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1. Introduction

The problem of the orbital evolution of planets, due to their
interaction with the ambient disk, has been covered in a few recent
reviews (Baruteau et al., 2013; Baruteau and Massey, 2013; Kley
and Nelson, 2012). It turns out that the change in the orbital ele-
ments of the protoplanet (Laughlin et al., 2004) can be predicted
as a consequence of the interaction with the disk. The migration
of the planet is the most important consequence observed in the
overall evolution of the semi major-axis of the planet. Three
regimes of migration, depending on the mass of the planet, can
be distinguished, with two limiting regimes of migration as the
most important. For a mass less than about 50 solar mass, the pla-
net do not open a gap in the disk (Kley and Nelson, 2012; Baruteau
and Massey, 2013), so the evolution can be treated in the linear
regime: this type of evolution is named an evolution of type I. Ana-
lytical formulation of this type of migration has been presented, in
the case of adiabatic disks, by (Paardekooper et al., 2010;
Paardekooper et al., 2011). For massive planets, the angular
momentum deposition in the disk causes an annular gap in the
disk at the orbit of the planet. The reduced mass available near
the planet causes a slow-down of the migration speed from the lin-
ear rate: this kind of evolution is of the type II. At equilibrium the
planet is locked in the middle of the gap to maintain the torque
equilibrium (Ward, 1982; lin and Papaloizou, 1986; Ward, 1997).

Several numerical calculations of migrating massive planets
were done in (Edgar, 2007; Edgar, 2008). In these works a constant
kinematic viscosity is considered. In more recent works,
(Paardekooper, 2014) analyzed the influence of planetary motion
on the type I migration regime. Massive planets migration in an
ambient disk has been studied in (Crida and Morbidelli, 2007). In
this last model, the planets were locked in a disk with an initial
Gaussian shape and a constant kinematic viscosity. The problem
of type II migration is still relevant.

In this paper, we present the resolution of this problem and
study the migration of planets in slim disks with an approximation
of the external torque due to the planet. In the next section, we
define the torque. In Sect. 3 and sect.4 we present our analytic
solution respecting the boundary conditions. Sect.5 is devoted to
concluding remarks.

We do not pretend to solve the problem without resorting to
the numerical method, but we have obtained an analytical solution
for a simplified model, this solution may be used to build migration
models.
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Fig. 1. The rates of specific angular momentum of Armitage model and our model
near the orbit of the planet.
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2. The rate of specific angular momentum

In type I migration model, the planets are not massive enough
to perturb the disc, within this assumption the total torque is the
sum of the contributions from three different resonances: the first
is the partial torques from the inner Lindblad resonances, which
drive outward migration, the second is outer Lindblad resonances,
which drive inward migration whereas the third contribution is
due to the co-rotation resonance. However, the partial torques
from the inner and the outer Lindblad resonances are of opposing
sign but of al most the same magnitude. The prediction of the
direction of migration by an analytic calculation is somewhat diffi-
cult because a precise calculation of the torque is needed. More-
over, real discs can be turbulent with a dominating fluctuating
torques that results from turbulent density fluctuations. We con-
sider a geometrically stationary thin disc, with a viscosity in the
form m ¼ srn, n < 2 (Lynden-Bell and Pringle, 1974) The rate of
specific angular momentum transfer from the planet, of mass
Mp ¼ qM� to the disk is given by K rð Þ, in (Armitage et al., 2002;
Trilling et al., 1998) this rate of the specific angular momentum
is described by the following piecewise continuous function

r � rp � H;K rð Þ ¼ � q2GM�
2r

r4

r � rp
� �4 ð1-aÞ

rp � H � r � rp;K rð Þ ¼ � q2GM�
2r

r4

H4 ð1-bÞ

rp � r � rp þ H;K rð Þ ¼ q2GM�
2r

rp4

H4 ð1-cÞ

rp þ H � r;K rð Þ ¼ q2GM�
2r

rp4

r � rp
� �4 ð1-dÞ

for a planet of mass qM�, at radius (semi-major axis) rp and where H
is the disk scale-height.

Protoplanetary disks evolve to viscous transport of angular
momentum and photo evaporation by the central star. Planets
migrate due to tidal interaction with the disk, and the disk is also
subject to tidal torques from planets Treating the evolution equa-
tion with K rð Þ given by (1) is analytically very complicated. It
requires to solve four equations with respect each region. Further-
more, numerical simulations is inevitable. To avoid these difficul-
ties, we will modify the rate of the specific angular momentum
function K rð Þ. This modification allows us to solve only two equa-
tions and gives an acceptable result at the vicinity of the planet.

