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established relations between the sectional curvatures of fibres, total space and base manifold and dis-
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1. Introduction

Throughout paper, we will use some abbreviations as follows:
Riemannian Manifold
 RS

Riemannian Submersion
 RS

Conformal Generic Submersions
 CGS

Locally Product Riemannian
 l.p.R.

grad
 G
One of the most popular areas of study in differential geometry
is submanifold theory, and establishing proper smooth maps
between two manifolds is one of the quickest ways to compare
them and transfer certain structures from one manifold to another.
If there are two manifolds, then a differential map is said to be an
immersion (submersion) if its rank coincide with the dimension of
the source manifold (target manifold). Moreover, these are called
isometric immersions (isometric submersions) if the maps defined
between manifolds are isometric. O’Neill (1966) and Gray (1997)
were the first to address the idea of Riemannian submersions
between Riemannian manifolds. The Riemannian submersions
are being used extensively in both mathematics and physics. Par-
ticularly in the context of the Yang-Mills theory (Bourguignon
and Lawson, 1981; Baird and Wood, 2003), Kalauza-Klien theory
(Bourguignon, 1990), super-gravity and super-string theories
(Ianus and Visinescu, 1991; Ianus and Visinescu, 1987), redundant
robotic chains (Altafini, 2004) etc.

Riemannian submersions eventually developed into a suitable
approach for describing the geometry of RMs with differential
structures. The first study of RS between RMs equipped with an
additional structure of almost complex type was executed by
Watson (1976). In most instances, Watson established that the
structure of the base manifold and each fiber is the same as that
of the total space by defining an almost Hermitian submersion
between almost Hermitian manifolds. In this case, the RS is also
a complex mapping and consequently, the vertical and horizontal
distributions are invariant with respect to the almost complex
structure of the total manifold of the submersion. Almost Hermi-
tian submersions have been extended to the almost contact man-
ifolds (Chinea, 1985), locally conformal Kaheler manifolds
(Marrero and Rocha, 1994) and QR manifolds (Ianus et al., 2008).
Escobales (Escobales, 1978) studied RS from complex projective
space onto a RM under the assumption that the fibres are con-
nected, complex, totally geodesic submanifolds. In fact this
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assumption also implies that the vertical distribution is invariant
with respect to the almost complex structure.

The vertical and horizontal distributions are invariant, which is
a characteristic shared by all the submersions mentioned above.
Then, in 2010, B. Sahin presented the notion of anti-invariant RS,
which is referenced in (S�ahin, 2010). Anti-invariant RS are the RS
from almost Hermitian manifolds to RMs such that the vertical dis-
tributions (or, for that matter the fibres) are anti-invariant under
the almost complex structure of total manifold. Such submersions
are demonstrated to exhibit a wealth of geometrical characteristics
and are helpful for assessing the geometry of the total manifold of
the submersion. The vertical and horizontal distributions are
reversed by the almost complex structure of the total manifold in
a Lagrangian submersion, which is a special case of an anti-
invariant RS. (S�ahin, 2010; S�ahin, 2011; Tastan, 2014). Following
that, many RS have been investigated such as Semi-invariant sub-
mersion (S�ahin, 2011), Slant submersion (S�ahin, 2011), Semi-slant
submersion (Park and Prasad, 2013), Generic submersion (Ali and
Fatima, 2013) etc.

On the other hand, horizontally conformal submersions caught
attention in 1992 and studied by Gudmundsson and Wood
(1997). Horizontally conformal submersions are the generaliza-
tion of RS and unlikely to the RS, horizontally conformal submer-
sions do not preserve the distance between the points but they
preserve the angles between the vector fields. This property
allows one to transfer specific properties of a manifold to another
manifold by deforming such properties. Recently, M. A. Akyol and
B. Sahin defined conformal anti-invariant submersion (Akyol and
S�ahin, 2016) and later on conformal semi-invariant, conformal
slant, conformal semi-slant and CGS are studied by M. A Akyol
and others (we refer to Akyol and S�ahin, 2017; Akyol, 2017;
Akyol and S�ahin, 2019; Akyol, 2017; Akyol, 2021 Özdemir et al.,
2017).

