Journal of King Saud University — Science 32 (2020) 48-53

Contents lists available at ScienceDirect

agesudloldl

King Saud University

journal homepage: www.sciencedirect.com

Journal of King Saud University — Science

Journal of
-Science

Exact solutions for a generalized Higgs equation

Cesar A. Gémez S

Department of Mathematics, Universidad Nacional de Colombia, Bogotd, Colombia

L))

Check for
updates

ARTICLE INFO ABSTRACT

Article history:

Received 9 September 2017
Accepted 12 December 2017
Available online 15 December 2017

2000 Mathematics Subject Classification:
35Q53

Keywords and phrases:
Coupled Higgs equation
Traveling wave solutions
Improved tanh-coth method
Forcing term

In this paper, the improved tanh-coth method is used for construct exact traveling wave solutions for a
new coupled nonlinear system. Variable coefficients and a forcing term are considered. As particular case,
new exact solutions for the classical Higgs field equation are obtained. The results show us the generation
and evolutions of new traveling waves with several interesting structure, which can be used in physical
applications. The method can be used to analyze a wide class of coupled nonlinear evolutions equations.
© 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The coupled nonlinear partial differential equations have been
subject of intense study in the recent years, due to the wide variety
of applications in several branches of the physics. Since the soliton
theory came into being in last century, the classification as well as
the study of the different fields of applications of them are a rele-
vant task for many researches today. In particular, the rich struc-
tures of the solitons systems is used for mathematicians to
compare, in many cases, the numerical results obtained with the
exact solutions and by physicists because the structure of the solu-
tions can be help to them to understand in a better way the phys-
ical phenomenon that the model represent. In many cases, for
instance in models of shallow water wave, the structure of the
traveling wave solutions can be help to engineers to design struc-
tures in the coasts that can support certain type of waves. Due to
complexity of the coupled nonlinear partial differential systems,
does not exist a general theory for solving them, so that, a suitable
ansatz methods are necessary. Some methods are design to obtain
certain type of solutions, for instance the following: the Hirota
bilinear method (Hirota, 1980), the inverse scattering transform
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method (Ablowitz and Clarkson, 1991), the Painlevé expansion
method (Yan, 2004) and the Lie group Analysis method (Olver,
1980). However, in many other (computational) methods, the solu-
tions of special ordinary differential equationis used. In this last class
of methods, we can mentioned the following: The tanh method
(Baldwinetal.,2004), the extended tanh method (Fan,2000), the pro-
jective Riccati equation method (Conte and Musette, 1992), the gen-
eralized projective Riccati equation method (Yan, 2003), the Exp.
function method (He and Wu, 2006), the tanh-coth method
(Wazwaz, 2007), the Exp(—¢(¢)) method (Hafez et al., 2015; Hafez,
2016; Ali et al., 2016; Alam et al., 2015a,b; Hafez and Akbar, 2015),
the improved tanh-coth method (Gomez S and Salas H, 2008), the
extended trial equation method (Pandir, 2014; Bulut et al., 2014),
He’s semi-inverse method and the G'/G- expansion method (Jabbari
etal., 2011). The main objective of this work is to use the improved
tanh-cothmethod to obtainexact solutions for the following general-
ized model with variable coefficients and forcing term

{ Uyt — Uy — S(H)U + p(8)|uu — 2uv =0,
Vi + U — PO = G(8),

where u(x, t), v(x,t) are the unknown function, J(t), p(t), and G(t)
functions depending only on variable t. In the case

4(t) > 0, p(t) > 0 are arbitrary constant and G(t) =0, the classic
coupled Higgs equation (Kumar et al., 2012; Tang and Xia, 2011)

(1.1)

{uttuxx5u+p|u|2u2uv:0, (1.2)

Vit + Uxx — P(|”\2)m =0.

is derived. The system given by (1.2) represents a nonlinear model
with great interests in physic associated with the so called Higgs
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Fig. 1. Solution for (1.3).
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Fig. 2. Solutions for (1.2).

mechanism. It describes a system of conserved scalar nucleons
interacting with neutral scalar mesons. However, in the case
4 <0,p <0, the model is called the coupled nonlinear Klein-Gor-
don equation. Here, v(x, t) represent a complex scalar nucleon field
and u(x,t) a real scalar meson field. The Hirota bilinear method
(Hirota, 1980) have been used to show the existence of N-soliton
solutions for (1.2) (Hu et al., 2003). In the same way, N-soliton solu-
tions have obtained by the authors in Tajiri (2277). Now, in the case
that §(t) = 0 and p(t) = 1, from (1.2) we have the following partic-
ular system

{utt—uxx+|u|2u—2uv:0, 13)

VU + Vo — (|u*) =0,

studied by some authors. More exactly, traveling wave solutions for
(1.3) have been derived in Hafez et al. (2015) and Manafian and

Zamanpour (2013), using the Exp-function method and the Exp
(-¢(¢)) method respectively.

