Whereas in nature this happens within the plant cells,
these authors achieve it extracellularly by first bringing those
chemicals into an aqueous extract of the relevant plant part

and then make portions of the extract react with Ag (I). Unlike
several other bottom-up approaches of nanoparticle genera-
tion which are based either on chemical synthesis or the use
of microorganisms, plant-based biomimetic methods consume

very little energy, generate very little pollution (if any), and
mostly operate under conditions of normal temperature and
pressure (Anuradha et al., 2010, 2011a; Awwad et al., 2013;

Bhat et al., 2013; Dubey et al., 2013; Kumar et al., 2012,
2013; Kotakadi et al., 2014; Nazeruddin et al., 2014). The
state-of-the-art has been summarized from time to time

(Anuradha et al., 2011, 2014). Plant-based methods also do
not require sophisticated controls in maintaining the bioagent
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as are necessitated in the case of microorganisms. In this re-
spect they represent an advantage similar to the other ‘green’
procedures that are emerging, such as microwave-assisted

nanoparticle synthesis (Dahl et al., 2007; Raspolli Galletti
et al., 2008, 2009, 2010, 2012, 2013). Moreover, by using ipo-
moea as the main bioagent, the authors have achieved several

additional advantages:

(a) Ipomoea is a freely available weed which has no benefi-

cial uses at present. Hence this manner of utilization of
ipomoea does not compete with its any other use. In
contrast, most past attempts to biomimetically synthe-
size SNPs have relied on botanical species which have

numerous other beneficial uses as a food item (Antony
et al., 2013), a source of cosmetics/medicines (Anuradha
et al., 2011b; Gavhane et al., 2012, or an ornamental

plant (Kumar et al., 2013; Dubey et al., 2013).
(b) Any process which can gainfully utilize ipomoea has the

great advantage that it would contribute to the mechan-

ical removal of ipomoea, thereby effecting some control
over the weed’s spread. At present, in the absence of
such use, no one is interested in harvesting ipomoea

resulting into its increasing colonization of land surface
and wetlands (Chari et al., 2005).

(c) When it gets a chance to spread unchecked as it has in
India and several other parts of the world (Meira

et al., 2012; Gorniak et al., 2010), ipomoea becomes a
very harmful plant in the sense that it causes toxicity
to the mammals that graze upon it. It also generates

toxic exudates (Ikeda et al., 2003; Hueza et al., 2005)
which make the soil unfit for the growth of several other
species. The weed exerts allopathic effect––it is able to

discourage and prevent the growth of several species of
plants in its habitat. Apart from these particularly harm-
ful attributes, ipomoea’s infestation also generates all

the other negative impacts associated with the domi-
nance of any single species: it destroys biodiversity,
and it monopolizes the use of water, soil, and associated
nutrients (Chari and Abbasi, 2004, 2005). When ipo-

moea plants die, they degrade in the open generating
global warming gases CO2 or CO2–CH4 mixtures,
depending on whether the degradation occurs under aer-

obic or anaerobic conditions.

In this paper, a major step is reported which has been

taken toward possible large-scale utilization of ipomoea in
generating SNPs by (a) assessing how reproducible the pro-
cess can be, given the natural variability that occurs in the
chemical composition of any plant species that grows at

different locations; and (b) assessing how best each plant
part––leaves, stems, roots––can be used for the purpose so
that the entire ipomoea biomass can be gainfully utilized

in the process.

2. Materials and method

All glassware was thoroughly cleaned with liquid detergents
and washed liberally with tap water followed by rinsing with
deionized distilled water and drying in hot air oven before

use. All chemicals used were of analytical reagent grade, or
equivalent, unless otherwise specified.
Whole plants of ipomoea were collected from different
locations in and around Puducherry. The plants were washed
with tap water, saline (9% NaCl) water, and deionized distilled

water. The adhering water was removed using blotting paper
and the randomly picked plant parts were cut into 1–2 cm
pieces and weighed. Their dry weight was determined by keep-

ing them at 110 �C in an oven till they reached a constant
weight. The total solid (TS) content was computed.

The extracts of leaves, stems, and roots were separately pre-

pared. For this weighted quantities of the relevant plant parts
were heated with measured volumes of water to �100 �C for
about 5 min in sterile distilled water in a water bath. The con-
tents were cooled to room temperature and filtered through a

nylon mesh and then by a Whatman No. 42 filter paper. The
extracts thus obtained were stored at 4 �C, and used within
7 days.

A 10�3 M stock solution of silver nitrate was prepared and
kept in amber color bottle wrapped in black plastic sheet to
keep off light. Other stock solutions were prepared as needed.

All ipomoea quantities as reported are on dry weight (TS)
basis.