The current article’s objective is to investigate CGS from l.p.R
manifolds onto RMs. The manuscript is structured as follows: Sec-
tion 2 reviews the fundamental ideas of RS and horizontally con-
formal submersions and Section 3 explains the requirement for a
l.p.R manifold. In Section 4, the definition and an example of CGS
are covered. Then, several fundamental conclusions are reached,
including equivalent criteria for the distributions’ integrability
and conditions that are required and adequate for the distributions
to describe completely geodesic foliations. Section 4 also lists the
criteria for CGS to be a harmonic map. The sectional curvature rela-
tions of the total manifold, fibers and manifolds are the only focus
of Section 5.

2. Conformal Riemannian Submersions

We shall review the concept of conformal submersions, which
are one of a large class of conformal maps, but in this study, we
won’t look at these maps.

Definition 1. (Baird and Wood, 2003) ‘‘ Let M; gð Þ and N;hð Þ be
two RMs with dimensions m and n, respectively, and let
P : M; gð Þ ! N;hð Þ be a C1– differentiable map between them. If
either
(i) P�p ¼ 0, or

(ii) P�p maps horizontal spaceHp ¼ kerP�p
� �? conformally onto

TP pð ÞN, i.e., P�p is surjective and there exists a number
K pð Þ – 0 such that
h P�pX;P�pY
� � ¼ K pð Þg X;Yð Þ; ð1Þ

for any X;Y 2 C kerP�ð Þ?.

2

Then, P is called horizontally weakly conformal or semi
conformal at p 2 M. ”.
In the definition above, if ‘‘ ið Þ is met, we say that p is a critical
point of P and if iið Þ is met we refer point p as a regular point. At
a critical point, P�p has rank 0 where as at a regular point P�p
has rank n and represents submersion. The number K xð Þ, which
is necessarily non-negative, is called the square dilation of P at p.
The square root k pð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffi

K pð Þp
is called the dilation of P at p. The

map P is called horizontally weakly conformal or semi conformal
on M if it is horizontally weakly conformal at every point of M. It
is clear that we refer to a horizontally conformal submersion if P
has no critical points. Let P : M ! N be a submersion. A vector
field E on M is said to be projectable if there exists a vector field
�E on N, such that P� Ep

� � ¼ �EP pð Þ for all p 2 M. In this case E and �E
are calledP– related. A horizontal vector field Y on M; gð Þ is called
basic, if it is projectable. It is well known fact that if �Z is a vector
field onN, then there exists a unique basic vector field Z onM, such
that Z and �Z areP– related. The vector field Z is called the horizon-
tal lift of �Z (O’Neill, 1966).”.

In (O’Neill, 1966), the basic tensors of submersions were pre-
sented. They function similar to the second fundamental form of
immersion. More precisely, O’Neill’s tensors T and A defined for
any vector fields E1; E2 2 C TMð Þ by
AE1E2 ¼ VrHE1HE2 þHrHE1VE2 ð2Þ

TE1E2 ¼ HrVE1VE2 þVrVE1HE1; ð3Þ
whereV andH are the vertical and horizontal projections of E1 and
E2 (see Falcitelli et al., 2004). On the other hand, from (2) and (3 ),
we have

rVW ¼ TVWþ r̂VW ð4Þ

rVX ¼ HrVXþTVX ð5Þ

rXV ¼ AXVþVrXV ð6Þ

rXY ¼ HrXYþAXY ð7Þ
for any X;Y 2 C kerP�ð Þ? and V;W 2 C kerP�ð Þ, where

r̂VW ¼ VrVW. If X is basic, then HrVX ¼ AXV. It is easily seen
that for any X 2 C kerP�ð Þ? and V 2 C kerP�ð Þ, the linear operators
TV;AX : TpM ! TpM are skew-symmetric, that is

g TVE1; E2ð Þ ¼ �g E1;TVE2ð Þ and g AXE1; E2ð Þ ¼ �g E1;AXE2ð Þ
for all E1; E2 2 C TpM

