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A B S T R A C T

In this research article, we present the procedure of generating 𝖦𝖯𝖳 spaces in two different ways: using
the generalized neighbourhood system and the monotonic operator. Then, we introduce several types of
generalized primal continuous functions. Some characteristics have been dissected, and the relationships among
them have been studied. We use the technique of Császár, which changes the ‘‘generalized topology’’ to other
‘‘generalized topologies’’ weaker than it, to show some important results. Furthermore, we show that the notion
of ‘‘strong 𝖦𝖯-continuity’’ coincides with the notion ‘‘𝖦𝖯-continuity’’ under some conditions. We present these
results on a simple graph to make it easier for the reader. Finally, study the preservation of the notions of
‘‘𝖦𝖯-connected’’ and ‘‘𝖦𝖯-hyperconnected’’ by different types of generalized primal continuous functions.
1. Introduction

Continuity has been a core concept in the branch of pure mathemat-
ics in general and in the theory of topology. A function between two
topological spaces is continuous if the pre-image of every open set is
open. To judge whether a function is continuous, we need to examine
the structure of the spaces. This nice kind of function is quite important
for the role that it plays in preserving the topological structure of the
domain space in the co-domain space.

In Császár (1997) the concept of generalization was established
when Császár introduced the concept of generalized open set, which
led to the definition of a new mathematical structure weaker than the
topology, that is, having relaxing conditions. Following the scientific
approach, any ‘‘generalization’’ to the basic concepts in the ‘‘theory
of topology’’ must be studied. This happened when many articles
drew attention to this generalized space and examined every topolog-
ical characteristic. Moreover, the notion of ‘‘generalized continuous’’
functions between two generalized topological spaces is defined.

In Al-Saadi and Al-Malki (2023), the same methodology was fol-
lowed. The author gave a new mathematical structure that connected
the generalized topological properties with the primal set  given on
the same set. The basic definitions were given, and some operators with
nice behaviour are present in Al-Saadi and Al-Malki (2024).

In this paper, we continue our study of this new space. The study
focuses on ‘‘generalized continuity’’ under the influence of the primal
set. The topic of continuity is one of the major topics in topology theory,
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and for that, we investigate in depth many types of continuous func-
tions. These types are already studied in the theory of ‘‘generalization’’.
Here we will study them in the sense of primal collection. Also, we will
study the relationship between them and state the necessary conditions
to develop some weak kinds of them into strong types. The importance
of continuous functions in topology comes from their effective role in
preserving topological properties.

This article contains five sections. Section 1 is divided in two
parts: the first one summarizes the previous studies in this research;
the second part is recalling the basic definitions and the fundamental
theorems. In Section 2, we present three types of continuous functions
on 𝖦𝖯𝖳 spaces. First, we generate 𝖦𝖯𝖳 spaces in two different ways.
One by using the generalized neighbourhood system, and the other
by using the monotonic operator. Then, we give the definitions of
𝖦𝖯𝖭-continuous, 𝖦𝖯-𝜃-continuous, and almost 𝖦𝖯-continuous; and we
discuss their characteristics. The relationship among them and coun-
terexamples have been studied. In Section 3, we introduce the notions
of ‘‘strong 𝖦𝖯-continuous function’’, ‘‘strongly 𝖦𝖯-𝜃-continuous’’, and
‘‘super 𝖦𝖯-continuous’’. Then, study the relationship among them. Also,
we present the concepts of ‘‘weakly 𝖦𝖯-closed function’’ and ‘‘𝖦𝖯-
regular space’’; and we discuss their characteristics. In Section 4, we
present the notions of ‘‘𝖦𝖯-connected’’ and ‘‘𝖦𝖯-hyperconnected’’. Then,
we study the preservation of these notions by different types of gen-
eralized primal continuous functions. Section 5 is a discussion of all
theimportant results that we present.
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1.1. Literature review

In Császár (2002) the notion of ‘‘generalized topology’’ was pre-
sented. The collection g of the power set 2𝑇 of a non-empty set 𝑇 is
amed a generalized topology 𝖦𝖳 if the empty set belongs to g, and
he countable union of every set that belongs to g also belongs to g.
hus, the pair (𝑇 , g) is assumed to be a generalized topological space,
enoted by 𝖦𝖳 space.

According to Császár (2008b), this space member is named g-open
sets; however, g-closed means its complements. Also, 𝐶g(𝑇 ) refers to
the whole set of g-closed sets, whereas 𝑐g(𝑀) and 𝑖g(𝑀) mean the
closure and interior of 𝑀 ⊂ 𝑇 , respectively, which are defined as in
the general case. Studies continued in this generalized space. Császár
(2004a) presented the concept of topological disconnection under the
influence of generalization, while Császár (2005) presented the concept
of generalized continuous functions. Császár (2008a) introduced the
notion of ‘‘strong generalized topological space’’, which is given as
follows: A generalized topology is named strong if 𝑇 ∈ g.

Moreover, this field has received a lot of attention since the litera-
ture has studied and examined its topological characteristics in detail.
For example, Császár (2004b) gave the separation axioms by replacing
the notion of open sets with a more general expression, while a lot
of research gave the definition of generalized continuity with different
types of more general kinds of continuity, for example, Min (2009b)
presented the notion of almost continuity, Min (2009a) introduced the
concept of 𝜃(g, g‵)-continuity, and Jayanthi (2012) gave the definition
of contra continuous function.

In another direction, literature has spread that presents new math-
ematical structures as useful tools that lead to a deeper understanding
and broader application of the concepts of topological spaces in various
fields. For example, the mathematical structure ‘‘ideal’’ in Janković and
Hamlett (1990) and its dual structure ‘‘filter’’ in Kuratowski (2014).
These two structures have applications in science and society. The
notion of ideal 𝑚-space is given in Al-Omari and Noiri (2012), including
some type of operator.

On the same approach, the notion of ‘‘grill’’ appeared in Choquet
(1947). The associated topology for the grill is given in Roy and
Mukherjee (2007). New types of mapping were presented and compact-
ness in the light of a grill in Roy et al. (2008). The generalized type of
continuity and its decomposition via grill set are defined and studied
in Hatir and Jafari (2010).

In 2022, the dual structure of the ‘‘grill’’ is defined and named
‘‘primal’’ in Acharjee et al. (2022). A family  ⊆ 2𝑇 is called a primal
over 𝑇 , if the next are satisfied for 𝑀,𝑁 ⊆ 𝑇 : (i) 𝑇 ∉  . (ii) Whenever
𝑀 ⊆ 𝑁 and 𝑁 ∈  , thus 𝑀 ∈  . (iii) Whenever 𝑀 ∩ 𝑁 ∈  , thus
𝑀 ∈  or 𝑁 ∈  . Some operators are given via a ‘‘primal set’’ and
presented in AL-Omari et al. (2022). Also, Modak (2013) follows the
same approach and definition of new space via the notion of filter and
grill. In Al-shami et al. (2023) a new space is defined by joining the
nice properties of primal and soft sets.

1.2. 𝖦𝖯𝖳 spaces

Through this part, we will review the basic definitions of 𝖦𝖯𝖳

spaces, that are presented in Al-Saadi and Al-Malki (2023) and Al-Saadi
and Al-Malki (2024)

Definition 1. The triple (𝑇 , g,) refers to the generalized primal
topological space 𝖦𝖯𝖳 space for short. Moreover, (g,)-open sets is
the symbol for the element of this space, and (g,)-closed sets denote
their complement. The entire set of (g,)-closed set is symbolized by
𝐶(g,)(𝑇 ) and 𝑐𝑙(g,)(𝑀) denotes the closure of 𝑀 ⊆ 𝑇 , that is qualified
2

as in the general situation.
Definition 2. Let (𝑇 , g,) be a 𝖦𝖯𝖳 space. Consider an operator
𝜓 ∶ 𝑇 → 22𝑇 given as 𝑡 ∈ 𝑂, for all 𝑂 ∈ 𝜓(𝑡). Hence, 𝑂 ∈ 𝜓(𝑡)
is a generalized primal neighbourhood or 𝖦𝖯𝖭 for 𝑡 ∈ 𝑇 , and 𝜓 is a
generalized primal neighbourhood system over 𝑇 or 𝖦𝖯𝖭 system. The
set of all 𝖦𝖯𝖭 systems on 𝑇 is denoted by 𝛹 (𝑇 ).

Definition 3. Let (𝑇 , g,) be a 𝖦𝖯𝖳 space with 𝑀 ⊆ 𝑇 . The operator
(.)⋄ ∶ 2𝑇 → 2𝑇 is defined by

𝑀⋄(𝑇 , g,) = {𝑡 ∈ 𝑇 ∶𝑀𝑐 ∪ 𝑂𝑐 ∈  ,∀ 𝑂 ∈ 𝜓(𝑡)}.

Theorem 4. Let (𝑇 , g,) be a 𝖦𝖯𝖳 space. The next holds for 𝑀,𝑁 ⊆ 𝑇 .

(i) 𝜙⋄ = 𝜙.
(ii) 𝑀⋄ is (g,)-closed i.e., 𝑐𝑙(g,)(𝑀⋄) =𝑀⋄.
(iii) (𝑀⋄)⋄ ⊆ 𝑀⋄.
(iv) 𝑀⋄ ⊆ 𝑁⋄, whenever, 𝑀 ⊆ 𝑁 .
(v) ⋄𝑀 ∪𝑁⋄ = (𝑀 ∪𝑁)⋄.
(vi) (𝑀 ∩𝑁)⋄ ⊆ 𝑀⋄ ∩𝑁⋄.

