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Abstract A production process whose performance deteriorates over time is studied in this paper.

It is assumed that the process performance can be measured in terms of the proportion of good

units of end items produced. Using the pontryagin principle, the optimal scheduled production rate

and preventive maintenance rate will be derived as a function of both production rate and propor-

tion of good units. The controlled system can be modeled by a system of non-linear differential

equations and its solution will be discussed numerically. The sensitivity analysis for varying system

parameters will be discussed for different cases of demand rate.
ª 2011 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Optimal control theory is found to be very useful in solving

many problems in different fields, such as management science
and in particular, maintenance of a production inventory sys-
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tem; see Sethi and Thompson (2000). Application of optimal
control techniques were used in many problems such as:

� The problem of optimal control of a two-items inventory
model with different types of deterioration was studied by
Alshamrani and El-Gohary (in press). In such study, the
optimal inventory levels and rate of continuous supply are

derived.
� The problem of optimal control of a multi-items inventory
model was studied by El-Gohary and El-syed (2008).

� The problem of optimal control of a stochastic production
planning model with different demand rates was studied by
El-Gohary et al. (2007). The optimal expected inventory

level was derived from the condition of the stochastic opti-
mal control principle.
� The problem for controlling a production inventory model
for both ameliorating and deteriorating items was studied

by Tadj et al. (2008). The necessary optimality conditions
were derived using the pontryagin maximum principle.
� The problem of optimal stabilization of steady-states of the

genital herpes epidemic for finite and infinite time horizons
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was studied by El-Gohary and Bukhari (2003a). The opti-

mal feedback controllers were derived from the condition
of asymptotic stabilization of the genial herpes about its
steady-states.

� The problem of optimal control of the Lorenz system for
finite and infinite time horizons was studied by El-Gohary
and Bukhari (2003b). The optimal controllers were derived
as non-linear function of the state variables.

� The problem of optimal control of a stochastic prey-
predator model were discussed by El-Gohary and Bukhari
(2003c). The steady-states of this model was derived. Also,

the optimal feedback obtained from the conditions ensure
asymptotic stabilization of the system.

Other studies can be found in the problems of inventory
systems with divergent multi-echelon, one product recovery
system with lead times and the production inventory system

(Diks and de Kok, 1998; Kiesmüller, 2003; Porter and Taylor,
1972).

This paper focus on a production-maintenance system with
deteriorating items. The optimal scheduled production rate

and proportion of good units are derived. The total cost
includes the sum of the holding costs of inventory levels and
the scheduled production costs will be minimized. The optimal

solution is derived based on the pontryagin minimum princi-
ple. The system is modeled by a system of non-linear differen-
tial equations and its solution will be discussed numerically

and is also used for illustrating the system performance as
function of the system parameters.

The rest of the paper is organized as follows: following this
introduction, the mathematical formulation of the production

and maintenance model with deterioration is introduced in
Section 2. Also, the optimal scheduled production rate and
proportion of good units for finite planning horizon are

derived. In Section 3 we present some illustrative examples
for different demand rates and obsolescence rate of process
performance in the absence of maintenance. In Section 4 a

conclusion is presented.
2. Mathematical model formulation

Consider a manufacturing system that produces a single item,
selling some units and storing the other units. The following

variables and parameters are used through this paper to for-
mulate our model:

I(t) the inventory level at time t

p(t) proportion of good units of end items produced at time t,

where 0 6 p(t) 6 1

u(t) scheduled production rate at time t

a(t) obsolescence rate of process performance in the absence of

maintenance, where a(t) is a non-decreasing function of time

m(t) preventive maintenance rate applied at time t to reduce the

proportion of defective units

S(t) the demand rate at time t

h the natural deterioration rate

I the inventory goal level

�p proportion goal level of good units

�u scheduled production goal rate

�m preventive maintenance goal rate
In this paper, the following assumtions are adopted:

� There is a non-negative initial inventory level I(0) = I0 > 0,
and initial proportion of good units.
� All demand units should be satisfied such that: I(t) > 0.

� Negative production rate is not allowed.
� The preventive maintenance rate is bounded by a lower
limit of zero and an upper limit of M, that is (0 6 m(t) 6

M).
� All functions are assumed to be non-negative, continuous
and differentiable.

The model of differential equations which describes the
time evolution of the inventory level I(t) and the proportion

of good units p(t) is found to be as follows:

_IðtÞ ¼ pðtÞuðtÞ � hIðtÞ � SðtÞ;
_pðtÞ ¼ �½aðtÞ þmðtÞ�pðtÞ þmðtÞ;

)
ð1Þ

where the ‘‘dot’’ means the differentiation with respect to time
and the initial state is, I(0) = I0, p(0) = p0.