� �
and p 2 M. The restriction of T to the verti-

cal distribution TjV�V is precisely the same as the second funda-
mental form of the fibers, as can also be seen. We conclude that
P has totally geodesic fibres if and only if T � 0 because TV is
skew-symmetric. The following are the results for the horizontal
conformal submersion:

Proposition 1. (Gudmundsson, 1992) ‘‘Let P : M; gð Þ ! N;hð Þ be a
horizontally conformal submersion with dilation k X;Y be horizontal
vectors fields, then

AXY ¼ 1
2

V X;Y½ � � k2g X;Yð ÞGV

1
k2

� �� �
: ð8Þ

We see that the skew-symmetric part of Aj kerP�ð Þ?� kerP�ð Þ? mea-
sures the obstruction integrability of the horizontal distribution
kerP�ð Þ?.

The following curvature relations for horizontally conformal
submersion are now brought to mind from (Gromoll et al., 1975
and Gudmundsson, 1992).
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Theorem 1. ‘‘Let Mm; g;r;Rð Þ and Nn;h;r;R�ð Þ be two RMs, where
m > n P 2. Let R and R� be the curvature tensors on M and N,
respectively. Let P : M; gð Þ ! N;hð Þ be a horizontally conformal

submersion, with dilation k : M ! Rþ and let R̂ be the curvature
tensor of the fibres of the submersion. If X;Y;Z;H are horizontal
U;V;W;G vertical vectors, then

g R U;Vð ÞW;Gð Þ ¼ g R̂ U;Vð ÞW;G
	 


þ g TUW;TVGð Þ
� g TVW;TUGð Þ; ð9Þ

g R U;Vð ÞW;Xð Þ ¼ g rUTð ÞVW;X
� �� g rVTð ÞUW;X

� �
; ð10Þ

g R U;Xð ÞY;Vð Þ ¼ g rUAð ÞXY;V
� �þ g AXU;AYVð Þ ð11Þ

�g rXTð ÞUY;V
� �� g TVY;TUXð Þ

þk2g AXY;Uð Þg V;GV
1
k2

	 
	 

;

g R X;Yð ÞZ;Hð Þ ¼ 1
k2

h R�
X�;Y�ð Þ;Z�;H�ð Þ þ 1

4
g V X;Z½ �;V Y;H½ �ð Þf ð12Þ

�g V Y;Z½ �;V X;H½ �ð Þ þ 2g V X;Y½ �;V Z;H½ �ð Þg
þ k2

2 g X;Zð Þg rYG
1
k2

	 

;H

	 

� g Y;Zð Þg rXG

1
k2

	 

;H

	 
n
þg Y;Hð Þg rXG

1
k2

	 

;Z

	 

� g X;Hð Þg rYG

1
k2

	 

;Z

	 
o
þ k4

4 g X;Hð Þg Y;Zð Þ � g Y;Hð Þg X;Zð Þð ÞkG 1
k2

	 

k2

n
þg X 1

k2

	 

Y�Y 1

k2

	 

X;H 1

k2

	 

Z� Z 1

k2

	 

H

	 
o
:

‘‘Let M; gð Þ and N; gð Þ be RMs and suppose that u : M ! N is a
smooth map between them. The differential of u� of u can be
viewed a section of the bundle Hom TM;u�1TN