Definition 5. Let (𝑇 , g,) be a 𝖦𝖯𝖳 space with 𝑀 ⊆ 𝑇 . We define the
operator 𝑐𝑙⋄ ∶ 2𝑇 → 2𝑇 by 𝑐𝑙⋄(𝑀) =𝑀 ∪𝑀⋄.

Theorem 6. Let (𝑇 , g,) be a 𝖦𝖯𝖳 space. The next holds for 𝑀,𝑁 ⊆ 𝑇 .

(i) 𝑐𝑙⋄(𝜙) = 𝜙,
(ii) 𝑀 ⊆ 𝑐𝑙⋄(𝑀),
(iii) 𝑐𝑙⋄(𝑐𝑙⋄(𝑀)) = 𝑐𝑙⋄(𝑀),
(iv) 𝑐𝑙⋄(𝑀) ⊆ 𝑐𝑙⋄(𝑁), whenever 𝑀 ⊆ 𝑁 ,
(v) 𝑐𝑙⋄(𝑀) ∪ 𝑐𝑙⋄(𝑁) = 𝑐𝑙⋄(𝑀 ∪𝑁).

heorem 7. Let (𝑇 , g,) be a 𝖦𝖯𝖳 space with 𝑀,𝑁 ⊆ 𝑇 . We have
∩𝑁⋄ ⊆ (𝑀 ∩𝑁)⋄, whenever 𝑀 is (g,)-open.

efinition 8. Let (𝑇 , g,) be a 𝖦𝖯𝖳 space and 𝑀 ⊆ 𝑇 .

(i) Whenever 𝑀 ⊆ 𝑐𝑙⋄(𝑖g𝑀), 𝑀 is called (g,)-semi-open set.
(ii) Whenever 𝑀 ⊆ 𝑖g(𝑐𝑙⋄(𝑀)), 𝑀 is called (g,)-pre-open set.

(iii) Whenever 𝑀 = 𝑖g(𝑐𝑙⋄(𝑀)), 𝑀 is called (g,)-regular open set.
(iv) Whenever 𝑀 ⊆ 𝑐g(𝑖g(𝑐𝑙⋄(𝑀))), 𝑀 is called (g,)-𝛽-open set.
(v) Whenever 𝑀 ⊆ 𝑖g(𝑐𝑙⋄(𝑖g(𝑀))), 𝑀 is called (g,)-𝛼-openset.

The entire set of (g,)-semi-opensets is denoted via g , and the
ntire set of (g,)-pre-open setsis denoted via g . Moreover, the
ntire set of (g,)-𝛼-open sets is denoted via 𝛼g , while 𝛽g represents
he whole set of (g,)-𝛽-open sets. Finally, g represents the whole
et of (g,)-regularopen sets.

efinition 9. Let (𝑇 , g,) be a 𝖦𝖯𝖳 space and 𝑀 ⊆ 𝑇 . If (𝑇 ⧵ 𝑀)
is a (g,)-semi-open (resp. (g,)-pre-open, (g,)-regular open, (g,)-
𝛼-open, (g,)-𝛽-open), hence 𝑀 is called a (g,)-semi-closed (resp.
(g,)-pre-closed, (g,)-regular closed, (g,)-𝛼-closed, (g,)-𝛽-closed).

Proposition 10. Let (𝑇 , g,) be a 𝖦𝖯𝖳 space. We have:

(i) ⋃

𝛿∈𝛥𝑀𝛿 such that each 𝑀𝛿 ∈ g also belongs to g .
(ii) ⋃

𝛿∈𝛥𝑀𝛿 such that each 𝑀𝛿 ∈ g also belongs to g .
(iii) ⋃

𝛿∈𝛥𝑀𝛿 such that each 𝑀𝛿 ∈ 𝛼g also belongs to 𝛼g .
(iv) ⋃

𝛿∈𝛥𝑀𝛿 such that each 𝑀𝛿 ∈ 𝛽g also belongs to 𝛽g .
(v) ⋃

𝛿∈𝛥𝑀𝛿 such that each 𝑀𝛿 ∈ g also belongs to g .

Corollary 11. Let (𝑇 , g,) be a 𝖦𝖯𝖳 space. All of the families
g ,g , 𝛼g , 𝛽g and g constitute a 𝖦𝖯𝖳 space with a primal set 
over 𝑇 .

Definition 12. Let (𝑇 , g,) be a 𝖦𝖯𝖳 space and (𝑇 ‵, g‵) is 𝖦𝖳 space.
The mapping 𝑝 ∶ 𝑇 → 𝑇 ‵ is called (g,)-semi-continuous (resp. (g,)-

−1
pre-continuous, (g,)-𝛼-continuous, (g,)-𝛽-continuous)if 𝑝 (𝑀), for
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all 𝑀 is g-open is (g,)-semi-open (resp. (g,)-pre-open, (g,)-𝛼-open,
(g,)-𝛽-open).

Theorem 13. Let (𝑇 , g,) be a 𝖦𝖯𝖳 space and 𝑀 ⊆ 𝑇 . We find:

(i) 𝑀 ∈ 𝛼g if and only if 𝑀 ∈ g and 𝑀 ∈ g .
(ii) If 𝑀 ∈ g , then 𝑀 ∈ 𝛽g .
(iii) If 𝑀 ∈ g , then 𝑀 ∈ 𝛽g .

orollary 14. Let (𝑇 , g,) be a 𝖦𝖯𝖳 space. We have:

(i) g ∩ g = 𝛼g .
(ii) g−𝑜𝑝𝑒𝑛 ⊂ 𝛼g ⊂ g ⊂ 𝛽g .
(iii) 𝛼g ⊂ g ⊂ 𝛽g .

Definition 15. Let (𝑇 , g,) be a 𝖦𝖯𝖳 space. Consider 𝑀 ⊆ 𝑇 . If
𝑐𝑙⋄(𝑀) = 𝑇 , hence 𝑀 is called (g,)-dense set.

2. Main results

This part is about demonstrating the possibility of determining new
types of continuity on a 𝖦𝖯𝖳 space. First, let us make a supplement
to the results from Al-Saadi and Al-Malki (2023) about a 𝖦𝖯𝖳 space
characteristic.

Definition 16. Consider 𝜂 ∶ 2𝑇 → 2𝑇 as a map that has the monotonic
property, that is, if 𝑀 ⊂ 𝑁 of 𝑇 , then 𝜂(𝑀) ⊂ 𝜂(𝑁). The whole set of
monotonic maps on a set 𝑇 is denoted by 𝛤 (𝑇 ).

Remark 17. Let 𝑀 ⊂ 𝑇 , then the next is true:

(i) 𝑀 is 𝜂-open iff 𝑀 ⊂ 𝜂(𝑀). Thus, 𝜙 is 𝜂-open.
(ii) The countableunion of 𝜂-open setsis 𝜂-open; see Császár (2002).

Hence, the set of all 𝜂-open sets forms a 𝖦𝖳 and is denoted by g𝜂 .
Consequentially, (𝑇 , g𝜂 ,) is a 𝖦𝖯𝖳 space, where  is a primal
set over 𝑇 .

By the above consideration, it is obvious that we can produce all
𝖦𝖯𝖳 space over 𝑇 for some 𝜂 ∈ 𝛤 .

Corollary 18. Let (𝑇 , g,) be a 𝖦𝖯𝖳 space. Then, there exists 𝜂 ∈ 𝛤
satisfying the following properties:

(i) 𝜂(𝜙) = 𝜙 and 𝜂(𝑀) ⊂ 𝑀 ,
(ii) 𝜂(𝜂(𝑀)) = 𝜂(𝑀).

Proof. Consider g𝜂 = g and 𝜂(𝑀) = {∪ 𝐺 ∶ 𝐺 ⊂ 𝑀,∀𝐺 ∈ g}. Hence,
𝜂(𝑀) ∈ g. So, 𝜂(𝑀) ⊂ 𝑀 and 𝜂(𝜙) = 𝜙, hence we prove (i).

Moreover, from the definition 𝑀 ⊂ 𝜂(𝑀), but from (i) 𝜂(𝑀) ⊂ 𝑀
implies 𝜂(𝑀) =𝑀 . Therefore, 𝜂(𝑀) ∈ g and 𝜂(𝜂(𝑀)) = 𝜂(𝑀). □

Another method to obtain a 𝖦𝖯𝖳 space is by using the map 𝜓 , that
is mentioned in Definition 2 (for deep details, see Császár, 2002).

Definition 19. If 𝜓 ∈ 𝛹 (𝑇 ) and 𝐺 ∈ g satisfy the condition: if 𝑡 ∈ 𝐺,
there exists 𝑂 ∈ 𝜓(𝑡) satisfying 𝑂 ⊂ 𝐺. Then, g is a 𝖦𝖳 denoted by g𝜓 .
Consequentially, (𝑇 , g𝜓 ,) is a 𝖦𝖯𝖳 space, where  is a primal set over
𝑇 . Conversely, let g be a 𝖦𝖳, then ∃ 𝜓 ∈ 𝛹 (𝑇 ) such that g = g𝜓 , which
means 𝜓 satisfies the condition: ∀𝑡 ∈ 𝑇 ,∃ 𝑂 ∈ 𝜓(𝑡), 𝑂 ∈ g.

In the first case, consider 𝜓 = 𝜓g and for the second case consider
𝜓 ∈ 𝛹g(𝑇 ). For g = g𝜂 , where 𝜂 ∈ 𝛤 , considering 𝑖g𝜂 as 𝑖𝜂 and 𝑐g𝜂 as 𝑐𝜂 .
Also, for g = g𝜓 , where 𝜓 ∈ 𝛹 (𝑇 ), considering 𝑖g𝜓 as 𝑖𝜓 and 𝑐g𝜓 as 𝑐𝜓 .

