Journal of King Saud University — Science (2011) 23, 223-228

King Saud University
Journal of King Saud University —
Science

www.ksu.edu.sa
www.sciencedirect.com

ORIGINAL ARTICLE

Differential transform method for solving singularly
perturbed Volterra integral equations

Nurettin Dogan ?, Vedat Suat Ertiirk ”, Shaher Momani ©, Omer Akin 9, Ahmet

Yildirom ©*

& Gazi University, Technical Education Faculty Electronics and Computer Education Department,

06500 Teknikokullar, Ankara, Turkey

® Department of Mathematics, Faculty of Arts and Sciences, Ondokuz Mayis University, 55139 Samsun, Turkey
¢ Department of Mathematics, Faculty of Science, The University of Jordan, Amman 11942, Jordan
4 Department of Mathematics, Faculty of Arts and Sciences, TOBB Economics and Technology University,

Saogitozii, 06530 Ankara, Turkey

¢ Ege University, Science Faculty, Department of Mathematics, 35100 Bornova-Izmir, Turkey

Received 6 July 2010; accepted 9 July 2010
Available online 15 July 2010

KEYWORDS

Differential transform
method;

Singularly perturbed
problems;

Volterra integral equations

Abstract In this work, the applications of differential transform method were extended to singu-
larly perturbed Volterra integral equations. To show the efficiency of the method, some singularly
perturbed Volterra integral equations are solved as numerical examples. Numerical results show
that the differential transform method is very effective and convenient for solving a large number
of singularly perturbed problems with high accuracy.
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1. Introduction

In this paper we consider the singularly perturbed Volterra
integral equations (Alnasr et al., 1997, 2000; Lange and Smith,
1988; Angell and Olmstead, 1987)

(%) :g<x>+/0xf<<x, WD), 0< <X, (1.1)

where, ¢ is a small parameter satisfying 0 < ¢ 1 and where g
and K are given smooth functions on [0, X]. Under appropriate
conditions g and K, for every ¢ > 0, Eq. (1.1) has unique con-
tinuous solutions on [0, 7] (see, e.g., Alnasr et al., 1997; Brun-
ner and Van Der Houwen, 1986. The singularly perturbed
nature of (1.1) arises when the properties of the solution with

> ( are incompatible with those when ¢ = 0. Fore > 0, (1.1)
is an integral equation of the second kind which typically is
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well posed whenever K is sufficiently well behaved. When
e =0, (1.1) is reduced to an integral equation of the first kind
whose solution may well be incompatible with the case for
¢ > 0 .The interest here is in those problems which do imply
such an incompatibility in the behavior of y near x = 0. This
suggests the existence of boundary layer near the origin where
the solution undergoes a rapid transition (Alnasr et al., 1997,
2000; Lange and Smith, 1988; Angell and Olmstead, 1987).

The aim of our study is to employ the differential transform
method (in short, DTM) Pukhov et al., 1980; Zhou et al., 1986
as an alternative to existing methods in solving the singularly
perturbed Volterra integral problems and the method is imple-
mented to four numerical examples. The concept of differential
transform method was first introduced by Pukhov et al. (1980)
and Zhou et al. (1986), who solved linear and nonlinear initial
value problems in electric circuit analysis. It is a semi-numeri-
cal and semi-analytic technique that formulizes Taylor series in
a totally different manner. With this technique, the given dif-
ferential equation and its related boundary conditions are
transformed into a recurrence equation that finally leads to
the solution of a system of algebraic equations as coefficients
of a power series solution. This method is useful to obtain
the exact and approximate solutions of linear and nonlinear
differential equations. No need to linearization or discretiza-
tion, large computational work and round-off errors are
avoided. It has been used to solve effectively, easily and accu-
rately a large class of linear and nonlinear problems with
approximations. The method is well addressed in Ertiirk and
Momani (2007), Arikoglu and Ozkol (2005), Ayaz (2004),
Liu and Song (2007), Hassan (2008), Bildik et al. (2006) and
Ertiirk and Momani (2007).

The paper has been organized as follows. In Section 2, a
brief description of the method is presented, while, in Section
3, four numerical examples are solved to demonstrate the
applicability of the present method. The discussion on our re-
sults is given in Section 4.