� � ! M, where
u�1TN is the pullback bundle which has fibres
u�1TN
� �

p ¼ Tu pð ÞN, p 2 M. Hom TM;u�1TN
� �

has a connection r
induced from the Levi–Civita connection rM and the pullback con-
nection. Then, the second fundamental form of u is given by

ru� : TM� TM ! TN

defined by

ru�ð Þ X;Yð Þ ¼ ru
Xu� Yð Þ �u� rM

XY
� � ð13Þ

for X;Y 2 C TMð Þ, where ru is the pullback connection.” The sym-
metry of the second fundamental form is well recognised. ‘‘A
smooth map u : M; gMð Þ ! N; gNð Þ is said to be harmonic if
trace ru�ð Þ ¼ 0. On the other hand, the tension field of u is the sec-
tion s uð Þ of C u�1TN

� �
defined by

s uð Þ ¼ divu� ¼
Xm
i¼1

ru�ð Þ ei; eið Þ; ð14Þ

where e1; . . . ; emf g is the orthonormal frame on M. Thus, it follows
that s uð Þ ¼ 0 is the neccesary and sufficient condition under which
u is harmonic.” For more information, see (Baird and Wood, 2003).

Lemma 1. (Urakawa, 1993) ‘‘Consider that u : M ! N is a smooth
map between the RMs M; gð Þ and N;hð Þ. Then
ru

Xu� Yð Þ � ru
Yu� Xð Þ �u� X;Y½ �ð Þ ¼ 0; ð15Þ

for any X;Y 2 C TMð Þ.”
Last but not least, consider the following (Baird and Wood,

2003).

Lemma 2. ‘‘Assume that the submersion P : M ! N is horizontally
conformal. Then, for any vertical fields V;W and horizontal vector
fields X;Y,
3

(i) rP�ð Þ X;Yð Þ¼X lnkð ÞP�YþY lnkð ÞP�X�g X;Yð ÞP� G lnkð Þ;
(ii) rP�ð Þ V;Wð Þ ¼ �P� TVWð Þ;
(iii) rP�ð Þ X;Vð Þ ¼ �P� rXVð Þ ¼ �P� AXVð Þ.”

3. Locally Product Riemannian manifolds

‘‘Assume that M is an m-dimensional manifold with a tensor F
of type (1,1) such that F2 ¼ I; F– Ið Þ. Then, we assert that M is an
almost product manifold with F almost product structure. We
place

P ¼ 1
2

I þFð Þ; Q ¼ 1
2

I �Fð Þ:

It’s simple to observe that

Pþ Q ¼ I; P2 ¼ P; Q2 ¼ Q; PQ ¼ QP ¼ 0; F ¼ P� Q:

As a resultP and Q define two complimentary distributions. We
note that the F’s eigenvalues are either +1 or �1. If M, an almost
product manifold, admits g, a Riemannian metric, then

g FE1;FE2ð Þ ¼ g E1; E2ð Þ; ð16Þ

for any vector fields E1 and E2 on M, then M is called an almost pro-
duct RM, denoted by M; g; Fð Þ andM is called a l.p.R. manifold ifF is
parallel with respect to r i.e.,

rE1F
� �

E2 ¼ 0; E 2 C TMð Þ; ð17Þ

wherer denotes the Levi–Civita connection on M with respect to g
(Yano and Kon, 1984).”

4. Conformal generic submersions

This section assesses the study of CGS as the total space of the
submersions is l.p.R. manifold. We define the CGS and provide a
non-trivial example to assure the existence of such submersion.

Definition 2. Let M; g;Fð Þ be a l.p.R. manifold with the product
structure F and N;hð Þ be a RM. Consider a horizontally conformal
submersion P : M; g;Fð Þ ! N;hð Þ. Then P is called CGS if there
are two orthogonal complementary distributions D and D1 of
kerP� such that

kerP� ¼ D�D1; F Dð Þ ¼ D; ð18Þ
where D1ð Þp ¼ kerP� \ F kerP�ð Þ;p 2 M, a complex subspace of a
vertical space Vp, has a constant dimension along M and defines
a differentiable distribution on M. The distribution D1 is called
the purely real distribution.