Definition 20. Let (𝑇 , g,) be a 𝖦𝖯𝖳 space, 𝜓 ∈ 𝛹 , and 𝑀 ⊆ 𝑇 . Then,

(i) 𝜄𝜓 (𝑀) = {𝑡 ∈ 𝑇 ∶ ∃ 𝑂 ∈ 𝜓(𝑡) 𝑠𝑎𝑡𝑖𝑠𝑓 𝑖𝑒𝑠 𝑂 ⊂ 𝑀}.
(ii) 𝜂𝜓 (𝑀) = {𝑡 ∈ 𝑇 ∶ 𝑂𝑐 ∪𝑀𝑐 ∈  , 𝑓𝑜𝑟𝑎𝑙𝑙 𝑂 ∈ 𝜓(𝑡)}.

Note that 𝜄𝜓 , 𝜂𝜓 ∈ 𝛤 . Moreover, 𝑖𝜓 (𝑀) ⊂ 𝜄𝜓 (𝑀) as well as 𝑐𝑙⋄𝜓 (𝑀) ⊂
𝜂 (𝑀). However, when g = g, we have 𝜄 = 𝑖 and 𝜂 = 𝑐𝑙⋄ .
3

𝜓 𝜓 𝜓 𝜓 𝜓 𝜓
2.1. 𝙶𝙿-continuous function

This part of our article is a discussion of three different types of
generalized primal continuity. We depend on two types of 𝖦𝖯𝖳 spaces:
those generated by a generalized neighbourhood system and monotonic
maps.

Definition 21. Let (𝑇 , g,) and (𝑇 ‵, g‵, ‵) be two 𝖦𝖯𝖳 spaces. Consider
𝑂 as (g‵, ‵)-open. Define a function 𝑝 ∶ 𝑇 → 𝑇 ‵. Then, 𝑝 is named
𝖦𝖯-Continuous if and only if 𝑝−1(𝑂) is (g,)-open.

The more general type of 𝖦𝖯-continuity based on the concept of
generalized neighbourhood systems as follows:

Definition 22. Consider 𝜓 ∈ 𝛹 (𝑇 ) and 𝜓 ‵ ∈ 𝛹 (𝑇 ‵). Hence, 𝑝 is named
𝖦𝖯𝖭-continuous iff for every 𝑡 ∈ 𝑇 and 𝑂‵ ∈ 𝜓 ‵(𝑝(𝑡)), there is 𝑂 ∈ 𝜓(𝑡)
satisfying 𝑝(𝑂) ⊂ 𝑂‵.

Since 𝑐𝑙⋄(𝑀) ⊂ 𝑐𝑙⋄(𝑁) if 𝑀 ⊆ 𝑁 , then 𝑐𝑙⋄ ∈ 𝛤 . The generalized
primal neighbourhood system is defined as following:

Definition 23. Let (𝑇 , g,) be 𝖦𝖯𝖳 space, 𝑀 ⊂ 𝑇 , 𝐺 be (g,)-
open set, and 𝑡 ∈ 𝐺. If 𝑂 = 𝑐𝑙⋄(𝐺), then 𝑂 ∈ 𝜓(𝑐𝑙⋄, g)(𝑡). Therefore,
𝜓(𝑐𝑙⋄, g) ∈ 𝛹 (𝑇 ).

The connection between 𝖦𝖯𝖭-continuity and 𝖦𝖯-continuity is de-
scribed in the following.

Theorem 24. Every 𝖦𝖯𝖭-continuous function is 𝖦𝖯-continuous, where g
produce by the neighbourhood system.

Proof. Consider 𝑝 as a function from (𝑇 , g𝜓 ,) to (𝑇 ‵, g‵𝜓 ,
‵). Let

𝐺‵ ∈ g‵𝜓 ‵ , 𝑡 ∈ 𝑇 and 𝑝(𝑡) ∈ 𝐺‵. Thus, there is 𝑂‵ ∈ 𝜓 ‵(𝑝(𝑡)) satisfies
𝑂‵ ⊂ 𝐺‵. Hence, ∃ 𝑂 ∈ 𝜓(𝑡) such that 𝑝(𝑂) ⊂ 𝑂‵. Therefore, 𝑝(𝑂) ⊂ 𝐺‵

and 𝑂 ⊂ 𝑝−1(𝐺‵) implies 𝑝−1(𝐺‵) ∈ g𝜓 . □

There is a 𝖦𝖯-continuous map produced by the neighbourhood
system, which is not 𝖦𝖯𝖭-continuous; the following example makes that
clear.

Example 25. Let (𝑇 , g,) be a 𝖦𝖯𝖳 space, where 𝑇 = {𝑡1, 𝑡2, 𝑡3},
g = {𝜙, {𝑡1}, {𝑡2}, {𝑡1, 𝑡2}, 𝑇 }, and  = 2𝑇 ⧵ 𝑇 . Suppose that (𝑇 ‵, g‵, ‵)
is a 𝖦𝖯𝖳 space, where 𝑇 ‵ = 𝑇 , g‵ = {𝜙, {𝑡1}, {𝑡3}, {𝑡1, 𝑡3}, 𝑇 ‵}, and
 ‵ = 2𝑇 ‵ ⧵ 𝑇 ‵. Consider 𝜓 = 𝜓(𝑐𝑙⋄, g) and 𝜓 ‵ = 𝜓(𝑐𝑙⋄, g‵). Since if 𝑂 ∈ g

and 𝑡1 ∈ 𝑂, then {𝑡1} ∈ g and 𝑐𝑙⋄{𝑡1} = {𝑡1, 𝑡3} ∉ g. If 𝑂 ∈ g and
𝑡2 ∈ 𝑂, then {𝑡2} ∈ g and 𝑐𝑙⋄{𝑡2} = {𝑡2, 𝑡3} ∉ g. If 𝑂 ∈ g and 𝑡3 ∈ 𝑂,
then 𝑇 ∈ g and 𝑐𝑙⋄(𝑇 ) = 𝑇 ∈ g. Hence, g𝜓 = {𝜙, 𝑇 }. By the same way,
we have g𝜓 ‵ = {𝜙, 𝑇 }. Let 𝑝 ∶ 𝑇 → 𝑇 ‵ be the identity map. Thus, 𝑝 is a
𝖦𝖯-continuous. However, 𝑝 is not 𝖦𝖯𝖭-continuous since 𝑝(𝑡1) ∈ {𝑡1} ∈ g‵

and 𝑐𝑙⋄({𝑡1}) = {𝑡1, 𝑡2} implies {𝑡1, 𝑡2} ∈ 𝜓 ‵{𝑡1} if 𝑂 ∈ 𝜓({𝑡1}) and
𝑐𝑙⋄({𝑡1}) = {𝑡1, 𝑡3} and {𝑡1, 𝑡3} ⊈ {𝑡1, 𝑡2}.

The extra condition that makes the inverse of Theorem 24 true is
described in the following.

Theorem 26. Every 𝖦𝖯-continuous function is 𝖦𝖯𝖭-continuous, whenever
𝜓 ‵ = 𝜓 ‵

g‵
, where g produced by the neighbourhood system.

Proof. Consider 𝑝 as a function from (𝑇 , g𝜓 ,) to (𝑇 ‵, g‵𝜓 ,
‵). Put 𝑡 ∈ 𝑇

and 𝑂‵ ∈ 𝜓 ‵(𝑝(𝑡)). Thus, 𝑝(𝑡) ∈ 𝑂‵ and 𝑂‵ ∈ g‵𝜓 ‵ . Hence, 𝑡 ∈ 𝑝−1(𝑂‵) ∈ g𝜓 ,
then there exists 𝑂 ∈ 𝜓(𝑡) satisfies 𝑂 ⊂ 𝑝−1(𝑂‵) and implies 𝑝(𝑂) ⊂
𝑂‵. □

The map 𝜂𝜓 in Definition 20 is a useful tool to define the 𝖦𝖯𝖭-
continuous in a different way as follows:

Theorem 27. Consider 𝑝 ∶ 𝑇 → 𝑇 ‵, 𝜓 ∈ 𝛹 (𝑇 ), 𝜓 ‵ ∈ 𝛹 (𝑇 ‵),𝑀 ⊂ 𝑇 ,𝑁 ⊂
‵
𝑇 . Then, the next are equivalent:



Journal of King Saud University - Science 36 (2024) 103259H. Al-Saadi and H. Al-Malki

P

(i) 𝑝 is 𝖦𝖯𝖭-continuous;
(ii) 𝑝(𝜂𝜓 (𝑀)) ⊂ 𝜂𝜓 ‵ (𝑝(𝑀));
(iii) 𝜂𝜓 (𝑝−1(𝑁)) ⊂ 𝑝−1(𝜂𝜓 ‵ (𝑁)).

roof. (𝑖) ⇒ (𝑖𝑖). Let 𝑡 ∈ 𝜂𝜓 (𝑀). Thus 𝑝(𝑡) ∈ 𝜂𝜓 ‵ (𝑝(𝑀)). Because if
that does not hold, then ∃ 𝑂 ∈ 𝜓 ‵(𝑝(𝑡)) satisfies 𝑂𝑐 ∪ (𝑝(𝑀))𝑐 ∉  . We
get, ∃ 𝑆 ∈ 𝜓(𝑡) such that 𝑝(𝑆) ⊂ 𝑂 and (𝑝(𝑆))𝑐 ∪ (𝑝(𝑀))𝑐 ∉  . Hence,
𝑆𝑐 ∪𝑀𝑐 ∉  , which is a contradiction.

