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In this paper, the use of bootstrap method with Monte Carlo integration is introduced for one dimension.
This approach is based on generating observations from a known distribution for the bootstrap samples,
then apply the Monte Carlo method on each bootstrap sample to estimate the integral of interest. The
empirical distribution, or the bootstrap distribution, of the estimation results can be used as a good proxy
for the distribution of the integral of interest. Based on the bootstrap distribution, the standard error of
the estimate of the integral of interest can be derived. Also, the percentile and Normal confidence inter-
vals with confidence level 1� að Þ% can be derived as well. The bootstrap method with Monte Carlo inte-
gration is easy to implement and straightforward to provide well results. Moreover, it provides small
variance for the estimate of the integral of interest. Four examples with different functions and different
domains are used to present the performance of the proposed method. From the study, we find that the
method provides nearly identical results for the standard errors, regardless of the distributions used for
generating observations for the bootstrap samples.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In the real world applications, the standard or classical mathe-
matical methods have been widely used to compute the exact inte-
gral of a function g defined on an interval a; b½ �. This can be
achieved if the situation is simple; however, if the situation is com-
plicated, the computation is quite hard or impossible in some
cases. Therefore, the approximation methods can be good choices
to compute the integrals for the complicated functions with minor
errors. One of these approximation methods is the Monte Carlo
integration method, which is described in many references, see
e.g. (Kalos and Whitlock, 2009; Rizzo, 2019; Yang, 2014) for more
details.

This approximation method for integrals is built with respect to
the sampling distribution. It is crucial to choose a suitable distribu-
tion, which should be close to the function g, to generate random
observations. The suitable distribution can lead to have a better
approximation for the integral with small variance. Many refer-
ences in the literature discussed the importance sampling or vari-
ance reduction, see e.g. (Hammersley and Morton, 1956; Oh and
Berger, 1992; Rizzo, 2019; Rubinstein and Marcus, 1985; Tokdar
and Kass, 2010; Van Dijk and Kloek, 1983) for detailed
presentations.

Surely, the importance sampling is crucial for the Monte Carlo
integration to derive a well approximation with small variance,
but the importance sampling requires a long computational time
and some information about the shape of g. These requirements
motivate to use the bootstrap method with the Monte Carlo inte-
gration. Based on the bootstrap distribution, it is possible to derive
well approximations for integrals with small standard errors.
Moreover, the percentile and Normal confidence intervals of any
integral can be derived with high accuracy.

This paper is organized as follows: Section 2 presents the Monte
Carlo integration for one dimension along with some descriptions.
In Section 3, the bootstrap method is described with explanations
of computing the standard error and deriving the percentile and
Normal confidence intervals for the integral of interest h. Section 4
presents the performance of bootstrap with Monte Carlo integra-
tion. The last section presents some concluding remarks.

2. Monte Carlo integration

The Monte Carlo method is a well-known concept used to
derive the approximate integrals for complicated functions defined
on certain domains. This method is built based on the probability
theorem (Chung and Zhong, 2001; Jaynes, 2003; Loeve, 2017),
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where the integral of a function g can be computed by taking the
expectation of function g; E gf g. For univariate data, suppose that
X is a random variable following a probability density function f.
The expectation of g Xð Þ can be written mathematically as follows

E g Xð Þf g ¼
Z
Df

g xð Þf xð Þdx ð1Þ

where Df is the support of probability density function f.

Let h ¼ R b
a g xð Þ dx and the random variables X1;X2; . . . ;Xn are

independent and identically distributed from the Uniform distribu-
tion with parameters a and b. Further suppose that x1; x2; . . . ; xn are
the corresponding observations to the random variables
X1;X2; . . . ;Xn. The estimated result of h can be found by

ĥ ¼ b� a
n

Xn
i¼1

g xið Þ ð2Þ

It should be noted that the estimated value ĥ converges to
E g Xð Þf g ¼ h

b�a as n ! 1 with probability 1 based on the strong
law of large numbers theorem, which is presented in Etemadi
(1981); Fazekas and Klesov (2001). To make the Monte Carlo inte-
gration easy to follow and apply, we list its algorithm in three steps
as follows:

1. Generate n observations from the Uniform distribution with
parameters a and b.

2. Find g xið Þ for all i ¼ 1;2; . . . ;n.
3. Compute ĥ ¼ b�a

n

Pn
i¼1g xið Þ.

The Uniform distribution can be replaced by any known distri-
bution to generate the observations in the first step, but we choose
the Uniform distribution here for simplicity in application.