2.1. Nanoparticle synthesis

The extra-cellular biomimetic synthesis achieved by us evi-
dently occurs in two-steps which take place in quick succes-
sion––in the first step certain biomolecules present in the

plant reduce the monovalent silver ion to uncharged atoms.
Then, as these atoms aggregate to reach nano-size, other bio-
molecules from the plant envelope or ‘cap’ them to prevent

their further aggregation. This mechanism was proposed by
the early workers in this field (Shankar et al., 2003, 2004)
and nothing else has been reported so far to suggest it may

not be true.
Different proportions of metal ion solutions and plant ex-

tracts, formed with the extracts of 1000, 2000, 4000, 6000,

and 10,000 mg/l concentrations and metal ions at 134, 134,
134, 120, and 84 mg/l levels, respectively, (to yield metal–ex-
tract ratios of 1:7.5, 1:15, 1:30, 1:50, and 1:120, respectively),
were employed to determine the effect of various stoichiome-

tric combinations on the shapes and sizes of the resulting
SNPs. This is a crucial input to process development. The reac-
tions between the metal ion solutions and the plant extracts

were all carried out at room temperature (30 ± 3 �C) without
any stirring. Hence the use of energy was minimal. SNP forma-
tion was signaled by the appearance of a brownish yellow

color. The progress of SNP formation was monitored spectro-
photometrically over the wavelength range 190–1100 nm.

The peak wavelength (kmax), the values of the absorbance
(O.D.), the manner of change in the color of the reaction mix-

ture, etc., were noted at different time intervals. These findings
were then linked to HR-SEM and TEM images, FTIR spectra,
EDAX, and other studies to generate information on the

shapes and the sizes of the SNPs.

2.2. Catalytic reduction of typical dyes by silver nanoparticles

To study the role of SNPs in catalyzing dye-degradation,
7 · 10�4 M and 3 · 10�4 M solutions of Alizarin Red S and
Remozal Brilliant Blue R, respectively, were prepared. These

concentrations were employed as Beer’s law was seen to be
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followed in the ranges that began with these concentrations
and went onto 10�5 M and lesser. Both stock solutions were
stored in the dark. To a mixture containing 1 ml of either

dye solution and 1 ml of sodium borohydride (0.001 M),
1 ml of SNP suspension was added in a reaction tube. The
Table 1 Absorption maxima (kmax) and absorbance of SNPs obtai

source, reaction time, and metal–extract stoichiometry.

Locations Reaction duration (hrs) Metal–extract proportions

1:7.5 1:15

kmax Abs kmax

I 0th – – –

2nd – – –

4th 440 0.98 440

6th 441 1.21 442

24th 449 2.26 459

II 0th – – –

2nd – – –

4th 439 0.90 –

6th 439 1.10 –

24th 441 1.75 450

III 0th – – –

2nd 439 0.86 437

4th 442 1.33 442

6th 447 1.57 443

24th 447 2.52 443

IV 0th – – –

2nd – – –

4th 429 0.34 440

6th 432 0.47 443

24th 440 0.97 450

Table 2 Absorption maxima (kmax) and absorbance of SNPs obta

source, reaction time, and metal–extract stoichiometry.

Locations Reaction duration (hrs) Metal–extract proportions

1:7.5 1:15

kmax Abs kmax

I 0th – – –

2nd 447 0.71 450

4th 451 0.91 457

6th 451 1.00 456

24th 460 1.57 457

490

II 0th – – –

2nd – – –

4th 444 0.65 447

6th 445 0.84 449

24th 447 1.49 444

III 0th – – –

2nd – – 444

4th – – 448

6th 435 0.50 456

24th 442 0.81 449

IV 0th – – –

2nd – – –

4th 429 0.34 440

6th 432 0.47 443

24th 440 0.97 450
volume of the mixture was made up to 4 ml with water. The
progress of the reaction was monitored spectrophotometrically
by recording the optical density of the dye’s absorption max-

ima. For the uncatalyzed reaction 1 ml of SNPs was replaced
by an equal amount of water. In another set of studies for each
ned using aqueous extracts of ipomoea leaves: effect of ipomoea