(𝑖𝑖) ⇒ (𝑖𝑖𝑖). Consider 𝑀 = 𝑝−1(𝑁). Thus, from (ii), we get

𝑝(𝜂𝜓 (𝑀)) ⊂ 𝜂𝜓 ‵ (𝑝(𝑀)) = 𝜂𝜓 ‵ (𝑝(𝑝−1(𝑁))) ⊂ 𝜂𝜓 ‵ (𝑁).

Therefore, 𝜂𝜓 (𝑝−1(𝑁)) ⊂ 𝑝−1(𝜂𝜓 ‵ (𝑁)).
(𝑖𝑖𝑖) ⇒ (𝑖). Consider 𝑂 ∈ 𝜓 ‵(𝑝(𝑡)). Put 𝑁 = (𝑇 ‵ ⧵𝑂) and 𝑝(𝑡) ∉ 𝜂𝜓 ‵ (𝑁).

Thus, 𝑡 ∉ 𝑝−1(𝜂𝜓 ‵ (𝑁)). From (iii) 𝑡 ∉ 𝜂𝜓𝑝−1(𝑁) we get ∃ 𝑆 ∈ 𝜓(𝑡) satisfies
𝑆𝑐 ∪ (𝑝−1(𝑁))𝑐 ∉  . Thus, (𝑝(𝑆))𝑐 ∪𝑁𝑐 ∉  . Hence, 𝑝(𝑆) ⊂ 𝑂. □

2.2. 𝖦𝖯-𝜃-continuous function

By using a generalized primal neighbourhood system 𝜓(𝑐𝑙⋄, g) ∈
𝛹 (𝑇 ) that is mentioned in Definition 23, we can present a new kind
of continuous function as follows:

Definition 28. Let (𝑇 , g,) and (𝑇 ‵, g‵, ‵) be two 𝖦𝖯𝖳 spaces. Let
𝜓 = 𝜓(𝑐𝑙⋄, g) and 𝜓 ‵ = 𝜓 ‵(𝑐𝑙⋄, g‵). Hence 𝑝 ∶ 𝑇 → 𝑇 ‵ is named
𝖦𝖯-𝜃-Continuous if it is 𝖦𝖯𝖭-Continuous.

In anther word if 𝑡 ∈ 𝑇 , 𝑂‵ ∈ g‵, and 𝑝(𝑡) ∈ 𝑂‵, then ∃ 𝑂 ∈ g ∶ 𝑡 ∈ 𝑂
satisfies 𝑝(𝑐𝑙⋄(𝑂)) ⊂ 𝑐𝑙⋄(𝑂‵), where 𝑐𝑙⋄(𝑂), 𝑐𝑙⋄(𝑂‵) restricted on (𝑇 , g,)
and (𝑇 ‵, g‵, ‵) respectively.

Theorem 29. Let (𝑇 , g,) and (𝑇 ‵, g‵, ‵) be two 𝖦𝖯𝖳 spaces𝑀 ⊂ 𝑇 ,𝑁 ⊂
𝑇 ‵, and 𝑝 ∶ 𝑇 → 𝑇 ‵. If 𝑂 ∈ 𝜓(𝑐𝑙⋄, g) and 𝑂‵ ∈ 𝜓 ‵(𝑐𝑙⋄, g‵) satisfy the next
two conditions:

(1) 𝑡 ∈ 𝜂𝜓 (𝑀) iff 𝑡 ∈ 𝐺 ∈ g implies (𝑐𝑙⋄(𝐺))𝑐 ∪𝑀𝑐 ∈  .
(2) 𝑡‵ ∈ 𝜂‵𝜓 (𝑁) iff 𝑡‵ ∈ 𝐺‵ ∈ g‵ implies (𝑐𝑙⋄(𝐺‵))𝑐 ∪𝑁 ∈  , then the next

are equivalent:

(i) 𝑝 is 𝖦𝖯-𝜃-continuous;
(ii) 𝑝(𝜂𝜓 (𝑀)) ⊂ 𝜂𝜓 ‵ (𝑝(𝑀));
(iii) 𝜂𝜓 (𝑝−1(𝑁)) ⊂ 𝑝−1(𝜂𝜓 ‵ (𝑁)).

2.3. Almost 𝖦𝖯-continuity

This part is a discussion of the notion of ‘‘almost continuous’’ in
the generalized field. Min (2009b) presented this notion between two
generalized topological spaces. Here, we will give it with consideration
for the primal set.

Definition 30. Let (𝑇 , g,) and (𝑇 ‵, g‵, ‵) be two 𝖦𝖯𝖳 spaces. Consider
𝑝 ∶ 𝑇 → 𝑇 ‵. Then, 𝑝 is named almost 𝙶𝙿-continuous at 𝑡 ∈ 𝑇 if for every
(g‵, ‵)-open set 𝐺‵ ∶ 𝑝(𝑡) ∈ 𝐺‵, there existsa (g,)-open set 𝐺 ∶ 𝑡 ∈ 𝐺
satisfies 𝑝(𝐺) ⊂ 𝑖g‵ (𝑐𝑙⋄(𝐺‵)). Moreover, 𝑝 is named almost 𝖦𝖯-continuous
if it is almost 𝖦𝖯-continuous at every 𝑡 ∈ 𝑇 .

The more general concept between 𝖦𝖯-continuity and almost 𝖦𝖯-
continuity is qualified in the following.

Theorem 31. Every 𝖦𝖯-continuous function is almost 𝖦𝖯-continuous.

Proof. For 𝑡 ∈ 𝑇 let 𝐺‵ be a (g‵, ‵)-open set such that 𝑝(𝑡) ∈ 𝐺‵. Since
𝑝 is 𝖦𝖯-continuous, 𝑝−1(𝐺‵) is (g,)-open set. Put 𝑝−1(𝐺‵) = 𝐺. Thus
𝑡 ∈ 𝐺. Now, 𝑝(𝐺) = 𝐺‵ ⊂ 𝑖g‵ (𝑐𝑙⋄(𝐺‵)). Hence, 𝑝 is almost 𝖦𝖯-continuous
at 𝑡 ∈ 𝑇 . Since 𝑡 is arbitrary, 𝑝 is almost 𝖦𝖯-continuous. □

To say these two notions coincide, we need to discuss the technique
that Császár presented in Császár (2008a). This technique changes the
generalized topology of other generalized topologies, which is smaller
than it. Here we will do the same, but this time with consideration of
a primal set as follows:
4

Definition 32. Let (𝑇 , g,) be a 𝖦𝖯𝖳 space. Then, 𝜗(g) and 𝜎(g) are
two 𝖦𝖯𝖳 spaces, given as follows for each 𝑀 ⊆ 𝑇 :

(i) 𝜗(g) = {𝑀 ⊆ 𝑇 ∶ ∀ 𝑡 ∈ 𝑀,∃ (g,)−𝑐𝑙𝑜𝑠𝑒𝑑𝑠𝑒𝑡 𝑁𝑠𝑎𝑡𝑖𝑠𝑓 𝑖𝑒𝑠 𝑡 ∈
𝑖g(𝑁) ⊂ 𝑀}.

(ii) 𝜎(g) = {𝑀 ⊆ 𝑇 ∶ ∀ 𝑡 ∈ 𝑀,∃ (g,)−𝑜𝑝𝑒𝑛𝑠𝑒𝑡 𝑁𝑠𝑎𝑡𝑖𝑠𝑓 𝑖𝑒𝑠 𝑡 ∈
𝑐𝑙⋄(𝑁) ⊂ 𝑀}.

Note that the member of 𝜗(g) coincides with the union of all (g,)-
regular open set. By another way the family of all (g,)- regular open
sets g is a based for the 𝖦𝖯𝖳 space 𝜗(g).

So, the concept of almost 𝖦𝖯-continuous coincides with the notion of
𝖦𝖯-continuity if we make a suitable change to the 𝖦𝖯𝖳 space as follows:

Proposition 33. 𝑝 ∶ (𝑇 , g,) → (𝑇 ‵, g‵, ‵) is almost 𝖦𝖯-continuous iff
𝑝 ∶ (𝑇 , g,) → (𝑇 ‵, 𝜗(g‵), ‵) is 𝖦𝖯-continuity.

Proof. Since 𝑝 ∶ (𝑇 , g,) → (𝑇 ‵, g‵, ‵) is almost 𝖦𝖯-continuous, then
for every 𝑡 ∈ 𝑇 and for every (g‵, ‵)-open set 𝐺‵ ∶ 𝑝(𝑡) ∈ 𝐺‵, there
existsa (g,)-openset 𝐺 ∶ 𝑡 ∈ 𝐺 satisfies 𝑝(𝐺) ⊂ 𝑖g‵ (𝑐𝑙⋄(𝐺‵)). Hence,

𝑝(𝐺) ⊂ 𝑖𝜗(g‵)(𝑐𝑙⋄(𝐺‵)) ⊆ 𝑝(𝐺),

from the definition of 𝜗(g‵). By regularity of 𝐺‵ we have 𝑖𝜗(g‵)(𝑐𝑙⋄(𝐺‵)) =
𝐺‵. Hence 𝑝−1(𝐺‵) = 𝐺. Therefore, 𝑝 ∶ (𝑇 , g,) → (𝑇 ‵, 𝜗(g‵), ‵) is
𝖦𝖯-continuity. □

3. Strong 𝗚𝗣-continuity

In this part, special types of 𝖦𝖯-continuity will be introduced. In
fact, the concepts of super (g, g‵)-continuous functions and strongly
(g, g‵)-𝜃-continuous functions are given in Min and Kim (2011). Also,
the notion of strong (g, g‵)-continuous functions is presented by Kim and
Min (2012). All these notions are described according to 𝖦𝖳 space fea-
tures. Here, we will study these types of continuity in light of the primal
set. First, let us define the set 𝜔g =

⋃

{𝑀 ⊂ 𝑇 ∶𝑀𝑖𝑠𝑎(g,)−𝑜𝑝𝑒𝑛}.