As observed that the vertical distribution kerP� is integrable.
Therefore, this defintion simply implies that integral manifolds,
P�1 qð Þ; q 2 N of the submersion are generic submanifold of M.
For generic submersions, we refer to (Chen, 1981).

LetP be a CGS from a l.p.R. manifold M; g;Fð Þ onto a RM N;hð Þ.
For any U 2 C kerP�ð Þ,
FU ¼ aUþ bU; ð19Þ
where aU 2 C kerP�ð Þ and bU 2 C kerP�ð Þ?. Also for any
X 2 C kerP�ð Þ?,
FX ¼ BXþ CX; ð20Þ
where BX 2 C D1ð Þ and CX 2 C mð Þ. Then, kerP�ð Þ? is decomposed as

kerP�ð Þ? ¼ bD1 � m; ð21Þ
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where m denotes the orthogonal complement of bD1 in kerP�ð Þ? and
is invariant under the almost product structure F.

We now present a non-trivial example of CGS whose total space
is an almost product manifold.

Consider an Euclidean space R8 with coordinates a1; a2; . . . ; a8
� �

.

We denote by F the compatible almost product structure on R8 as
follows;

F a1; a2; . . . ; a8
� � ¼ 1ffiffi

2
p �a2 � a8;�a1 � a7;�a4 þ a6;�a3 þ a5;

�
a6 þ a4; a5 þ a3; a8 � a2; a7 � a1Þ:

Example 1. Let P : R8 ! R2 be a submersion defined by

P u1;u2;u3;u4;u5;u6;u7;u8ð Þ ¼ e7
1ffiffiffi
2

p u3 þ u7ð Þ; 1ffiffiffi
2

p u3 � u7ð Þ
� �

:

Then it follows that

kerP� ¼ V1 ¼ @

@x1
;V2 ¼ @

@x2
; V3 ¼ @

@x4
;V4 ¼ @

@x5
;V5 ¼ @

@x6
;V6 ¼ @

@x8

� �

and

kerP�ð Þ? ¼ X1 ¼ 1ffiffiffi
2

p @

@x3
þ @

@x7

� �
;X2 ¼ 1ffiffiffi

2
p @

@x3
� @

@x7

� �� �
;

Moreover,

FV1 ¼ 1ffiffi
2

p V2 � 1ffiffi
2

p V6;FV2 ¼ � 1ffiffi
2

p V1 � 1
2X1 þ 1

2X2;

FV3 ¼ 1ffiffi
2

p V4 � 1
2X1 � 1

2X2; FV4 ¼ � 1ffiffi
2

p V3 þ 1ffiffi
2

p V5;

FV5 ¼ 1ffiffi
2

p V4 þ 1
2X1 þ 1

2X2;FV6 ¼ � 1ffiffi
2

p V1 þ 1
2X1 � 1

2X2:

Hence, D ¼ V1;V4 and D1 ¼ V2;V3;V5;V6. Also by direct com-
putations, we obtain

gR8 X1;X1ð Þ ¼ e7
� ��2

gR2 P�X1;P�X1ð Þ and
gR8 X2;X2ð Þ ¼ e7

� ��2
gR2 P�X2;P�X2ð Þ;

where gR8 and gR2 denote the standard metrices on R8 and R2,
respectively. Thus P is CGS with k ¼ e7.

We start with the preliminary results of CGS.

Proposition 2. Let P : M; g;Fð Þ ! N;hð Þ be a CGS from a l.p.R.
manifold M; g;Fð Þ onto a RM N;hð Þ. Then

ið Þ aD ¼ D; iið Þ bD1 ¼ 0; iiið Þ aD1 � D1; ivð Þ B kerP�ð Þ? ¼ D1;

vð Þ a2 þ Bb ¼ id; við Þ C2 þ bB ¼ id; v iið Þ baþ Cb ¼ 0; v iiið Þ BC þ aB ¼ 0:
Proof. These can easily be obtained with the help of (19)–(21).