2. Differential transform method

Let 7' (r) be analytic in a domain R and let r = ry represent any
point in R. Then, the function f (r) is represented by a power
series whose center is located at ry. The differential transform
of the kth derivative of the function f (r) in one variable is de-
fined as follows:

o =[]

where, f (r) is the original function and (F (k) is the trans-
formed function. The inverse transformation of the function
f(r) is defined by

(2.1)

f: F(k)(r — ro)~. (2.2)
k=0
Combining Egs. (2.1) and (2.2), one may write:
X 1 [d(r) '
=3 g% e-nt (23)

Eq. (2.3) implies that the concept of differential transform
method is derived from Taylor series expansion. However,
the method does not evaluate the derivatives symbolically.
An iterative procedure which is described by the transformed

Table 1 Operations of differential transform.

Original function Transformed function

S(x) = u(x) £ v(x) F(k) = U(k) + G(k)

Sx) = au(x) F(k) = aU(K)

Sx) = u(x)v(x) F(k) = U(k)G(k)

flx) =22 F(k) = (k+ 1)U(k + 1)

fx) = L2 F(k) = (k+1)(k+2) ... (k +m)U(k + m)

fx) = 7 F(k) = 5(k — m)

fx) = & Flk) = i—

f(x) =sin(wx + a) F(k) = %— n(nk/2 + o)

f(x) =cos(wx + a) F(k) = % cos(nk/Z + o)

J0) = [ould By =YD k> 1, F(0) =

Jx) = [, u(o)v(t)d F(k):kzkl = ( ) (k—kl—l)Jc =1
) )

Ulk — k1)Kl — 1),k > 1

S) = ) [o(0de B = Y 4

equations of the original functions can be used to calculate
the related derivatives. In this study, we use the lower case let-
ter to represent the original function and upper case letter to
stand for the transformed function.

In actual applications, the function f (r) is expressed by a
finite series and Eq. (2.2) can be written as

N
Z F(k)(r = ro), (2.4)
=0
which implies that Y7\, F(k)(r — ro)* is negligibly small. In
this study, the convergence of the natural frequencies deter-
mines the value of N. The theorems which are frequently used
in the transformation analysis are shown in Table 1.

3. Applications and numerical results

In order to illustrate the advantages and the accuracy of differ-
ential transform method for solving singularly perturbed Volter-
ra integral equations, we have applied the method to four
problems.

Example 1. We consider the following linear singularly
perturbed Volterra integral equation discussed in Alnasr
(2000) and Alnasr and Momani (2008):

ey(x) = / [1+¢— y(1)dt. (3.1)
0
The exact solution of this problem is known as
—X —X
y(x)=x+1—exp (T) - 8(1 —exp <T)> (3.2)

According to the operations of differential transformation gi-
ven in Table 1, we have the following recurrence relation:

1(6(k—1)+06(k—2)—Y(k—1
Y(k):;( =1+ - )= X1 ))k> 1, Y(0) = 0.
(3.3)
Utilizing the recurrence relation in Eq. (3.3), we find
1
Y(1)=-
(1=,
1 1
Y@2) = 262 + 2¢
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11
Y(3) = @ - @’
1 1
Y(4) = - Saet + EYRR
1 1
YO) = 1505 ~ 1208
| 1
Y(6) == 7306 + 7205
1 1
Y) = S5a007 ~ 508066
Y(8) = — — !

T 3032088 T 2032087

and so on, in this manner Y(k) for k > 9 can be easily ob-
tained. Therefore, from (2.2), the first few terms of the series
solution is as follows:

x LI\, (1 1\,
+(_L+L)x4+(;_;)xs
244 2483 120e5  120&*
(e ) ek )
7200 720&° 5040¢7  5040¢°
1 1
(=30 + o0 ) G4

As the number of terms involved increases, one can observe
that the series solution obtained using differential transform
method converges to series expansion of the exact solution
(3.2). Note that 20 terms are considered in Eq. (3.4) for the
numerical results. Comparison of the numerical results with
the exact solution (3.2) for e=1, ¢=0.75, ¢=0.5 and
& =0.25 is shown in Table 2.