Definition 34. Let (𝑇 , g,) and (𝑇 ‵, g‵, ‵) be two 𝖦𝖯𝖳 spaces. Consider
𝑝 ∶ 𝑇 → 𝑇 ‵. Then, 𝑝 is named a strong 𝖦𝖯-continuity if for every 𝑡 ∈ 𝑇
and (g‵, ‵)-open set 𝐺‵ ∶ 𝑝(𝑡) ∈ 𝐺‵, there is a (g,)-open set 𝐺 ∶ 𝑡 ∈ 𝐺
satisfies 𝑐𝑙⋄(𝑝(𝐺)) ∩ 𝜔g‵ ⊂ 𝐺‵.

Theorem 35. Consider 𝑝 ∶ 𝑇 → 𝑇 ‵ as strong 𝖦𝖯-continuous function. If
𝑝(𝜔g) ⊆ 𝜔g‵ , then 𝑝(𝑐𝑙⋄(𝐻)) ⊆ 𝑐𝑙⋄(𝑝(𝐻)), for all (g,)-open set 𝐻 ⊆ 𝑇 .

Proof. Assume 𝐻 ⊆ 𝑇 is (g,)-open. Let 𝑡 ∈ 𝑐g(𝐻). Let 𝐺‵ ⊆ 𝑇 ‵ be
(g‵, ‵)-open such that 𝑝(𝑡) ∈ 𝐺‵. As 𝑝 is a strong 𝖦𝖯-continuity, there
existsa (g,)-openset 𝐺 ⊆ 𝑇 ∶ 𝑡 ∈ 𝐺 and 𝑐𝑙⋄(𝑝(𝐺)) ∩𝜔g‵ ⊂ 𝐺‵. Moreover,
as 𝑡 ∈ 𝑐𝑙⋄(𝐻) and 𝐺 ⊆ 𝑇 ∶ 𝑡 ∈ 𝐺, 𝐻 ∩ 𝐺 ≠ 𝜙. But 𝑝(𝜔g) ⊆ 𝜔g‵ . Hence,

𝜙 ≠ 𝑝(𝐺 ∩𝐻) ⊆ 𝑝(𝐺) ∩ 𝑝(𝐻),

⊆ 𝑝(𝐻) ∩ 𝑐𝑙⋄(𝑝(𝐺)),

= (𝑝(𝐻) ∩ 𝜔g‵ ) ∩ 𝑐𝑙⋄(𝑝(𝐺)),

⊆ 𝑝(𝐻) ∩ 𝐺‵.

Thus, 𝑝(𝐻) ∩ 𝐺‵ ≠ 𝜙 and 𝑝(𝑡) ∈ 𝑐𝑙⋄(𝑝(𝐻)). Hence, 𝑝(𝑐𝑙⋄(𝐻)) ⊆
𝑐𝑙⋄(𝑝(𝐻)). □

Theorem 36. Consider 𝑝 ∶ 𝑇 → 𝑇 ‵. If 𝑝(𝜔g) ⊆ 𝜔g‵ , then the next are
identical:

(i) 𝑝 is a strong 𝖦𝖯-continuity;
(ii) For every 𝑡 ∈ 𝑇 and a (g‵, ‵)-open set 𝐺‵ ∶ 𝑝(𝑡) ∈ 𝐺‵, there is a

(g,)-open set 𝐺 ∶ 𝑡 ∈ 𝐺 satisfies 𝑐𝑙⋄(𝑝(𝑐𝑙⋄(𝐺))) ∩ 𝜔g‵ ⊆ 𝐺‵;
(iii) For every 𝑡 ∈ 𝑇 and a (g‵, ‵)-closed set 𝐻 ‵ ∶ 𝑝(𝑡) ∉ 𝐻 ‵, there

is a (g,)-open set 𝐺 ∶ 𝑡 ∈ 𝐺 and a (g‵, ‵)-open set 𝐺‵ satisfies
𝐻 ‵ ∩ 𝜔 ⊆ 𝐺‵, and 𝑝(𝑐𝑙⋄(𝐺)) ∩ 𝐺‵ = 𝜙;
g‵
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(iv) For every 𝑡 ∈ 𝑇 and a (g‵, ‵)-closed set 𝐻 ‵ ∶ 𝑝(𝑡) ∉ 𝐻 ‵, there
is a (g,)-open set 𝐺 ∶ 𝑡 ∈ 𝐺 and a (g‵, ‵)-open set 𝐺‵ satisfies
𝐻 ‵ ∩ 𝜔g‵ ⊆ 𝐺‵, and 𝑝(𝐺) ∩ 𝐺‵ = 𝜙.

Proof. (𝑖) ⇒ (𝑖𝑖). For 𝑡 ∈ 𝑇 , let 𝐺‵ be a (g‵, ‵)-open set such that 𝑝(𝑡) ∈
𝐺‵. So, there is a (g,)-open set 𝐺 ∶ 𝑡 ∈ 𝐺 satisfies 𝑐𝑙⋄(𝑝(𝐺)) ∩𝜔g‵ ⊆ 𝐺‵.
From Theorem 35, we get 𝑝(𝑐𝑙⋄(𝐺)) ⊆ 𝑐𝑙⋄(𝑝(𝐺)). Hence, 𝑝(𝑐𝑙⋄(𝐺))∩𝜔g‵ ⊆

‵.
(𝑖𝑖) ⇒ (𝑖𝑖𝑖). For 𝑡 ∈ 𝑇 , let 𝐻 ‵ be a (g‵, ‵)-closed set such that

𝑝(𝑡) ∉ 𝐻 ‵. Since 𝑝(𝑡) ∈ (𝑋‵ ⧵𝐻 ‵) and (𝑋‵ ⧵𝐻 ‵) is a (g‵, ‵)-open set, there
is a (g,)-open set 𝐺 ∶ 𝑡 ∈ 𝐺 satisfies 𝑐𝑙⋄(𝑝(𝑐𝑙⋄(𝐺))) ∩ 𝜔g‵ ⊆ (𝑋‵ ⧵𝐻 ‵).
Put 𝐺‵ = (𝑋‵ ⧵ 𝑐𝑙⋄(𝑝(𝑐𝑙⋄(𝐺)))). Hence, 𝐺‵ is a (g‵, ‵)-open set satisfies
𝐻 ‵ ∩ 𝜔g‵ ⊆ 𝐺‵, and 𝑝(𝑐𝑙⋄(𝐺)) ∩ 𝐺‵ = 𝜙.

(𝑖𝑖𝑖) ⇒ (𝑖𝑣). It is clear.
(𝑖𝑣) ⇒ (𝑖). Let 𝑡 ∈ 𝑇 and 𝐺‵ be a (g‵, ‵)-open set with 𝑝(𝑡) ∈ 𝐺‵.

Hence, (𝑋‵ ⧵𝐺‵) is a (g‵, ‵)-closed set with 𝑝(𝑡) ∉ (𝑋‵ ⧵𝐺‵). So, there is a
(g,)-open set 𝐺 ∶ 𝑡 ∈ 𝐺 and (g‵, ‵)-open set 𝑊 satisfy (𝑋‵ ⧵𝐺‵)∩𝜔g‵ ⊆
𝑊 and 𝑝(𝐺) ∩𝑊 = 𝜙. Hence,

𝑐𝑙⋄(𝑝(𝐺)) ∩ 𝜔g‵ ⊆ 𝑐𝑙
⋄((𝑋‵ ⧵ 𝐺‵)) ∩ 𝜔g‵

= (𝑋‵ ⧵ 𝐺‵) ∩ 𝜔g‵ ⊆ 𝐺
‵.

Therefore, 𝑝 is a strong 𝖦𝖯-continuous. □

Corollary 37. Consider 𝑝 ∶ 𝑇 → 𝑇 ‵. If 𝑇 ‵ is strong, then the next are
identical:

(i) 𝑝 is a strong 𝖦𝖯-continuity;
(ii) For every 𝑡 ∈ 𝑇 and a (g‵, ‵)-open set 𝐺‵ ∶ 𝑝(𝑡) ∈ 𝐺‵, there is a

(g,)-open set 𝐺 ∶ 𝑡 ∈ 𝐺 satisfies 𝑐𝑙⋄(𝑝(𝑐𝑙⋄(𝐺))) ⊆ 𝐺‵;
(iii) For every 𝑡 ∈ 𝑇 and a (g‵, ‵)-closed set 𝐻 ‵ ∶ 𝑝(𝑡) ∉ 𝐻 ‵, there is a

(g,)-open set 𝐺 ∶ 𝑡 ∈ 𝐺 and a (g‵, ‵)-open set 𝐺‵ satisfies 𝐻 ‵ ⊆ 𝐺‵

and 𝑝(𝑐𝑙⋄(𝐺)) ∩ 𝐺‵ = 𝜙;
(iv) For every 𝑡 ∈ 𝑇 and a (g‵, ‵)-closed set 𝐻 ‵ ∶ 𝑝(𝑡) ∉ 𝐻 ‵, there

is a (g,)-open set 𝐺 ∶ 𝑡 ∈ 𝐺 and a (g‵, ‵)-open set 𝐺‵ satisfies
𝐻 ‵ ⊆ 𝐺‵ and 𝑝(𝐺) ∩ 𝐺‵ = 𝜙. Hence, 𝐺‵ is satisfies 𝐻 ‵ ∩ 𝜔g‵ ⊆ 𝐺‵,
and 𝑝(𝑐𝑙⋄(𝐺)) ∩ 𝐺‵ = 𝜙.