The importance of the work with Eq. (1.1) can be described by
the following reasons: First, is a generalized model from which
new soliton solutions for (1.2) and (1.3) can be derived as particu-
lar cases. From of mathematical point of view this is a relevant fact.
Second, the use of variable coefficients and forcing term, give us a
variety of new traveling waves with several interesting structure
that can may also be important of significance for the explanation
of some practical physical problems. Third, the models with vari-
able coefficients and forcing term, are an area of very interest for
researches due to recent applications in physic, as can be seen in
the works (Miura, 1968; Nirmala et al., 1986; Liu, 2012). The paper
is organized as follows: in Section 2 we made a review of the
improved tanh-coth method for solving systems; in Section 3 we
obtain exact traveling wave solutions to (1.1) and as particular
case, solutions to (1.2) and (1.3). Finally, we compare the method



50 CA. Gomez S/Journal of King Saud University — Science 32 (2020) 48-53

(a) us

Fig. 3. Solutions of (1.1).

used here with the Exp(—¢(¢)) method used in Hafez et al. (2015)
and the G'/G-expansion method used by the authors in Kumar
et al. (2012) and Jabbari et al. (2011).

2. The improved tanh-coth method

As we mentioned early, some methods use the solutions of spe-
cial ordinary differential equation. This is the case of the improved
tanh-coth method (Gomez S and Salas H, 2008) which can be
described as follows: Given the system of nonlinear partial differ-
ential equations in the variables x and ¢
{P(u7 U, Uy, Ux, Ur, Ut, Uxe, Uxpy Une, Vs - --) = 0,

(2.1)
Q(u, v, Uy, Ux, U, Vg, U, Uxe, Unes Unns - --) = 0,

where u and v are the unknowns, and the coefficients of the system
are functions depending only of variable t, the transformation

§:X+;“t+€07

converts it to a system of ordinary differential equations in the new

unknowns u(&), v(¢)

{P1 (u,v,u', v, u",v",...) =0, 22)

Q(u, v, v, u", v",...) =0,

where */” denote the ordinary derivation respect to &, u'(¢) = g—g The
improved tanh-coth method use the following expansion

M ) 2M )
u(@) =>"at)pd + > a(t)p(&)"

i=0 i=M+1

N o 4 (2.3)
w(@) =Y b)) + > bi(t)p(&)",

i=0 i=N+1

as solutions for (2.2), where M, N are a positive integer that will be
determined later and ¢ = ¢(¢) satisfies the following Riccati
equation

(&) = 1% (&) + Bo(&) + 0. (24)

Is well know that the general solution for (2.4) is given by
Gomez S and Salas H (2010)

—\/#* — 4oy tanh {% VB —dop(e+ fo)] -B

$(e) = > : 25)

Clearly, varying the parameter &; in (2.5), we can obtain other

type of solutions, and depending of the sign of * — 4oy we can
obtain, for instance, periodic solutions (Gomez S and Salas H,
2010). Substituting (2.3) into (2.2) and balancing the linear terms
of highest order in the resulting equations with the highest order
nonlinear term we obtain M,N. With the respective expressions
and using (2.4) we obtain an algebraic system of equations in the
variables o(t), p(t), y(t), A(t), ao(t), ..., Azm, bo(£), ..., ban(t). Solv-
ing it, and reversing the used transformations, we obtain exact
solutions to (1.1) in the original variables.

3. Traveling wave solutions for (1.1)

First, we consider the transformation

u(x, t) = e my(¢),

v(x.t) = v() + [f Gt)de, (3.1
é =X+ Ait+ 50.

By simplicity, we have used the same variables u and ¢. Substi-
tuting (3.1) into (1.1) and taking r =1, we have the following
system

2

010 = Dw+ (1 [] - o0 Juce) + oo
—2u(&)v(&) - 2u(¢)([f G(t)dt) =0,

(A1) + D)2 (&) - pt)(u(©)?) = 0.