3. The bootstrap method

The bootstrap method is a resampling concept proposed to
measure the accuracy of a statistical estimate and to make infer-
ences about unknown population parameters, e.g. mean, median,
variance and confidence interval. In the literature, it has been
widely used due to its simplicity to apply and efficiency to provide
well estimates. With high accuracy, the bootstrap distribution for
any statistic of interest can mimic the sampling distribution, where
the sampling distribution is not always easy to obtain in real
applications.

To implement the bootstrap method, parametric and nonpara-
metric models are used to create multiple bootstrap samples, then
the statistic of interest is computed based on each bootstrap sam-
ple. The empirical distribution of the results can be used as a proxy
distribution for the sampling distribution and this allows making
inferences about the statistic of interest. For more detailed presen-
tation, it is beneficial to see the book of ‘‘An Introduction to The
Bootstrap” by Efron and Tibshirani (1993) and the book of ‘‘Boot-
strap Methods and Their Application” by Davison and Hinkley
(1997).

To use the bootstrap method with Monte Carlo integration, we
first need to introduce some notations. Suppose that the random
quantities X1;X2; . . . ;Xn are independent and identically dis-
tributed following the probability distribution f and supported on
a; b½ �. Let x1; x2; . . . ; xn be the observations corresponding to these
random quantities. Furthermore, let the integral of interest be

h ¼ R b
a g xð Þdx. Now, it is easy to present the algorithm of the boot-

strap method with Monte Carlo integration through the following
steps.
2

1. Generate n observations from the probability distribution f.
2. Find g xið Þ for all i ¼ 1;2; . . . ;n.
3. Compute ĥ� ¼ b�a

n

Pn
i¼1g xið Þ.

4. Perform steps (1), (2) and (3) B times; this leads to
ĥ�1; ĥ�2; . . . ; ĥ�B.

For better performance, the value of B is suggested to be large;
e.g. B ¼ 1000 (Al Luhayb, 2021; Al Luhayb et al., 2023; Efron, 1979,
1981). To derive a bootstrap estimate of h, we compute the average
of ĥ�1; ĥ�2; . . . ; ĥ�B, and to provide a bootstrap standard error esti-

mate for ĥ�boot ¼ 1
B

PB
j¼1ĥ

�j, we compute the standard deviation of

ĥ�1; ĥ�2; . . . ; ĥ�B by Efron and Tibshirani (1986)

SE ĥ�boot

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XB
j¼1

ĥ�j
� �2

�

XB
j¼1

ĥ�j

 !2

B

B� 1

vuuuuuuut
ð3Þ

For the 1� að Þ% percentile confidence interval, we order the
values ĥ�1; ĥ�2; . . . ; ĥ�B from least to largest, then take the a

2

� �
th

and 1� a
2

� �
th ordered values, where the former is the lower bound

and the latest is the upper bound. This can be written as follows

h 2 ĥ�a
2ð Þ; ĥ

�
1�a

2ð Þ
� �

ð4Þ

For the 1� að Þ% Normal confidence interval, it is needed to

compute ĥ�boot and SE ĥ�boot

� �
, then we use the following equation

(Hazra, 2017)

h 2 ĥ�boot � Z 1�að ÞSE ĥ�boot

� �
; ĥ�boot þ Z 1�að ÞSE ĥ�boot

� �� �
ð5Þ

where Z 1�að Þ is the 1� að Þ percentile of the standard Normal
distribution.

4. Simulation studies

In this section, we present different bounded integrals needed
to be computed analytically based on the bootstrap method with
Monte Carlo integration. We choose different domains and func-
tions as shown in Fig. 1. Also, we determine the Uniform and Nor-
mal distributions, restricted to the domain of the integral of
interest, to generate observations for the bootstrap samples. To
compute the bootstrap estimate of integral h with the standard
error and the percentile and Normal confidence intervals, we set
B equal to 1000 and the sample size of each bootstrap sample n
equal to 1000. This means that the iteration of bootstrap is 1000
as B ¼ 1000. Table 1 presents different bounded integrals with
their analytical results, and these integrals will be estimated based
on the bootstrap method with Monte Carlo integration to make
comparisons with the true results. By this strategy, we can make
investigations on the performance of our method.