Definition 38. Let (𝑇 , g,) and (𝑇 ‵, g‵, ‵) be two 𝖦𝖯𝖳 spaces. Then,
𝑝 ∶ 𝑇 → 𝑇 ‵ is named strongly 𝖦𝖯-𝜃-continuous, if for every 𝑡 ∈ 𝑇
and every (g‵, ‵)-open set 𝐺‵ ∶ 𝑝(𝑡) ∈ 𝐺‵, there existsa (g,)-openset
𝐺 ∶ 𝑡 ∈ 𝐺 satisfies 𝑝(𝑐𝑙⋄(𝐺)) ⊆ 𝐺‵.

The next result studies the relationship between the notions of a
strong 𝖦𝖯-continuous function and a strongly 𝖦𝖯-𝜃-continuous.

Theorem 39. If 𝑝 ∶ 𝑇 → 𝑇 ‵ is a strong 𝖦𝖯-continuous and 𝑇 ‵ is strong,
then 𝑝 is strongly 𝖦𝖯-𝜃-continuous.

Proof. It automatically from Corollary 37. □

There is a strongly 𝖦𝖯-𝜃-continuous function, which is not strong
𝖦𝖯-continuous; the following example makes that clear.

Example 40. Let (𝑇 , g,) be a 𝖦𝖯𝖳 space, where 𝑇 = {𝑡1, 𝑡2, 𝑡3},
g = {𝜙, {𝑡1}}, and  = {𝜙, {𝑡1}, {𝑡2}, {𝑡1, 𝑡2}}. Suppose that (𝑇 ‵, g‵, ‵)
is a 𝖦𝖯𝖳 space, where 𝑇 ‵ = {𝑎, 𝑏, 𝑐}, g‵ = {𝜙, {𝑎}, 𝑇 ‵}, and  ‵ = 2𝑇 ‵ ⧵ 𝑇 ‵.
Define 𝑝 ∶ 𝑇 → 𝑇 ‵ by

𝑝(𝑡1) = 𝑝(𝑡2) = 𝑝(𝑡3) = 𝑎.

Thus, 𝑝 is strongly 𝖦𝖯-𝜃-continuous function.
However, it is not strong 𝖦𝖯-continuous since 𝑐𝑙⋄(𝑝({𝑡1})) = 𝑇 ‵ ⊈

{𝑎}.

Definition 41. Let (𝑇 , g,) and (𝑇 ‵, g‵, ‵) be two 𝖦𝖯𝖳 spaces. Then,
𝑝 ∶ 𝑇 → 𝑇 ‵ is named super 𝖦𝖯-continuous, if for every 𝑡 ∈ 𝑇 and every
(g‵, ‵)-open set 𝐺‵ ∶ 𝑝(𝑡) ∈ 𝐺‵, there existsa (g,)-open set 𝐺 ∶ 𝑡 ∈ 𝐺

⋄ ‵
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satisfies 𝑝(𝑖g(𝑐𝑙 (𝐺))) ⊆ 𝐺 .
The connection between the previous types of continuous functions
and the 𝖦𝖯-continuous function is qualified in the following.

Theorem 42. Every strongly 𝖦𝖯-𝜃-continuous function is super 𝖦𝖯-
continuous.

Proof. Let 𝑝 ∶ (𝑇 , g,) → (𝑇 ‵, g‵, ‵) be strongly 𝖦𝖯-𝜃-continuous. Then,
for every 𝑡 ∈ 𝑇 and every (g‵, ‵)-open set 𝐺‵ ∶ 𝑝(𝑡) ∈ 𝐺‵, there existsa
(g,)-open set 𝐺 ∶ 𝑡 ∈ 𝐺 satisfies 𝑝(𝑐𝑙⋄(𝐺)) ⊆ 𝐺‵. But 𝑖g(𝑐𝑙⋄(𝐺)) ⊆ 𝑐𝑙⋄(𝐺).
Thus, 𝑝(𝑖g(𝑐𝑙⋄(𝐺))) ⊆ 𝐺‵. Therefore, 𝑝 is super 𝖦𝖯-continuous. □

Theorem 43. Every super 𝖦𝖯-continuous function is 𝖦𝖯-continuous.

Proof. Let 𝑝 ∶ (𝑇 , g,) → (𝑇 ‵, g‵, ‵) be super 𝖦𝖯-continuous. Then, for
every 𝑡 ∈ 𝑇 and every (g‵, ‵)-open set 𝐺‵ ∶ 𝑝(𝑡) ∈ 𝐺‵, there existsa (g,)-
open set 𝐺 ∶ 𝑡 ∈ 𝐺 satisfies 𝑝(𝑖g(𝑐𝑙⋄(𝐺))) ⊆ 𝐺‵. Hence, 𝑝(𝑖g(𝐺)) ⊆ 𝐺‵.
Since 𝑡 ∈ 𝑝−1(𝐺‵), 𝑝−1(𝐺‵) ⊆ 𝐺. Thus, 𝑖g(𝐺) ⊆ 𝑝−1(𝐺‵) ⊆ 𝐺. Therefore,
𝑝−1(𝐺‵) is (g,)-open. Hence, 𝑝 is 𝖦𝖯-continuous. □

Example 44. Let (𝑇 , g,) be a 𝖦𝖯𝖳 space, where 𝑇 = {𝑡1, 𝑡2, 𝑡3},
g = {𝜙, {𝑡1, 𝑡3}, 𝑇 }, and  = 2𝑇 ⧵ 𝑇 . Suppose that (𝑇 ‵, g‵, ‵) is a 𝖦𝖯𝖳
space, where 𝑇 ‵ = {𝑎, 𝑏, 𝑐}, g‵ = {𝜙, {𝑎}}, and  ‵ = 2𝑇 ‵ ⧵ 𝑇 ‵. Define
𝑝 ∶ 𝑇 → 𝑇 ‵ by

𝑝(𝑡1) = 𝑝(𝑡3) = 𝑎, 𝑎𝑛𝑑 𝑝(𝑡3) = 𝑏.

Thus, 𝑝 is 𝖦𝖯-continuous function.
However, it is not super 𝖦𝖯-continuous since 𝑝(𝑖g(𝑐𝑙⋄({𝑡1, 𝑡3}))) =

𝑝(𝑇 ) ⊈ {𝑎}.

3.1. Weakly 𝖦𝖯-closed and 𝖦𝖯-open functions

In this part, we introduce the notions of ‘‘weakly 𝖦𝖯-closed func-
tion’’ and ‘‘𝖦𝖯-regular space’’. These two concepts are useful tools to
show the converse of the relationship that we gave in Theorem 39.
This result studies the connection between the notions of ‘‘strong
𝖦𝖯-continuous function’’ and ‘‘strongly 𝖦𝖯-𝜃-continuous’’.

Definition 45. Let (𝑇 , g,) and (𝑇 ‵, g‵, ‵) be two 𝖦𝖯𝖳 spaces. Then,
𝑝 ∶ 𝑇 → 𝑇 ‵ is named weakly 𝖦𝖯-closed, if for every (g,)-closed set 𝐹 ,
we have 𝑐𝑙⋄(𝑝(𝑖g(𝐹 ))) ⊆ 𝑝(𝐹 ).

Proposition 46. If 𝑝 is a weakly 𝖦𝖯-closed, then for each (g,)-open set
𝐺, we have 𝑐𝑙⋄(𝑝(𝑖g(𝐺))) ⊆ 𝑝(𝑐𝑙⋄(𝐺)).

Proof. Since 𝑐𝑙⋄(𝐺) is (g,)-closed set, 𝐺 ⊆ 𝑐𝑙⋄(𝐺), and 𝑝 is a weakly
𝖦𝖯-closed. Then, 𝑐𝑙⋄(𝑝(𝑖g(𝐺))) ⊆ 𝑝(𝑐𝑙⋄(𝐺)). □

Theorem 47. If 𝑝 is a weakly 𝖦𝖯-closed and strongly 𝖦𝖯-𝜃-continuous,
then 𝑝 is strong 𝖦𝖯-continuous.

Proof. For 𝑡 ∈ 𝑇 , let 𝐺‵ be a (g‵, ‵)-open : 𝑝(𝑡) ∈ 𝐺‵. Thus, there existsa
(g,)-open : 𝑡 ∈ 𝐺 satisfies 𝑝(𝑐𝑙⋄(𝐺)) ⊆ 𝐺‵. By Proposition 46, we get

𝑐𝑙⋄(𝑝(𝐺)) ∩ 𝜔g‵ ⊆ 𝑝(𝑐𝑙⋄(𝐺)) ∩ 𝜔g‵ ⊆ 𝐺
‵.

Hence, by Theorem 36 (ii), 𝑝 is strong 𝖦𝖯-continuous. □

Definition 48. Let (𝑇 , g,) be a 𝖦𝖯𝖳 space. Then, 𝑇 is called 𝖦𝖯-
regular on 𝜔g if for 𝑡 ∈ 𝜔g and a (g,)-closed set 𝐹 ∶ 𝑡 ∉ 𝐹 , there exist
𝐺1, 𝐺2 ∈ g satisfies 𝑡 ∈ 𝐺1, 𝐹 ∩ 𝜔g ⊆ 𝐺2 and 𝐺1 ∩ 𝐺2 = 𝜙.

Proposition 49. Let (𝑇 , g,) be a 𝖦𝖯𝖳 space. Then, 𝑇 is 𝖦𝖯-regular iff
for 𝑡 ∈ 𝜔g and a (g,)-open set 𝐺 ∶ 𝑡 ∈ 𝐺, there exists a (g,)-open set
𝐻 ∶ 𝑡 ∈ 𝐻 satisfies 𝑡 ∈ 𝐻 ⊆ 𝑐𝑙⋄(𝐻) ∩ 𝜔g ⊆ 𝐺.