Now, substitution of (2.3) into (3.2) and after balancing, we
have 3M = M + 2 in the first equation and N +2 = 2M + 2 in the
second, so that

M=1, N=2.

(3.2)

With this values, (2.3) reduces to
{ u(&) = ao(t) + ar ()p(8) + a(6)p(d) ",

(&) = bo(t) + b1 (£)$(&) + ba()p(E)* + b3 (£)p(&) ™" + ba(t)p(&) 2.
(3.3)
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Now, substituting this last expressions into (3.2) we obtain an where ¢ (&) is given by (3.7), £ =x+ A(t)t + &, a1 (t), A(t), B(t) and
algebraic system in the variables o(t), p(t), y(t), o(t) are arbitrary functions depending on t.
A(t),ao(t),ar(t),ax(t), bo(t), b1 (t), ba(t), bs3(t), ba(t). For sake of sim- Third case:
p11c1ty. we on'nt here. Using the Mathematica we obtain the follow- a1(8) = a(t) = aa(t) = by () = by(t) = 0, bo(t)
ing solutions:

First case: =1 (=o(t) = 2(JS G(t)de) + p(t)ao(t)?), (3.9)
()*03() as(t) = bs(t) = ba(t) = 0, bo(t) = 3(-0(t) )

—2(f[G(t)dt t)ao(t)z), bs(t) = p(t)ao(t)as(t), ba(t) = M7 At)=+1.

by(t) = p(t)a o( Yay (t), by(t) :p(f)azl(f)27 M) = +1. . (1.1\/)\/ith respect to (3.9) we have the following solutions for

Reversing the respective transformations, respect to (3.4) we
have the following solutions for (1.1)

( { B (t) — 4o(0))(¢) tanh[} ()—4a(rw<r>a—ﬁ<r>D
u(x, t) = e | ag(t) +a(t 29(0) )

£) =3 (=0(6) = 2(J[ G(t)de) + p(t)a5 (1))

/(0 (o0 tanh [} (0~ 4200 - ()
2
2p [~V B (6) —4a(e)y(t) tanh |31/ B2 (E) — () () ¢| - B(E)

+p(t)§‘ ® ( Z{y(t) } +// G(t)dt,
where ¢ =x+t+ &, and o(t), B(t),(t),ao(t),a:(t) arbitrary func-
tions depending only of the variable t. &, arbitrary constant.

Second case:

t)y/—1 = 22(t
ao(t) = ﬂFﬁ()T\/—t() 2(t) = a3(t) = as(t) = bs(t) = ba(t)
bt \/ =1 =2%(0) ,/71 - (3.6)
o 4A ( ) ’
b] (t) — \/j\/ ﬂ(t)ﬁ(t)al (t) bz(t) — ﬁ(t)a%(t) A (t) — \/ al
_1_/12“.) 1+;»2t \/j /_‘l_;
With respect to this set of values, let
VB()ax (t) 2 Bom@ |\ .
— | B (1) —4ou(t) () tanh {5 \/ﬂ (t) — 4o(t) ( - )c} - B(t)
$(0) = N : 37)
2(ae)

Then, in this case, the respective solution for (1.1) is given by

. ) = e (5 f;ﬂ_“ L4 a1<t>¢<¢>),

Z2 4 272() - 26(t 4([[G(t) _ R4 j:z\/i\/%“<f?;z(t)al(f> qczﬁ\/ﬁwr_);t"(r)umr)
U(X, t) — z(t) \/’1" (t) \/’1*’4 (t) (38)
f 2./BOB(t)al(t B(t)a t
G(t
—1-722(t) (b() 1+A f //
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(a) ua

Fig. 4. Solutions to (1.1).

-1
_ 2 (t)_ o h|l 2 (£)—. (t) &l —
U(x, £) = el <ao(t) fa (t)[ /PO —4(0)7(0 tan Zgi?)/ﬁ (O—4a(t)(0)¢] ﬁ(t)} >

v(x,t) =3 (=o(t) = 2(f G(t)de) + p(t)a5(t))
+o(D)ao(D)as (D) <—\/ﬁ2<r>—4a<f>v<r> tanh [1y/F (042000 ¢] w(t)) -

2y(t)

2
2 /B2 () —4a(t)y h |1/ 82 () —da(t)y(t) &| — B
+p<t);3<t)< VP (0400 tanh [11/7 (0 -4a(0y(0) ¢] /<t>> TG,

2y(t)
(3.10)

where ¢=x+t+ &, and a(t), B(t), y(t), ao(t),as(t) arbitrary func-
tions depending only of the variable t. &, arbitrary constant. We
can note that, the solution (3.10) is similar to (3.5) (with as(t)
instead of a; (t) and ¢(¢)" instead of ¢(¢)). In the same way, a sim-
ilar solutions to (3.6) and (3.8) can be obtain, however for sake of
simplicity we omit here.