In our model the rate of specific angular momentum is
described by two equations, Where 1 < n < 2 and n0 < 1 :

r < rp;K
0 rð Þ ¼ � q2GM�

2r
rp
H

� �4 r
rp

� �nþ1
2

ð2-aÞ

rp < r;K0 rð Þ ¼ q2GM�
2r

rp
H

� �4 r
rp

� �n0þ1
2

ð2-bÞ

This choice of model is based on two main facts:
The first is that the rate of the specific angular momentum

K rð Þdepends on the tidal dissipation, which in turn, when the vis-
cosity m is very large, is concentrated at r ¼ rp near the protoplanet
orbit (Papaloizou and Lin, 1984). The viscosity expression proposed
by (Lynden-Bell and Pringle, 1974) led us to choose this rate, as
indicated by the formulas (2-a, b).

The second fact is that near the orbit (where r ¼ rp), the formu-
las (2-a, b) have approximately the same behavior as the equations
(1-b, c). Indeed, by puttingr equal to rpin set of equations (1-b, c)
and (2-a, b), we find that equation (2-a) coincides with equation
(1- b) and equation (2-b) coincides with equation (1-c).

Another feature to note is that this model in the vicinity of the
orbit lends itself to an exact analytical treatment.

Indeed Fig. 1 illustrates the approach between the new approx-
imation function K0 rð Þ and the function K rð Þ near the planet orbit
for different n, n0 values.

Whence the importance of the viscosity near the planet orbit
(Papaloizou and Lin, 1984), we focused the study near the rp.

For computational convenience, we introduce a set of dimen-

sionless variables such that: y ¼ 2rpK rð Þ
q2GM�

, y0 ¼ 2rpK0 rð Þ
q2GM�

, x ¼ r
rp
; and for

the subsequent application we take rp ¼ 2:5H.
Since the behavior of the rate K rð Þ of the specific angular

momentum not coincides with K0 rð Þ for regions far from rp, the
Fig. 1 shows, that a near the plant orbit (r rp; x 1) for all values of
n and n0, K0 rð Þ and K rð Þ have the same shape.

We have motioned this remark when we compared the formu-
las (2-a, b) and (1-b, c), at r rp.

Indeed, for all values of n and n0, near the planet orbit (r rp) we
have

K
0
rp
� � ¼ K rp

� �
Our model preserves the physical properties of the rate of speci-

fic angular momentum function, which is the fact that the moment
is maximum close to the planet and decreases progressively when
it departs from this one.

The torque exerted on a planet can be given by the impulse
approximation (Papaloizou and Lin, 1984). A loss of angular
momentum for the planet is due to the interaction between the
external gas and the planet which is overtaken by the planet, while
a net gain in angular momentum is due to the gas in the interior
part which is overtaken by the planet. The total torque will be
the sum of all the torques and depend on the structure of the disk.
We took values for n and n0 in such a way that the new function
approximates the real function as much as possible.

The purpose of the present paper is to obtain an approximate
solution of the evolution equation, given by (Lin and Papaloizou,
1986).
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Here R r; tð Þ is the disk surface density in a cylindrical coordinate
density.

where, the torque K rð Þ is given by (1)
To deal with the torque term K rð Þ we shall use a polynomial-

type approximation form, in order to obtain approximate analyti-
cal solution of the evolution equation. Therefore, we use an
approximation for the torque term by taking (2).

Such an approximation is a good approximation in the neigh-
borhood of the planet orbit rp, or for thin disk 1 � H if 1 < n < 2
and n0 < 1, (see Fig. 1). We do not claim that our approximate ana-
lytical solution is accurate everywhere, but this approximation
turns to become a good tool for studying evolution of planet orbit.

2.1. Model for planetary migration

We now give our simplified model with an evolution which is
little different from the standard form used in literature, by a
new approximate function K0 rð Þwhich has been obtained in the last
section. In our model the evolution of the protoplanetary disks is
characterised by the viscous transport of angular momentum.
The planets migrate under the influence of the tidal interaction
with the disk which is subject to tidal torques from planets. We
assume that the shape of the disc have cylindrical symmetry so
all equations are expressed in a cylindrical coordinate system.
The evolution equation of a protoplanetary disk and a planet is
described by the new form given by
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Here R r; tð Þ is the disk surface density in a cylindrical coordinate
density, t is time, m ¼ srn, n < 2, is the friction coefficient per unit
density or kinematic viscosity, and M� is the stellar mass. The ordi-
nary viscous evolution of the disk is given by the first term on the
right-hand side describes (Lynden-Bell and Pringle,1974; Pringle,
1981), and the second term describes the effect of the planetary
torque.