1:30 1:50 1:120

Abs kmax Abs kmax Abs kmax Abs

– – – – – – –

– – – – – – –

1.38 – – – – – –

1.66 – – – – – –

2.68 – – – – – –

– – – – – – –

– – – – – – –

– – – – – – –

– – – – – – –

0.92 – – – – – –

– – – – – – –

0.99 – – – – – –

1.61 – – – – – –

1.79 – – – – – –

2.48 450 0.77 – – – –

– – – – – – –

– – – – – – –

0.74 442 1.10 – – – –

0.95 445 1.38 – – – –

1.67 448 2.08 443 1.04 – –

ined using aqueous extracts of ipomoea root: effect of ipomoea

1:30 1:50 1:120

Abs kmax Abs kmax Abs kmax Abs

– – – – – – –

1.28 435 0.98 – – – –

1.55 440 1.29 – – – –

1.71 443 1.44 – – – –

2.45 456 2.28 – – – –

2.32

– – – – – – –

– – – – – – –

0.92 – – – – – –

1.15 – – – – – –

1.91 – – – – – –

– – – – – – –

0.64 – – – – – –

1.09 – – – – – –

1.34 – – – – – –

2.13 441 1.07 – – – –

– – – – – – –

– – – – – – –

0.74 442 1.10 – – – –

0.95 445 1.38 – – – –

1.67 448 2.08 443 1.04 – –
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dye, hydrogen peroxide (0.1 M) was used instead of sodium
borohydride for the dye degradation with or without SNP
catalyst.
3. Results and discussion

3.1. Effect of natural variability in the chemical content of

ipomoea on the SNP formation

The spectral characteristics of the SNPs formed––as influenced
by the variety of ipomoea, reaction time, and the stoichiome-
try––for ipomoea leaves are summarized in Table 1. As may

be seen, at lower extract–metal ratios, SNP formation com-
mences in 4 h in ipomoea drawn from locations I, II, and IV
while in ipomoea belonging to location III it occurs in 2 h.

Hence, it can be said, that in general, and independent of the
Table 3 Absorption maxima (kmax) and absorbance of SNPs obtai

source, reaction time, and metal–extract stoichiometry.

Location Reaction duration (in hrs) Metal–extract proportions

1:7.5 1:15

kmax Abs kmax

I 0th – – –

2nd – – –

4th 446 0.85 –

6th 449 1.01 –

24th 461 1.63 490

II 0th – – –

2nd – – –

4th 443 0.18 –

6th 445 1.40 –

24th 447 1.98 470

III 0th – – –

2nd 465 0.88 –

4th 461 1.17 –

6th 459 1.36 –

24th 456 1.96 465

IV 0th – – –

2nd – – –

4th 433 0.29 –

6th 435 0.42 –

24th 440 0.87 456

Figure 1 Typical UV–visible spectra of SNPs derived from the extra

time.
ipomoea source, SNP formation by this process would com-
mence in about 4 h from the time of mixing the reactants.

Extracts prepared from the roots of ipomoea plants derived

from different locations also gave fairly reproducible results,
especially in terms of positions of the absorption peaks (Ta-
ble 2); similar were the findings when stem extract was used,

with the exception that no SNP formation was seen at 1:30
and higher Ag(I)-extract concentrations (Table 3).

The spectra of SNPs formed in 1:7.5 and 1:15 metal–extract

combinations were remarkably similar in terms of peak posi-
tion and strength in all locations, even as there were differences
in the rate and characteristics of SNPs formed by different
plant parts (Table 4). This indicates that the shapes and sizes

of SNPs can be controlled and reproduced by controlling me-
tal–extract proportions, and choosing appropriate plant parts,
irrespective of the natural variability in the chemical content of

ipomoea.
ned using aqueous extracts of ipomoea stem: effect of ipomoea

1:30 1:50 1:120

Abs kmax Abs kmax Abs kmax Abs

– – – – – – –

– – – – – – –

– – – – – – –

– – – – – – –

1.26 – – – – – –

– – – – – – –

– – – – – – –

– – – – – – –

– – – – – – –

1.41 – – – – – –

– – – – – – –

– – – – – – –

– – – – – – –

– – – – – – –

1.39 – – – – – –

– – – – – – –

– – – – – – –

– – – – – – –

– – – – – – –

0.68 – – – – – –

cts of ipomoea (a) leaves, (b) stem and (c) roots, as a function of



Figure 2 Spherical nanoparticles of fairly uniform (spherical) shape, but different, sizes formed by the extracts of ipomoea leaves (left)

and of stem (right).

Figure 3 HR-SEM micrographs of SNPs generated using extracts of ipomoea (a) leaves, (b) stem and (c) root.

Figure 4 XRD images of SNPs generated using extracts of ipomoea leaf (left) and of root (right).
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Figure 5 FTIR images of SNPs generated using extracts of ipomoea leaves (left) and of root (right).

Figure 6 EDAX images of SNPs generated using extracts of ipomoea (a) leaves, (b) stem and (c) root.
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Moreover, the shape of the spectra remained more or less
unchanged with time (Fig. 1). This reveals that the patterns

of polydispersion of nanoparticles and their shape isotropy
did not change with time or with the source of ipomoea. Once
the optical density at the kmax had peaked, it remained con-

stant for several days indicating that nanoparticles responsible
for the peak had remained stable.