Using (4), (5), (19) and (20), we have the covariant derivative of
a and b as follows;

rUað ÞV ¼ BTUV �TUbV ð22Þ
rUbð ÞV ¼ CTUV �TUaV ð23Þ
rUað ÞV ¼ r̂UaV � ar̂UV ð24Þ
rUbð ÞV ¼ AbVU � br̂UV ; ð25Þ
for any U;V 2 C kerP�ð Þ.

In view of (4)–(7), (19) and (20), we have.

Lemma 3. Let P : M; g;Fð Þ ! B;hð Þ be a CGS from a l.p.R. manifold
M; g;Fð Þ onto a RM B;hð Þ. Then

(a) AXBYþHrXCY ¼ CHrXYþ bAXY

VrXBYþAXCY ¼ BHrXYþ aAXY,
4

(b) TUaV þAbVU ¼ CTUV þ br̂UV

r̂UaV þTUbV ¼ BTUV þ ar̂UV ,
(c) AXaU þHrUbV ¼ CAXU þ bVrXU

VrXaU þAXbU ¼ BAXU þ aVrXU,

for any U;V 2 C kerP�ð Þ and X;Y 2 C kerP�ð Þ?.
We proceed now to the main results of this section where first

we prove the equivalent conditions for the integrability of the dis-
tributions D and D1. As vertical distribution kerP�ð Þ is integrable
so far, we give the necessary and sufficient condition for the hori-
zontal distribution kerP�ð Þ? to be integrable. Also we study the
geometry of foliations of all the distributions.

Theorem 2. Let P : M; g;Fð Þ ! B;hð Þ be a CGS from l.p.R. manifold
M; g;Fð Þ onto a RM B;hð Þ. Then the f.a.e;
(a) The distribution D is integrable.
(b) h rP�ð Þ U1;FU2ð Þ � rP�ð Þ U2 ;FU1ð Þ;P�bVð Þ ¼ k2g a r̂U1FU2 � r̂U2FU1

	 

;V

	 

;

(c) TU2FU1 �TU1FU2
� � 2 C lð Þ and r̂U1FU2 � r̂U2FU1

	 

2

C Dð Þ,

for any U1;U2 2 C Dð Þ and V 2 C D1ð Þ.
Proof. For any U1;U2 2 C Dð Þ;V 2 C D1ð Þ, applying (16), (17), (4)
and (19), we get

g U1;U2½ �;Vð Þ ¼ g HrU1FU2; bV
� �þ g r̂U1FU2;aV

	 

� g HrU2FU1; bV

� �� g r̂U2FU1;aV
	 


:

Since P is a CGS, using (19) and Lemma 2, we get

g U1;U2½ �;Vð Þ ¼ k�2h � rP�ð Þ U1;FU2ð Þ þ rP
UP�FU2;P�bV

	 

� k�2h � rP�ð Þ U2;FU1ð Þ þ rP

V P�FU1;P�bV
	 


þ g F r̂U1FU2 � r̂U2FU1

	 

;V

	 

¼ k�2h rP�ð Þ U2;FU1ð Þ � rP�ð Þ U1;FU2ð Þ;P�bVð Þ

þ g a r̂U1FU2 � r̂U2FU1

	 

;V

	 

: ð26Þ

We note that g U1;U2½ �;Wð Þ ¼ 0, for any W 2 C kerP�ð Þ as the
distribution kerP� is always integrable. Therefore, að Þ () bð Þ fol-
lows. Moreover, with Lemma 2 and (1), (26) reduces to

g U1;U2½ �;Vð Þ ¼ �g TU2FU1 �TU1FU2; bV
� �

þ g a r̂U1aU2 � r̂U2aU1

	 

;V

	 