This paper will generalize the above equations which were

used by Danny et al. (1993) to contain deterioration rate h
for inventory items.

The numerical solution of the production and preventive

maintenance system with deterioration is displayed below for
specified values of obsolescence rate of process performance
in the absence of maintenance and scheduled production rate

(Figs. 1 and 2).

2.1. Optimal production and preventive maintenance rates

The main objective of this subsection is to arrive at a suitable
mathematical formulation of the optimal control problem for
the production and preventive maintenance system with dete-

rioration. The optimal control problem consists of two state
variables which are the inventory level and proportion of good
unit rate and two control variables which are the schedule pro-

duction rate and the preventive maintenance. The formulation
must be simple to deal with any response of the production
and preventive maintenance system to any given input. Opti-

mal control is defined by the admissible production and pro-
portion of good units rates which minimize the total cost
given by

2J ¼ min
uðtÞ;mðtÞP0

Z T

0

½h1ðIðtÞ � IÞ2 þ h2ðpðtÞ � �pÞ2 þ c1ðuðtÞ � �uÞ2

þ c2ðmðtÞ � �mÞ2�dt; ð2Þ

subject to

_IðtÞ ¼ pðtÞuðtÞ � hIðtÞ � SðtÞ;
_pðtÞ ¼ �½aðtÞ þmðtÞ�pðtÞ þmðtÞ;

)
ð3Þ

and

IðtÞP 0; SðtÞP 0; 0 6 mðtÞ 6M; 0 6 pðtÞ 6 1;

aðtÞP 0; uðtÞP 0; ð4Þ

where t 2 [0,T], hi, ci > 0, i= 1,2.
It can be shown that the integrand of the objective function

(2) is a positive definite form of the variables I(t), p(t), u(t) and
m(t) (Ogata, 2010; Hocking, 1991).



a b

Figure 1 Numerical solution of the system (1) for the values u(t) = 50, S(t) = 40, a(t) = 3, h = 0.01, m(t) = 20 and initial values

I(0) = 50, p(0) = 0.15.

a b

Figure 2 Numerical solution of the system (1) for the values u(t) = 2.5, S(t) = 0.20, a(t) = 0.30, h = 0.01, m(t) = 0.50 and initial values

I(0) = 1.5, p(0) = 0.75.
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The economic and physical interpretations of the objective

function (2) are that it aims at keeping the inventory level I(t)
as close as possible to the goal level I and also keep the propor-
tion of good units p(t) as close as possible to the goal rates �p
(El-Gohary and Bukhari, 2003a). The objective function (2)

represents the total cost incurred in a production and mainte-
nance system with deteriorating items. The quadratic terms in
(2) represent the imposed penalties for having either I(t) or p(t)

not being close to its corresponding goal level I or �p,
respectively.

By introducing an additional state variable which satisfies

the state Eq. (2), the cost integral is replaced by

2 _I0ðtÞ ¼ ½h1ðIðtÞ � IÞ2 þ h2ðpðtÞ � �pÞ2 þ c1ðuðtÞ � �uÞ2

þ c2ðmðtÞ � �mÞ2�; ð5Þ
with initial value and boundary condition I0(0) = 0, and ter-

minal condition I0(T) = Jrespectively.
Next, we introduce the co-state variables k0, k1 and k2 cor-

responding to the state variables I0, I1 and I2, respectively.

From Eqs. (2)–(4) we obtain the Hamiltonian function H:

H ¼ k0
_I0ðtÞ þ k1

_IðtÞ þ k2 _pðtÞ; ð6Þ

The Lagrange function L is obtained by introducing the
Lagrange multipliers associated with the constraints (4):

L ¼ Hþ l1ðtÞIþ l2ðtÞpþ l3ðtÞuþ l4ðtÞmþ l5ðM�mÞ
þ l6ð1� pÞ; ð7Þ

where the Lagrange multipliers l1(t), l2(t), l3(t), l4(t), l5(t)
and l6(t) satisfy the conditions:
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l1ðtÞP 0; l2ðtÞP 0; l3ðtÞP 0; l4ðtÞP 0;

l5ðtÞP 0; l6ðtÞP 0;

l1IðtÞ ¼ 0; l2pðtÞ ¼ 0; l3uðtÞ ¼ 0; l4mðtÞ ¼ 0;

l5ðM�mÞ ¼ 0; l6ð1� pÞ ¼ 0;

9>>>=
>>>;

ð8Þ

By using (7) and the pontryagin principle, we can easily obtain
the co-state equations:

_k0ðtÞ ¼ �
oL

oI0
¼ 0; _k1ðtÞ ¼ �

oL

oI
; _k2ðtÞ ¼ �

oL

op
; ð9Þ

The first equation of the system (9) shows that the co-state var-
iable k0(t) is constant and pontryagin’s minimum principle re-

quires, without loss of generality, that this constant should be
negative (Hocking, 1991).