3.2. Characteristics of the SNPs

The synthesized SNPs were subjected to high-resolution scan-
ning electron microscopy (HR-SEM) and transmission elec-
tron microscopy (TEM). Typical TEM and HR-SEM images

are reproduced in Figs. 2 and 3, respectively.
X-ray diffractometry revealed the crystalline nature of the

nanoparticles. Intense peaks were seen corresponding to

(111), (200) and (220) Bragg’s reflection based on the fcc
crystal structure (Fig. 4).
Fourier transform infrared (FTIR) measurements revealed
a strong band at 1654 cm�1 which corresponds to the stretch-

ing vibrations of amide C‚O bands of proteins/polypeptides
(Fig. 5). The bands at 1590 cm�1 and 1385 cm�1 correspond
to carboxylates and C–N stretching of aromatic amino groups,

respectively (Narayanan and Sakthivel, 2008). The bands at
1607 cm�1 and 1385 cm�1 correspond to C‚C groups/aro-
matic rings (Das et al., 2010). Apparently the SNPs were sta-

bilized by amide groups of proteins and the phenolic groups.
Moreover, the fact that SNPs derived from different parts of
ipomoea have similar FTIR profiles, indicates that similar bio-
molecules have been responsible for the reduction of silver ions

and the stabilization of the resulting SNPs.
The energy dispersive X-ray (EDAX) spectra (Fig. 6)

showed strong signals for silver, along with weak signals from

few other elements like C and O. These signals could have
arisen from proteins and enzymes that had stabilized the
nanoparticles.



Table 5 Degradation of the dye Alizarin Red S (1 ml of

7 · 10�4 M solution) in the absence or presence of SNPs (1 ml

suspension), and 1 ml NaBH4 (0.001 M) or H2O2 (0.1 M), in a

total volume of 4 ml.

Reactants Absorbance, at minutes

0 20 40 60

Dye + NaBH4 1.25 1.00 0.94 0.94

Dye + NaBH4 + SNPs 0.93 0.80 0.78 0.77

Dye + H2O2 1.60 1.60 1.58 1.56

Dye + H2O2 + SNPs 1.16 1.14 1.31 1.21

Table 6 Degradation of the dye Remozal Brilliant Blue R

(1 ml of 3 · 10�4 M solution) in the absence or presence of

SNPs (1 ml suspension), and 1 ml NaBH4 (0.001 M) or H2O2

(0.001 M), in a total volume of 4 ml.

Reactants Absorbance, at minutes

0 15 30 45 60 90

Dye + NaBH4 0.43 0.41 0.40 0.38 0.38 0.36

Dye + NaBH4 + SNPs 0.40 0.37 0.33 0.33 0.32 0.32

Dye + H2O2 0.44 0.42 0.42 0.42 0.42 0.42

Dye + H2O2 + SNPs 0.41 0.38 0.37 0.37 0.39 0.36
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3.3. Effect of SNPs in catalyzing degradation of typical organic
pollutants

The rate of degradation of Alizarin Red S and Remazol Bril-

liant Blue R dyes by NaBH4 or H2O2 was monitored in the
presence and absence of SNPs spectrophotometrically. SNPs
are seen to catalyze the degradation, albeit slowly, under the

conditions explored by us (Tables 5 and 6). This is reflected
in faster lowering of dyes’ absorbance in reactants containing
the SNPs. The results establish the proof-of-concept.

4. Summary and conclusion

In perhaps the first-ever study of its type, effect of natural var-

iability in the chemical composition of a botanical species on
the synthesis of nanoparticles employing that specie’s aqueous
extract was explored. The plant species happened to be ipo-
moea (I. carnea) which is a major weed of the tropical and

sub-tropical world, including India. The metal chosen was sil-
ver owing to the high demand of silver nanoparticles (SNPs) in
several branches of technology (Abbasi et al., 2012a,b; Ghaf-

fari-Moghaddam and Hadi-Dabanlou, 2014; Wang et al.,
2014).

It was seen that, by-and-large, it is possible to identify me-

tal–extract concentrations with which highly reproducible re-
sults vis a vis the shapes and sizes of SNPs can be achieved.
Different plant parts––leaves, stem, and roots––give similar

SNPs at certain metal–extract stoichiometries and dissimilar
at some other. In this respect, too, fairly reproducible results
were achieved when ipomoea drawn from different locations
was used.

Proof-of-concept that SNPs can be used to catalyze degra-
dation of complex organic pollutants was demonstrated with
the examples of two dyes.
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