Proof. It is direct from Definition 48 and considering 𝐻 = (𝑇 ⧵𝐹 ). □
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Theorem 50. If 𝑝 is a strongly 𝖦𝖯-𝜃-continuous and 𝑇 ‵ is 𝖦𝖯-regular,
hen 𝑝 is strong 𝖦𝖯-continuous.

roof. For 𝑡 ∈ 𝑇 , let 𝐺‵ be a (g‵, ‵)-open set ∶ 𝑝(𝑡) ∈ 𝐺‵
1. Since 𝑇 ‵ is

𝖦𝖯-regular, there is a (g‵, ‵)-open set 𝐺‵
2 ∶ 𝑝(𝑡) ∈ 𝐺‵

2 satisfies

𝑝(𝑡) ∈ 𝐺‵
2 ⊆ 𝑐𝑙

⋄(𝐺‵
2) ∩ 𝜔g‵ ⊆ 𝐺

‵
1.

Since 𝑝 is a strongly 𝖦𝖯-𝜃-continuous, there existsa (g,)-open 𝐺 ∶ 𝑡 ∈ 𝐺
satisfy 𝑝(𝑐𝑙⋄(𝐺)) ⊆ 𝐺‵

2. Hence,

𝑐𝑙⋄(𝑝(𝑐𝑙⋄(𝐺))) ∩ 𝜔g‵ ⊆ 𝑐𝑙
⋄(𝐺2) ∩ 𝜔g‵ ⊆ 𝐺

‵
1.

By using Theorem 36 (ii), 𝑝 is strong 𝖦𝖯-continuous. □

Corollary 51. Let (𝑇 , g,) and (𝑇 ‵, g‵, ‵) be two 𝖦𝖯𝖳 spaces. Consider
𝑝 ∶ 𝑇 → 𝑇 ‵. If 𝑇 ‵ is 𝖦𝖯-regular and strong, then the next are identical:

(i) 𝑝 is a strong 𝖦𝖯-continuous;
(ii) 𝑝 is a strongly 𝖦𝖯-𝜃-continuous;
(iii) 𝑝 is a 𝖦𝖯-continuous.

Proof. (𝑖) ⇒ (𝑖𝑖). It is directly from Theorem 39.
(𝑖𝑖) ⇒ (𝑖𝑖𝑖). It comes directly from Theorems 42 and 43.
(𝑖𝑖𝑖) ⇒ (𝑖). It comes from the 𝖦𝖯-regularity of the 𝑇 ‵ Theorem 36

(iv). □

Definition 52. Let (𝑇 , g,) and (𝑇 ‵, g‵, ‵) be two 𝖦𝖯𝖳 spaces. Consider
𝑝 ∶ 𝑇 → 𝑇 ‵. Then, 𝑝 is named 𝖦𝖯-open function, if for all (g,)-open
set 𝐺 in 𝑇 , we have 𝑝(𝐺) is (g‵, ‵)-open.

Theorem 53. If 𝑝 ∶ 𝑇 → 𝑇 ‵ is 𝖦𝖯-open and strong 𝖦𝖯-continuous with
𝑝(𝜔g) = 𝜔g‵ , then 𝑇 ‵ is 𝖦𝖯-regular.

Proof. Suppose 𝑠 ∈ 𝜔g‵ and 𝐺‵ is any (g‵, ‵)-open such that 𝑠 ∈ 𝐺‵.
Put 𝑝(𝑡) = 𝑠 for 𝑡 ∈ 𝑇 . But 𝑝 is strong 𝖦𝖯-continuous. Thus, there existsa
(g,)-open set 𝐺 ∶ 𝑡 ∈ 𝐺 satisfies 𝑐𝑙⋄(𝑝(𝐺))∩𝜔g‵ ⊆ 𝐺‵. Also, 𝑝 is 𝖦𝖯-open,
and hence 𝑝(𝐺) is a (g‵, ‵)-open such that 𝑠 ∈ 𝑝(𝐺). Therefore,

𝑝(𝐺) = 𝑝(𝐺) ∩ 𝜔g‵ ⊆ 𝑐𝑙
⋄(𝑝(𝐺)) ∩ 𝜔g‵ ⊆ 𝐺

‵.

Thus, by Proposition 49, we have 𝑇 ‵ is 𝖦𝖯-regular. □

4. 𝗚𝗣-connected and 𝗚𝗣-hyperconnected spaces

This part is an application of the notions studied in previous sec-
tions. We will study the preservation of the notions of ‘‘𝖦𝖯-connected’’
and ‘‘𝖦𝖯-hyperconnected’’ by different types of generalized primal con-
tinuous functions.

Definition 54. Let (𝑇 , g,) be a 𝖦𝖯𝖳 space. Then, 𝑇 is named 𝖦𝖯-
connected space if there are no non-empty disjoint (g,)-open sets 𝐺
and 𝐻 satisfies 𝑇 = 𝐺 ∪𝐻 .

Definition 55. Let (𝑇 , g,) be a 𝖦𝖯𝖳 space. Then, 𝑇 is named:

(i) 𝖦𝖯-𝛼-connected space if there are no non-empty disjoint (g,)-
𝛼-open sets 𝐺 and 𝐻 satisfies 𝑇 = 𝐺 ∪𝐻 .

(ii) 𝖦𝖯-𝛽-connected space if there are no non-empty disjoint (g,)-
𝛽-open sets 𝐺 and 𝐻 satisfies 𝑇 = 𝐺 ∪𝐻 .

(iii) 𝖦𝖯-semi-connected space if there are no non-empty disjoint
(g,)-semi-open sets 𝐺 and 𝐻 satisfies 𝑇 = 𝐺 ∪𝐻 .

(iv) 𝖦𝖯-pre-connected space if there are no non-empty disjoint (g,)-
pre-open sets 𝐺 and 𝐻 satisfies 𝑇 = 𝐺 ∪𝐻 .

Definition 56. Let (𝑇 , g,) and (𝑇 ‵, g‵, ‵) be two 𝖦𝖯𝖳 spaces. Then,
𝑝 ∶ 𝑇 → 𝑇 ‵ is named:

(i) Contra 𝖦𝖯-continuous if for every (g‵, ‵)-open set 𝐺‵ ⊆ 𝑇 ‵,
𝑝−1(𝐺‵) is (g,)-closed in 𝑇 .
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(ii) Contra 𝖦𝖯-𝛼-continuous if for every (g‵, ‵)-open set 𝐺‵ ⊆ 𝑇 ‵,
𝑝−1(𝐺‵) is (g,)-𝛼-closed in 𝑇 .

(iii) Contra 𝖦𝖯-semi-continuous if for every (g‵, ‵)-open set 𝐺‵ ⊆ 𝑇 ‵,
𝑝−1(𝐺‵) is (g,)-semi-closed in 𝑇 .

(iv) Contra 𝖦𝖯-pre-continuous if for every (g‵, ‵)-open set 𝐺‵ ⊆ 𝑇 ‵,
𝑝−1(𝐺‵) is (g,)-pre-closed in 𝑇 .

(v) Contra 𝖦𝖯-𝛽-continuous if for every (g‵, ‵)-open set 𝐺‵ ⊆ 𝑇 ‵,
𝑝−1(𝐺‵) is (g,)-𝛽-closed in 𝑇 .

Theorem 57. Let 𝑝 ∶ (𝑇 , g,) → (𝑇 ‵, g‵, ‵) be a contra 𝖦𝖯-𝛼-
continuous onto function. Consider 𝑇 as 𝖦𝖯-𝛼-connected space. Then, 𝑇 ‵

is 𝖦𝖯-connected space.

Proof. Consider 𝑝 ∶ (𝑇 , g,) → (𝑇 ‵, g‵, ‵) as a contra 𝖦𝖯-𝛼-continuous
onto function. Let 𝑇 be 𝖦𝖯-𝛼-connected space. Suppose that 𝑇 ‵ is not
𝖦𝖯-connected space. Thus, there exist non-empty disjoint (g‵, ‵)-open
sets 𝐺‵ and 𝐻 ‵ satisfies 𝐺‵ ∪ 𝐻 ‵ = 𝑇 ‵. Therefore, we can say that
𝐺‵,𝐻 ‵ are (g‵, ‵)-closed sets. Hence, 𝑝−1(𝐺‵) and 𝑝−1(𝐻 ‵) are (g,)-𝛼-
open since 𝑝 is contra 𝖦𝖯-𝛼-continuous. But 𝑝−1(𝐻 ‵) ∩ 𝑝−1(𝐺‵) = 𝜙, and
𝑝−1(𝐻 ‵) ∪ 𝑝−1(𝐺‵) = 𝑇 . Thus, 𝑇 is not 𝖦𝖯-𝛼-connected space, which is a
contradiction. Hence, 𝑇 ‵ is 𝖦𝖯-connected space. □

Corollary 58. Let 𝑝 ∶ (𝑇 , g,) → (𝑇 ‵, g‵, ‵) be a contra 𝖦𝖯-𝛽-continuous
(resp. 𝖦𝖯-semi-continuous, 𝖦𝖯-pre-continuous) onto function. Consider 𝑇 as
𝖦𝖯-𝛽-connected (resp. 𝖦𝖯-semi-connected, 𝖦𝖯-pre-connected) space. Then,
𝑇 ‵ is 𝖦𝖯-connected space.

According to Theorem 13 and Corollary 14, we conclude that:

(i) g-open ⇒ (g,)-𝛼-open ⇒ (g,)-pre-open ⇒ (g,)-𝛽-open.
(ii) (g,)-𝛼-open ⇒ (g,)-semi-open ⇒ (g,)-𝛽-open.