We shall limit ourselves to the stationary regime

@R r; tð Þ
@t

¼ �kR r; tð Þ

Where k is some constant, so we requires

R r; tð Þ ¼ exp �ktð Þ/ rð Þ ð4Þ
Where / rð Þ is a function depending only on r. Substituting, in

(3),K0 rð Þ by its expression and setting a ¼ q2
ffiffiffiffiffiffiffi
GM�

p
3s

rp
H

� �4,
N ¼ 1� n

2 > 0 and N0 ¼ 1� n0
2 > 0

we get a homogeneous second order differential equations, for
r < rp
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and for r > rp
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However, this last equation cannot be immediately solved. Thus
in the domain r < rp we define the new variable Nx ¼ arN and after
some algebra we have
2� nð Þx/0 0
xð Þ þ 3 nþ 1ð Þ � 2� nð Þx½ �/0
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þ k
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Substituting the function / xð Þ by a new function u xð Þ as follows

/ xð Þ ¼ xbexp � x
2

� �
u xð Þ

With:
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Inserting into, we get the equation:
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Where:
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Make the new variable z ¼ 2x
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p
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equation (Gradshteyn and Ryzhik, 1980)

u0 0 zð Þ þ �1
4
þ j

z
þ

1
4 � l2

z2

	 

u zð Þ ¼ 0 ð9Þ

j ¼ c
2

ffiffiffi
b

p ¼ n� 1
2� n

� �
1
2

3þ 4k
3a2s

� ��1
2

2l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4d

p
¼ 1

2� n

The formal solution of this differential equation is of the form:

u xð Þ ¼ C1Mj;l 2x
ffiffiffi
b

p� �
þ C2Wj;l 2x

ffiffiffi
b

p� �
ð10Þ

where Mj;l zð Þ, Wj;l zð Þ are the well-known Whittaker functions,C1

and C2 are two constants depending on boundary conditions at
r ¼ 0 and r ¼ 1. In the original function / rð Þ we get for r < rp
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And for r > rp

R r; tð Þ ¼ �arN0
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where C0
1 and C0

2 are two constants depending on boundary
conditions at r ¼ 0 and r ¼ 1.
3. Boundary conditions

The dynamics of the accretion disk described by the differential
equation, is an initial value problem, and generally the boundary
condition has a influence on the global solution. So, the boundary
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conditions imposed on the accretion disk are important. The outer
boundary r ! 1 is a freely expanding surface.

We consider different boundary conditions; zero stress or no
accretion at the inner boundary, r ¼ 0, and zero mass inflow at
the outer boundary r ! 1.

First of all we have the limiting cases as z ! 0 (Gradshteyn and
Ryzhik, 1980)

Mj;l zð Þ � z
1
2þl ð13Þ

Wj;l zð Þ � C 2lð Þ
C 1

2 þ l� j
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And as z ! 1
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And we remark that:

3
4
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1
2
þ l < 1

0 <
1
2
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1
4

Then because the Whittaker function Wj;l zð Þ has an exponen-
tial damping in the domain r > rp we put:
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And for r < rp we have:
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Then for r ! 0 we get
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But the term rN bþ1
2þlð Þ tend to infinity at r ¼ 0we put then

C2 ¼ 0.
Finally we have for r < rp:

R r; tð Þ ¼ C
arN

N

� �b

exp �ktð Þexp �arN

2N

� �
Mj;l

2a
N

ffiffiffi
b

p
rN

� �
ð21Þ

And for r > rp we get
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4. Concluding remarks

In this work, we have obtained an analytical solution of the evo-
lution equation of a protoplanetary disk and a planet instead the
numerical solution. From this, we have computed the mass densityP

which represented by Whittaker function.
Whence the importance of the second term in the right of the

evolution equation, which describes the effect of the planetary tor-
que, specially near the planet orbit, we have suggested an approx-
imate rate K0 rð Þ of the specific angular momentum which have the
same shape of K rð Þ near the planet orbit. The choice of K0 rð Þ is
based on the idea of viscosity expression proposed earlier by
(Lynden-Bell and Pringle,1974).

Our an analytical solution of the evolution equation allows us to
contribute to the study of planetary migration.

In a forthcoming works we will investigate the effect of this
approximation on the orbital migration of the planet described
by the following equation:

drp
dt

¼ �Cexp �ktð Þ 4p
Mp

� � ffiffiffiffiffiffiffiffiffiffi
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GM�

r
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And:
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