Example 2. Consider the following singularly perturbed Vol-
terra integral equation discussed in Alnasr (2000), Alnasr
and Momani (2008) and Ibrahim and Alnasr (1998):

ey(x) = /()'v(l o (3.5)

The exact solution of this problem is known as

1 1 1
L [( - +<) exp(n) - (% 1 +—,) exp(ajzx)}
V1 — N2 & &

(3.6)

y(x)=x+1+

where the parameters y, and y, are defined as
1 1
y,:2—8<—1+\/1—46>7 y,:2—8<—1—\/1—4s> (3.7)

If we apply differential transform to the Eq. (3.5), by using
Table 1, we can obtain the following transformed equation:

Y (k) %(W*i kl—lé(kfkl ~)[(k1—1)

Fo(k1—2) — Y(k1 —1)] %i %Y(kl)[é(kfkl )

—S(k—k1—1)), k>1,7(0)=0. (3.8)

Consequently, we find

Y(1) =3
11
Y(2) = 7E+z7
11
YE3) 68 22 6
1 11
A 7r R
1 1 1 1
Y(5) = 1208 ~ 245t T 208 " 12022
1 1 1 1
Y(6) = =730 T 1205 ~ 725 F 1805
1 1 1 1 1
) = 50407 ~ 7208 " T35 3048 50405
1 1 ! ! !

Y(8) = = 403205 T 504087 ~ 192066 T 201655 8064

and so on, in this manner Y(k) for k > 9 can be easily
obtained.Therefore, from (2.2), the first few terms of the series
solution are as follows:

Table 2 Numerical results compared to exact solution for Example 1.

X e=1.0 e=0.75 e=0.5 e=0.25

y(x)Approx y(x)Exact y(x)Approx y(X)Exuz‘l y(x)Approx y(x)Exacl y(X)Appmx y(x)Exact
0.0 0.0 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.1 0.1 0.1 0.131207 0.131207 0.190635 0.190635 0.347260 0.347260
0.2 0.2 0.2 0.258518 0.258518 0.364840 0.364840 0.613003 0.613003
0.3 0.3 0.3 0.382420 0.382420 0.525594 0.525594 0.824104 0.824104
0.4 0.4 0.4 0.503338 0.503338 0.675336 0.675336 0.998578 0.998578
0.5 0.5 0.5 0.621646 0.621646 0.816060 0.816060 1.148500 1.148500
0.6 0.6 0.6 0.737668 0.737668 0.949403 0.949403 1.281960 1.281960
0.7 0.7 0.7 0.851690 0.851690 1.076700 1.076700 1.404390 1.404390
0.8 0.8 0.8 0.963962 0.963962 1.199050 1.199050 1.519430 1.519430
0.9 0.9 0.9 1.074700 1.074700 1.317350 1.317350 1.629510 1.629510
1.0 1.0 1.0 1.184100 1.184100 1.432330 1.432330 1.736260 1.736260
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Table 3 Numerical results compared to exact solution for Example 2.

X e=1.0 e=0.75 e=0.5
y(X)Approx y(x)ExaCt y(X)Approx y(x)Exacz y(x)Approx y(x)Exacz
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.104833 0.104833 0.137510 0.137510 0.199683 0.199683
0.2 0.218669 0.218669 0.282340 0.282340 0.397589 0.397589
0.3 0.340519 0.340519 0.433015 0.433015 0.592269 0.592269
0.4 0.469413 0.469413 0.588175 0.588175 0.782594 0.782594
0.5 0.604405 0.604405 0.746572 0.746572 0.967719 0.967719
0.6 0.744584 0.744584 0.907074 0.907074 1.147046 1.147046
0.7 0.889072 0.889072 1.068664 1.068664 1.320191 1.320191
0.8 1.037037 1.037037 1.230437 1.230437 1.486949 1.486949
0.9 1.187692 1.187692 1.391602 1.391602 1.647272 1.647272
1.0 1.340300 1.340300 1.551470 1.551470 1.801234 1.801234
X 1 I\ , 1 1 1Y ; Consequently, we find
() = c+( 2 ) +(6€3 282+68)x 1
+( Ly ‘)4 Yy =-2
24¢ 683 82 1
n 1 1 1 5 &
120¢° 2494 T208 12002 ¥Y(3) = — L
33 6e
+ L1 1
72066 12035 T 7264 1808 Y(4) = 55— 55
1 1 1 7 2 11 1
- > Y(5) = - ————
+ (504087 7200 3365 504¢4 + 504083) * (5) 15&5 + 60e3  120¢’
17 13 1
1 1 1 1 8 Y(6) = — + —
* ( 4032088 504087 192068 T 201655 806484);x Qs I80e 120eT
Y(7) = - - ,
+ () = 3157 ~ 7 * 540 ~ 50400°
(3.9) ¥(8) = 318 1
As the number of terms involved increases, one can observe 31567 105&5 1682 403206

that the series solution obtained using differential transform
method converges to series expansion of the exact solution
(3.6). Note that 11 terms are considered in Eq. (3.9) for the
numerical results. Comparison of the numerical results with
the exact solution (3.6) for e =1, £ =0.75 and ¢ =0.5 are
shown in Table 3.