We choose:

k0ðtÞ ¼ �1; ð10Þ

Substituting from Eqs. 3, 5 and 6 in (7) we can write L in the

form:

L ¼ �1
2
h1ðI� IÞ2 þ h2ðp� �pÞ2 þ c1ðu� �uÞ2 þ c2ðm� �mÞ2
h

þk1½pðtÞuðtÞ � hIðtÞ � SðtÞ� � k2½aðtÞpðtÞ þmðtÞpðtÞ �mðtÞ�
þl1IðtÞ þ l2pðtÞ þ l3uþ l4mþ l5ðM�mÞ þ l6ð1� pÞ;

ð11Þ

Using the conditions (4) and (8) we get:

l1ðtÞ ¼ l2ðtÞ ¼ l3ðtÞ ¼ l4ðtÞ ¼ l5ðM�mÞ ¼ l6ð1� pÞ ¼ 0

ð12Þ

Substituting from Eqs. (11) and (12) into (9) we can get the fol-
lowing two state equations:

_k1 ¼ h1ðIðtÞ � IÞ þ hk1ðtÞ;
_k2 ¼ h2ðpðtÞ � �pÞ � uðtÞk1ðtÞ þ ðaðtÞ þmðtÞÞk2ðtÞ;

)
ð13Þ

with terminal conditions ki(T) = 0, i = 1,2.

To obtain the optimal scheduled production rate u(t) and
preventive maintenance rate m(t) we will differentiate the
Lagrange function (11) with respect to u(t) and m(t) and

putting:

oL

ou
¼ 0;

oL

om
¼ 0; ð14Þ

we get:

uðtÞ ¼ �uþ k1ðtÞ pðtÞ
c1

; uðtÞ 2 X1ðtÞ; t 2 ½0;T�;

mðtÞ ¼ �mþ k2ðtÞ ð1�pðtÞÞ
c2

; mðtÞ 2 X2ðtÞ; t 2 ½0;T�;
ð15Þ

where X1(t) = [0,umax(t)], X2(t) = [0,M], and umax(t) is the
maximum possible scheduled production rate. The sets of all
possible values of the scheduled production and preventive

maintenance rates can be determined by physical or economi-
cal constraints imposed on the values of control variables at
time t.

Using (15) with the terminal conditions ki(T) = 0 (i= 1,2)

we can get

uðTÞ ¼ �u; mðTÞ ¼ �m; ð16Þ

The non-negativity conditions u(t) > 0 and m(t) > 0 follow if

�u P � k1ðtÞpðtÞ
c1

, and �m P � k2ðtÞð1�pðtÞÞ
c2

.

The optimal scheduled production rate and optimal preven-
tive maintenance rate follow from (4) and (15)
u�ðtÞ ¼ max 0; �uþ k1p

c1

� �
;

m�ðtÞ ¼ max 0; �mþ k2ð1� pÞ
c2

� �
:

ð17Þ

Finally, we can put the optimal scheduled production rate (17)
in the form

u�ðtÞ ¼ sati 0; umaxðtÞ; �uþ k1ðtÞpðtÞ
c1

� �

¼

0 �uþ k1ðtÞPðtÞ
c1

< 0

�uþ k1ðtÞPðtÞ
c1

0 6 �uþ k1ðtÞ
c1
6 umaxðtÞ

umaxðtÞ �uþ k1ðtÞ
c1
> umaxðtÞ

8>><
>>:

ð18Þ

and

m�ðtÞ ¼ sati 0;M; �mþ k2ð1� pÞ
c2

� �

¼

0 �mþ k2ð1�pÞ
c2

< 0

�mþ k2ð1�pÞ
c2

0 6 �mþ k2ð1�pÞ
c2
6M

M �mþ k2ð1�pÞ
c2

>M

8>><
>>:

ð19Þ

We assume that the scheduled production goal rate is greater

than the initial inventory level. Therefore, the scheduled pro-
duction goal rate must be large enough and the initial inven-
tory level is small enough such that the scheduled general

production rate is non-negative. We can confirm these condi-
tions in the numerical solution. If we choose values for the
scheduled production goal rate less than the initial inventory
level then the scheduled production rate become in general

non-negative.
Using Eqs.(3), (15) and (17) we can get the following system

of non-linear ordinary differential equations:

_IðtÞ ¼ �uþ k1ðtÞpðtÞ
c1

� �
pðtÞ � hIðtÞ � SðtÞ;

_pðtÞ ¼ �mþ k2ðtÞð1�pðtÞÞ
c2

� aþ �mþ k2ðtÞð1�pðtÞÞ
c2

h i
pðtÞ;

_k1ðtÞ ¼ h1ðIðtÞ � IÞ þ hk1ðtÞ;
_k2ðtÞ ¼ h2ðpðtÞ � �pÞ � �uþ k1ðtÞpðtÞ

c1

� �
k1ðtÞ

þ aþ �mþ k2ðtÞð1�pðtÞÞ
c2

h i
k2ðtÞ:

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð20Þ

The above system is used to study the time evolution of inven-
tory level and proportion of defective units. It appears from
(20) that the analytical solution of the system is difficult to
derive and therefore we solve it numerically.
3. Numerical solution and sensitivity analysis

The main objective of this section is to study the numerical
solution of the problem to determine an optimal control strat-
egy for a production and maintenance model with deteriora-

tion. The numerical solution algorithm is based on numerical
integration of the system using the Runge–Kutta method. This
section displays graphically the numerical integration of the

system of differential equations for different values of the
parameters. The numerical solution of the system (20) is dis-
cussed for different cases of the system parameters and initial

states.
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3.1. Constant demand and obsolescence rates

We are looking at the numerical solution of the production
and maintenance model with both constant demand rate S(t)

and constant obsolescence rates of process performance in
the absence of maintenance a(t). The numerical solution for
the production and maintenance model with deterioration is

presented. Different sets of values of the monetary and non-
monetary parameters are considered. The solution of the
non-linear system of non-linear differential Eq. (20) is obtained
numerically and its time evolution is discussed.

The following set of parameter values is assumed:

par. �u �m c1 c2 h1 h2 h �p I S(t) a
val. 40 50 60 30 50 60 0.02 0.75 24 20 20
Fig
ure 3
a

c

(a
) Inv
entor
y lev
el, (b
) prop
ortion
 of go
od un
with the initials of both inventory level and proportion of good
units: I(0) = 5, p(0) = 0.5, respectively, and time horizon

interval T = 4.
The numerical results are illustrated in Fig. 3a–d.
its, (c) sc
We conclude that both the inventory level and the propor-

tion of good units approximately tend to their goal level and
rate, respectively.
3.2. Time dependent demand and obsolescence rates

The numerical solution of the production and maintenance
model with constant demand rate S(t) and obsolescence rate

of process performance in the absence of maintenance a(t) is
studied here. The numerical solution for the production and
maintenance model with deterioration is presented. Different

sets of values of the monetary and non-monetary parameters
are considered. The solution of the non-linear system of non-
linear differential Eq. (20) is obtained numerically and its the

time evolution is discussed.
The following set of parameter values is assumed:

par. �u �m c1 c2 h1 h2 h �p I

val. 40 30 40 50 50 40 0.01 0.35 45
h

b

d

eduled
 produc
tion r
ate an
d (d) p
reven
tive m
aintenan
ce rate
.
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Figure 4 (a) Inventory level, I(t), (b) proportion of good units, p(t) , (c) scheduled production rate, u(t) and (d) preventive maintenance

rate, m(t).
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The initial inventory level, inventory goal level, proportion
of good items, and demand rates are: I(0) = 15,a = 1 + sin(t),
p(0) = 0.05, S= 1 + sin(t), respectively, and time horizon

interval is T = 5.
The numerical results are illustrated in Fig. 4a–d.
We conclude that both the inventory level and proportion

of good units tend to its goal level and its rate, respectively.

4. Conclusion

The problem of optimal control of a production and mainte-
nance system with deteriorating items was studied. The

optimal inventory level and proportion of good units are de-
rived. Also, optimal scheduled production and maintenance
rates are derived from the optimality conditions as function

of co-state variables and proportion of good units. Further,
the optimal solution of the control system is presented numer-
ically for different cases of both demand and obsolescence
rates. The sensitivity analysis of the system against monetary
and non-monetary parameters is discussed.
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