However, the relationship between the types of 𝖦𝖯-connected spaces
takes the following path:

Theorem 59. Let (𝑇 , g,) be a 𝖦𝖯𝖳 space. Then, we have:

(i) 𝑇 is 𝖦𝖯-𝛽-connected ⇒ 𝖦𝖯-semi-connected ⇒ 𝖦𝖯-𝛼-connected ⇒
𝖦𝖯-connected.

(ii) 𝑇 is 𝖦𝖯-𝛽-connected ⇒ 𝖦𝖯-pre-connected ⇒ 𝖦𝖯-𝛼-connected.

Proof. (i) (1) 𝖦𝖯-𝛽-connected ⇒ 𝖦𝖯-semi-connected: Let 𝑇 be 𝖦𝖯-
𝛽-connected, but not 𝖦𝖯-semi-connected. Hence, there are non-empty
disjoint (g,)-semi-open sets 𝐺 and 𝐻 in 𝑇 satisfies 𝐺 ∪𝐻 = 𝑇 which
implies that there are non-empty disjoint (g,)-𝛽-open sets 𝐺 and 𝐻
in 𝑇 satisfies 𝐺 ∪ 𝐻 = 𝑇 . Hence, 𝑇 is not 𝖦𝖯-𝛽-connected, which is
contradiction. Therefore, 𝑇 is 𝖦𝖯-semi-connected.

(2) 𝖦𝖯-semi-connected ⇒ 𝖦𝖯-𝛼-connected: Let 𝑇 be 𝖦𝖯-semi-
connected, but not 𝖦𝖯-𝛼-connected. Hence, there are non-empty dis-
joint (g,)-𝛼-open sets 𝐺 and 𝐻 in 𝑇 satisfies 𝐺∪𝐻 = 𝑇 which implies
that there are non-empty disjoint (g,)-semi-open sets 𝐺 and 𝐻 in
𝑇 satisfies 𝐺 ∪ 𝐻 = 𝑇 . Hence, 𝑇 is not 𝖦𝖯-semi-connected, which is
contradiction. Therefore, 𝑇 is 𝖦𝖯-𝛼-connected.

(3) 𝖦𝖯-𝛼-connected ⇒ 𝖦𝖯-connected: Let 𝑇 be 𝖦𝖯-𝛼-connected, but
not 𝖦𝖯-connected. Hence, there are non-empty disjoint (g,)-open sets
𝐺 and 𝐻 in 𝑇 satisfies 𝐺 ∪ 𝐻 = 𝑇 which implies that there are non-
empty disjoint (g,)-𝛼-open sets 𝐺 and 𝐻 in 𝑇 satisfies 𝐺 ∪ 𝐻 = 𝑇 .
Hence, 𝑇 is not 𝖦𝖯-𝛼-connected, which is contradiction. Therefore, 𝑇
is 𝖦𝖯-connected.

By using the same technique, we can show the implications in
(ii). □

Definition 60. Let (𝑇 , g,) be 𝖦𝖯𝖳 space. Then, 𝑇 is named:

(i) (g,)-hyperconnected if each (g,)-open set 𝐺 of 𝑇 is (g,)-
dense.

(ii) (g,)-𝛼-hyperconnected if each (g,)-𝛼-open set 𝐺 of 𝑇 is (g,)-

dense.
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(iii) (g,)-semi-hyperconnected if each (g,)-semi-open set 𝐺 of 𝑇 is
(g,)-dense.

(iv) (g,)-pre-hyperconnected if each (g,)-pre-open set 𝐺 of 𝑇 is
(g,)-dense.

(v) (g,)-𝛽-hyperconnected if each (g,)-𝛽-open set 𝐺 of 𝑇 is (g,)-
dense.

Theorem 61. Let (𝑇 , g,) be a 𝖦𝖯𝖳 space. Then, we have:

(i) 𝑇 is 𝖦𝖯-𝛽-hyperconnected ⇒ 𝖦𝖯-semi-hyperconnected ⇒

𝖦𝖯-𝛼-hyperconnected ⇒ 𝖦𝖯-hyperconnected.
(ii) 𝑇 is 𝖦𝖯-𝛽-hyperconnected ⇒ 𝖦𝖯-pre-hyperconnected ⇒

𝖦𝖯-𝛼-hyperconnected.

Proof. (i) (1) 𝖦𝖯-𝛽-hyperconnected ⇒ 𝖦𝖯-semi-hyperconnected: Let
𝑇 be 𝖦𝖯-𝛽-hyperconnected, but not 𝖦𝖯-semi-hyperconnected. Hence,
there is non-empty (g,)-semi-open set 𝑀 in 𝑇 satisfies 𝑐𝑙⋄(𝑀) ≠
𝑇 which implies that there is non-empty (g,)-𝛽-open set 𝑀 in 𝑇
satisfies 𝑐𝑙⋄(𝑀) ≠ 𝑇 . Hence, 𝑇 is not 𝖦𝖯-𝛽-hyperconnected, which is
contradiction. Therefore, 𝑇 is 𝖦𝖯-semi-hyperconnected.

(2) 𝖦𝖯-semi-hyperconnected ⇒ 𝖦𝖯-𝛼-hyperconnected: Let 𝑇 be 𝖦𝖯-
semi-hyperconnected, but not 𝖦𝖯-𝛼-hyperconnected. Hence, there is
non-empty (g,)-𝛼-open set 𝑀 in 𝑇 satisfies 𝑐𝑙⋄(𝑀) ≠ 𝑇 which implies
that there is non-empty (g,)-semi-open set 𝑀 in 𝑇 satisfies 𝑐𝑙⋄(𝑀) ≠
𝑇 . Hence, 𝑇 is not 𝖦𝖯-semi-hyperconnected, which is contradiction.
Therefore, 𝑇 is 𝖦𝖯-𝛼-hyperconnected.

(3) 𝖦𝖯-𝛼-hyperconnected ⇒ 𝖦𝖯-hyperconnected: Let 𝑇 be 𝖦𝖯-𝛼-
hyperconnected, but not 𝖦𝖯-hyperconnected. Hence, there is non-
empty (g,)-open set 𝑀 in 𝑇 satisfies 𝑐𝑙⋄(𝑀) ≠ 𝑇 which implies that
there is non-empty (g,)-𝛼-open sets 𝑀 in 𝑇 satisfy 𝑐𝑙⋄(𝑀) ≠ 𝑇 . Hence,

is not 𝖦𝖯-𝛼-hyperconnected, which is contradiction. Therefore, 𝑇 is
𝖦𝖯-hyperconnected.

By using the same technique, we can show the implications in
(ii). □

5. Conclusion

Recently, Al-Saadi and Al-Malki (Al-Saadi and Al-Malki, 2023) pre-
sented a new generalized space. This space is characterized by all the
nice features of 𝖦𝖳 spaces in the sense of primal sets. Some operators
re defined in this space. Their behaviours are studied carefully.

In this article, we give attention to the notion of ‘‘continuity’’. So,
e defined some type of generalized primal continuous function. We

an summarize the results as follows:
If g and g‵ are generated by the neighbourhood system, then ev-

ry 𝖦𝖯𝖭-continuous function is 𝖦𝖯-continuous; see Theorem 24. The
pposite of this is not always true; see Example 25. However, when
e consider 𝜓 ‵ = 𝜓 ‵

g‵
, we can show that every 𝖦𝖯-continuous function

s 𝖦𝖯𝖭-continuous; see Theorem 26. Moreover, by using a generalized
rimal neighbourhood system, 𝜓(𝑐𝑙⋄, g) ∈ 𝛹 (𝑇 ), we conclude that every
𝖯𝖭-continuous is 𝖦𝖯-𝜃-continuous; see Theorems 27 and 29. Also,
very 𝖦𝖯-continuous function is almost 𝖦𝖯-continuous; see Theorem 31.
o make the opposite of this relation true, we use the technique of
sászár, which changes the generalized topology of other generalized
opologies, which is weaker than it. So, Proposition 33 shows that the
wo notions coincide. All these results are presented in Section 2.

Section 3 discusses the relationship between a strong 𝖦𝖯-continuous
unction and several different types, as follows: Every strong 𝖦𝖯-
ontinuous function is strongly 𝖦𝖯-𝜃-continuous when the space 𝑇 ‵ is
trong; see Theorem 39. Example 40 shows that the converse is not
rue. Moreover, every strongly 𝖦𝖯-𝜃-continuous is super 𝖦𝖯-continuous,
ee Theorem 42 and every super 𝖦𝖯-continuous is 𝖦𝖯-continuous, see
heorem 43. Example 44 shows that the converse need not be true. To
rove the converse of Theorem 39, we presented the notion of ‘‘weakly
𝖯-closed function’’ or the notion of ‘‘𝖦𝖯-regular’’. So, Theorem 47
7

hows that every strongly 𝖦𝖯-𝜃-continuous is strong 𝖦𝖯-continuous if
Fig. 1. The relationship among several kinds of 𝖦𝖯-continuous function.

𝑝 is a weakly 𝖦𝖯-closed function, while Theorem 50 shows that every
strongly 𝖦𝖯-𝜃-continuous is strong 𝖦𝖯-continuous if the 𝖦𝖯𝖳 space 𝑇 ‵

is 𝖦𝖯-regular space.
To make it easier for the reader, we present these results in Fig. 1

as follows:
Finally, Corollary 51 shows that the notion of ‘‘strong 𝖦𝖯-continuous

function’’ coincides with the notion ‘‘𝖦𝖯-continuous’’ when the space 𝑇 ‵

is both strong and 𝖦𝖯-regular.
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