By using (23) and Proposition 2, we obtain að Þ () cð Þ.
Theorem 3. Let M; g;Fð Þ be a l.p.R. manifold and B;hð Þ, a RM and
P : M; g;Fð Þ ! B;hð Þ be a CGS. Then the f.a.e;

(a) The distribution D1 is integrable.
(b) h rP�ð Þ V1;aV2ð Þ � rP�ð Þ V2;aV1ð Þ;Uð Þ ¼ k2g TV1bV2 �TV2bV1;U

� �
,

(c) r̂V1aV2 � r̂V2aV1 þTV1bV2 �TV2bV1 2 C D2ð Þ,

for any U 2 C Dð Þ and V1;V2 2 C D1ð Þ.
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Proof. The distribution D1 to be integrable iff g V1;V2½ �;FUð Þ ¼ 0,
as well as g V1;V2½ �;Wð Þ ¼ 0, for any V1;V2 2 C D1ð Þ; U 2 C Dð Þ and
W 2 C kerP�ð Þ?. As kerP� is integrable, then we can easily get
g V1;V2½ �;Wð Þ ¼ 0.

Moreover, by using (16), (17), (19) and (13), we obtain

g V1;V2½ �; FUð Þ ¼ g rV1 FV2 �rV2 FV1; FU
� �

¼ g rV1aV2;U
� �þ g rV1bV2;U

� �� g rV2aV1;U
� �� g rV2bV1;U

� �
:

¼ g r̂V1aV2 � r̂V2aV1;U
	 


þ g TV1bV2 �TV2bV1;U
� �

;

which shows að Þ () cð Þ.
On the other side, applying (13), we arrive at

g V1;V2½ �;FUð Þ ¼ k�2h � rP�ð Þ V1;aV2ð Þ þ rP�ð Þ V2;aV1ð Þ;Uð Þ
þ g TV1bV2 �TV2bV1;U

� �
:

Hence, að Þ () bð Þ.
Theorem 4. Let P be a CGS from a l.p.R manifold M; g;Fð Þ to a RM

N;hð Þ i.e., P : M; g;Fð Þ ! N;hð Þ. Then, the distribution kerP�ð Þ? is
integrable iff

(i) There is no component of V rXBY�rYBXð Þþ
AXCY�AYCX in C Dð Þ.

(ii) k2g Y ln kð ÞC �X ln kð ÞCY� CY ln kð ÞXþ CX ln kð ÞYþ 2g X;CYð Þr ln k;bU2ð Þ
for an
þg �a VrXBY�VrYBXþAXCY�AYCXð Þ;U2ð Þ
¼ h rP�ð Þ X;BYð Þ � rP�ð Þ Y;BXð Þ � rP

XP� CYð Þ þ rP
YP� CXð Þ;P� bU2ð Þ

	 

;

for X;Y 2 CkerP�Þ?;U1 2 C Dð Þ and U2 2 C D1ð Þ.
Proof. Since the horizontal distribution is integrable if and only if
g X;Y½ �;Wð Þ ¼ 0, for any X;Y 2 C kerP�ð Þ? and W 2 C kerP�ð Þ,
where W ¼ U1 þ U2 such that U1 2 D and U2 2 D1. This implies
that g X;Y½ �;U1ð Þ ¼ 0 and g X;Y½ �;U2ð Þ ¼ 0.

We omit the proof as it easily follows by the use of the Eqs. (16),
(17), (6), (7), (20), (13)in addition to the fact that P is a horizontal
conformal submersion, using Lemma 2.
Theorem 5. LetP be a CGS from a l.p.R manifold M; g;Fð Þ onto a RM
B;hð Þ. Then,

(i) The distribution D defines a totally geodesic foliation on M
iff
h rP�ð Þ U1;aV1ð Þ;P�bU2ð Þ ¼ k2g r̂U1aV1;aU2

	 

and

h rP�ð Þ U1;aV1ð Þ;P�CXð Þ ¼ �k2g r̂U1aBXþTU1bBX;V1

	 