Example 3. We consider the following nonlinear singularly
perturbed Volterra Integral Equation discussed in Alnasr
(2000) and Alnasr and Momani (2008):

mm:/fwwme@ (3.10)
0
which has the exact solution
2(1 — &™) 1
N — oy =442 A1
y(x) - Dertpr1 TTevAte (3.11)

One can see that the differential transform of Eq. (3.10) can
be evaluated by using Table 1 as follows:

1 k k3 k2 1 (_l)kl—l
o - | (z Kb

k3=1 k2=1 kl=1

( 1)Al 1
"k —K3)l k3 §:k1k K)! (k1 = ))
k> 1,7(0) =0.

Y(k2 — k1) Y(k3 — k2)

(3.12)

and so on, in this manner Y(k) for k£ = 9 can be easily ob-
tained. Therefore, from (2.2), the solution of the integral equa-
tion (3.10) is given as

LU I A PO T W
T e 383 6¢ 33 24e

y(x) = -

1 5
* 15&5 6063 1205)X

17 19
31567 7:;5

8405 ~ 5040
N 8 N A WO
31587 1056 ' 1685 40320/

The evolution results for the exact solution (3.11) and the
approximate solution obtained using differential transform
method, for different values of ¢, are shown in Figs. 1-3. Note
that 11 terms are considered in Eq. (3.13) for the numerical
results.

+

E
+ AW
90&5 180&3 ~7206) "

(3.13)

Example 4 . We consider the following singularly perturbed
Volterra integral equation (Kauthen, 1997):

{W@):smxgilxﬂﬂm, (3.14)
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Figure 1  Plots of Eq. (3.10) when ¢ = 1. Exact solution (
approximate solution (—).

); the

X 0.2 0.4 0.6 0.8 1

Figure 2 Plots of Eq. (3.10) when ¢ = 0.75. Exact solution (__);
the approximate solution (—).

N 0.2 0.4 0.6 0.8 1

Figure 3  Plots of Eq. (3.10) when ¢ = 0.5. Exact solution (__);
the approximate solution (—).

which has the exact solution

y(x) = (cosx +esinx —e 7). (3.15)

1+ &

According to the operations of differential transformation
given in Table 1, the following recurrence relation is obtained:

Y(k) :% {% sin (%k> — @} . (3.16)

Utilizing the recurrence relation in Eq. (3.16), we find

1
Y(1) =, 1
Y(3) = & 6
Y(4) = — S ;
%434 241182 |
Y(6) = — 712056 721054 - 720132’
Y7 = 5040871_ 50406 | 504083
_ @7 | 1 1
Y®) =~ 203205 * 2032006 ~ 40320 T 203202

and so on, in this manner Y(k) for k > 9 can be easily
obtained.Therefore, from (2.2), the first few terms of the series
solution are as follows:

-0.25
-0.5
-0.75

-1

Figure 4  Plots of Eq. (3.14) when ¢ = 2. Exact solution (__);
the approximate solution (—).

-0.25
-0.5
-0.75

-1

Figure 5 Plots of Eq. (3.14) when ¢ = 27°. Exact solution (__);
the approximate solution (—).
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X 12 1Y
}(x)— . +(6s3 66)

4
+( 245t 248)

4032058

1
+ (12065 1208 %) x
I 1Y,
+( 72065 7206 72032)x
. ( L )x7
504067 5040s5 504050 ~ 50406

1 R B
T 3032055~ 203206 403202

(3.17)

The evolution results for the exact solution (3.15) and the
approximate solution obtained using differential transform
method, for ¢ =273 and ¢ = 27°, are shown in Figs. 4 and 5.
Note that 90 terms are considered in Eq. (3.17) for the numer-
ical results.

4. Conclusion

In this study, Differential transform method is successfully ap-
plied to singularly perturbed Volterra integral equations. A
symbolic calculation software package, MATHEMATICA is
used for all calculations. All the computations show that the
approximate solutions are perfectly identical to the exact solu-
tions. Also, the work emphasized our belief that the method is
a reliable technique to handle these types of problems. It pro-
vides the solutions in terms of convergent series with easily
computable components in a direct way without using lineari-
zation, discretization or restrictive assumptions.
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