Tables 2–5 present the bootstrap estimates ĥ along with the
standard errors of ĥ and the 90% percentile and Normal confidence
intervals of h for all examples presented in Table 1. It is obvious
that the bootstrap estimates are nearly identical to the exact
results. This is the power of using the bootstrap method with
Monte Carlo integration, which is more needed for complicated
integrals that is impossible to be computed theoretically. Through
the bootstrap procedure, we use Uniform and Normal distributions
with different parameters, but restricted to the integral’s bounds,
and this leads to have nearly identical standard errors. From this
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Fig. 1. The shape of each function g xð Þ presented in Table 1.

Table 1
The exact values of different integrals.

Example h =

1 R 2
�2 x

2 dx ¼ 5:333
2 R p

2
0 �sin xð Þ dx ¼ �1

3 R 5
0 3x5 þ 2x3 þ 1 dx ¼ 8130

4 R p
2
0 x2 � sin xð Þ dx ¼ 0:292

Table 2
The bootstrap estimate of h in Example 1 along with the standard error and the
percentile and Normal confidence intervals with confidence level 90%.

Bootstrap estimates Uniform(-2, 2) Normal(0, 5)
(restricted on [-2, 2])

ĥ 5.339 5.228

Standard Error 0.158 0.151
Percentile confidence interval (5.093, 5.596) (4.982, 5.463)
Normal confidence interval (5.136, 5.541) (5.036, 5.421)

Table 3
The bootstrap estimate of h in Example 2 along with the standard error and the
percentile and Normal confidence intervals with confidence level 90%.

Bootstrap estimates Uniform(0, p2) Normal(0,5)
(restricted on [0, p2])

ĥ �1.000 �0.993

Standard Error 0.015 0.015
Percentile confidence interval (�1.026, �0.976) (�1.020, �0.968)
Normal confidence interval (�1.020, �0.981) (�1.013, �0.973)

Table 4
The bootstrap estimate of h in Example 3 along with the standard error and the
percentile and Normal confidence intervals with confidence level 90%.

Bootstrap estimates Uniform(0, 5) Normal(3,5)
(restricted on [0, 5])

ĥ 8146.495 8155.398

Standard Error 385.488 387.729
Percentile

confidence interval
(7514.391, 8783.074) (7550.591, 8808.027)

Normal confidence interval (7652.471, 8640.518) (7658.503, 8652.292)
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observation, we can assure that the bootstrap distribution can be a
good proxy distribution for the integral h; there is no need to esti-
mate the shape of g xð Þ for importance sampling, or variance reduc-
tion. This helps to conserve time to running codes and it is possible
to do analysis with less information. Also, based on the bootstrap
3

method, the 90% percentile and Normal confidence intervals can
be easily derived. From Tables 2–5, we note that the 90% percentile
confidence intervals are all wider than the 90% Normal confidence
intervals.



Table 5
The bootstrap estimate of h in Example 4 along with the standard error and the
percentile and Normal confidence intervals with confidence level 90%.

Bootstrap estimates Uniform(0, p2) Normal(3,5)
(restricted on [0, p2])

ĥ 0.293 0.317

Standard Error 0.024 0.024
Percentile confidence interval (0.254, 0.332) (0.280, 0.355)
Normal confidence interval (0.262, 0.323) (0.286, 0.347)
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5. Concluding remarks

In this paper, we illustrated the bootstrap method with Monte
Carlo integration for one dimension, and the method was used
through multiple examples. From the examples, it can be con-
cluded that the bootstrap method with Monte Carlo integration
is a good approach to compute well approximate integrals for dif-
ferent functions in different domains with small variances, regard-
less to the distribution being used to generate observations for the
bootstrap samples. Based on the bootstrap estimates, the 1� að Þ%
percentile and Normal confidence intervals for h can be derived
with high accuracy. Our method can be beneficial for integrals that
may be difficult or impossible to compute. Also, the method is easy
to implement and straightforward, which is only relying on sam-
pling from a known distribution, then taking the evaluation. This
is repeated multiple times and this should be large,
e.g. B ¼ 1000. To put the method into a practical use, we included
the R codes in the appendix. To run the codes, it requires about ten
4

seconds, which is nothing in real applications and this is one of the
advantages.

As a future research, the method will be generalized for multi-
ple dimensions with more complicated functions and domains. To
achieve this generalization, we may use the copula concept, which
is able to take the dependence structure between the variables into
account, to generate observations for the bootstrap samples. For
more detailed presentations about the copula concept, it is advised
to see Coolen-Maturi et al. (2016); Muhammad (2016);
Muhammad et al. (2016); Muhammad et al. (2018); Sklar (1959).
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Appendix B. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.jksus.2023.102768.
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