4. On the solutions for (1.2) and (1.3)

Can be verified that taking G(t) = 0 in (3.5), (3.8) and (3.10) we
obtain expressions that are solutions for (1.2). If furthermore, we
take 6(t) =0 and p(t) =1, solutions to (1.3) are obtained. The
authors of Hafez et al. (2015), have derived solutions to (1.3) using
the Exp(-¢(¢)) method. The ordinary differential equation used by
them is @'(¢) = e~®© 4 ue®® + 2, but with the substitution e®© we
obtain the equation ¢'(¢) = pg(¢)* + 2p(&) + 1 which is a particu-
lar case of (2.4). The expansion used by them is 3N jA;(e~®)',
however, with ®(¢) = In ¢(¢), the last expression is clearly a partic-
ular case of (2.3).

On the other hand, the ordinary differential equation consid-
ered by the g((g-expansion method used by the authors in Jabbari
et al. (2011) and Kumar et al. (2012) can be reduced to particular
case of (2.4), as well as, the expansion used for the solutions. More
exactly, the equation used in this method is given by

G'(&) 4 G (&) + uG(¢). The change of variable ¢(¢) = gfg reduce it
to ¢'(¢) =

—¢? (&) — 2¢(¢) — u which again, is a particular case of
(2.4). In the same way, the expansion used by this method

Z?loai(gf;)l reduces to a particular case of (2.3).
In the following graphs, we show the evolution of the traveling
wave solutions for particular cases of the system (1.1), however, for

sake of simplicity, we consider only the solutions given by (3.10).

As we mentioned early, if we take 6(t) = 0,G(t) =0 and p(t) =1
we obtain the system (1.3), so that substituting this values in
(3.10), solutions for (1.3) are obtained. Fig. 1.

Figures |u;| and v, represent the evolution of the soliton solu-
tion corresponding to (1.3), with ao(t)=1,a3(t) =1,
B(t) =3,a(t) = 1,7(t) = 1,(x,t) € [-10,10] x [~10,10]. In the same
way, if we take G(t) = 0in (3.10), we obtain solutions to (1.2).Fig. 2.

Figures |u,| and v,, represent the evolution of the soliton solu-
tion corresponding to (1.2), with 4(t)=1,p(t) =1,a0(t) =1,
as(t)=1,8(t) =3,0(t) = 1,y(t) =1,(x,t) € [-10,10] x [-10,10].Fig. 3.

Now, using (3.10) again, we can obtain the following figures,
corresponding to solutions of (1.1) in the case that the coefficients
are constants, but with a forcing term: Fig. 4.

Figures |us| and vs, represent the evolution of the soliton solu-
tion corresponding to (1.1), with 46(t)=1,p(t) =1,a0(t) =1,
as(t) = 1,p(t) = 3,a(t) = 1,9(t) = 1,G(t) = sin t, (x,t) € [~10,10]
[-10,10].

Now, using variable coefficients and forcing term, we have the
following figures:

Figures |us| and v4, represent the evolution of the soliton solu-
tion corresponding to (1.1), corresponding to following values:
o(t) =t,p(t) =, a0(t) = 1,a3(t) = 1, p(t) = 3,

a(t) =1,y(t) =1,G(t) = sin t, (x,t) € [-10,10] x [-10, 10].

5. Conclusions

A new model with variable coefficients and forcing term have
been studied from the point of view of it traveling wave solutions.
Exact solutions for it have been derived by means of the improved
tanh-coth method. As a consequence, new exact solutions for the
classical Higgs Eq. (1.2), (1.3) have been obtained. We have showed
that the used method here, is more general that the Exp—(®(¢))-

method and that the Gc’((g)—method used by several authors to handle
(1.2) and (1.3). With the aim of make a comparison between the
two models (variable coefficients and constants coefficients) we
have made the graph of solutions in both cases. The solution are

stable, at least, in the intervals considered for its graphs.
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