:

(ii) The distribution D2 defines a totally geodesic foliation on M
iff
;

h rP�ð Þ U2;FU1ð Þ;P� bV2ð Þð Þ ¼ k2g r̂U2FU1;aV2

	 

and

h rP�ð Þ U2;V2ð Þ;P� FCXð Þð Þ ¼ k2 g TU2BX;bV2
� �� g r̂U2aV2;BX

	 
n o

y U1;V1 2 C Dð Þ;U2 2 C D1ð Þ and X 2 C kerP�ð Þ?.
Proof. ið Þ For any U1;V1 2 C Dð Þ;U2 2 C D1ð Þ and Z 2 C kerP�ð Þ?,
using (16) and (17) and Proposition (2), we have
5

g rU1V1;U2
� � ¼ g rU1FV1;aU2

� �þ g rU1FV1;bU2
� �

¼ g r̂U1aV1;aU2

	 

þ g HrU1aV1;bU2

� �
: ð27Þ

Furthermore, using (13), we get

g rU1V1;U2
� � ¼ g r̂U1aV1;aU2

	 

� k�2h rP�ð Þ U1;aV1ð Þ;P�bU2ð Þ:

ð28Þ
Taking into account that P is a CGS and using (5), (13), we

obtain

g rU1V1; Z
� � ¼ �g V1; r̂U1aBZ

	 

� g V1;TU1bBZ

� �
�k�2h rP�ð Þ U1;aV1ð Þ;P�CZð Þ:

ð29Þ

Therefore, by the virtue of (28) and (29), we obtain ið Þ.
iið Þ For any vector fields U1 2 CDÞ and U2;V2 2 C D1ð Þ, using

(16)(17)
g rU2V2;U1
� � ¼ g FrU2V2;FU1

� �
¼ �g rU2FU1;FV2

� �
¼ �g r̂U2FU1;aV2

	 

� g r̂U2FU1;bV2

	 

¼ �g r̂U2FU1;aV2

	 

þ g rP�ð Þ U2;FU1ð Þ;P�bV2ð Þ:

ð30Þ

Moreover, for any X 2 C kerP�ð Þ?

g rU2V2 ;X
� � ¼ g FrU2V2;FX

� �
¼ g rU2aV2 ;BX

� �þ g rU2bV2 ;BX
� �þ g rU2FV2 ;CX

� �
¼ g r̂U2aV2;BX

	 

� g TU2BX;bV2

� �� g rP�ð Þ U2;V2ð Þ;P� FCXð Þð Þ:
ð31Þ

Therefore, with (30) and (31), we arrive at iið Þ.
In view of Theorem 5, we have;

Corollary 1. Let P : M; g;Fð Þ ! N;hð Þ be CGS from a l.p.R. man-
ifold M; g;Fð Þ to a RM N;hð Þ. Then, the necessary and sufficient
conditions for the fibres of P to be a l.P. manifold of the form
MD �MD1 are
(i) h rP�ð Þ U1;aV1ð Þ;P�bU2ð Þ ¼ k2g r̂U1aV1;aU2

	 

and

h rP�ð Þ U1;aV1ð Þ;P�CXð Þ ¼ �k2g r̂U1aBXþTU1bBX;V1

	 

,

(ii) h rP�ð Þ U2; FU1ð Þ;P� bV2ð Þð Þ ¼ k2g r̂U2FU1;aV2

	
) and

h rP�ð Þ U2;V2ð Þ;P� FCXð Þð Þ ¼ k2 g TU2BX;bV2
� �� g r̂U2aV2;BX

	 
n o
,

for any U1;V1 2 C Dð Þ;U2 2 C D1ð Þ and X 2 C kerP�ð Þ?;MD and MD1

are the integral manifolds of the distribution D and D1,
respectively.

Proofs of the following Theorem 6 and Theorem 7 can easily be
obtained from Theorem 3.20 and Theorem 3.21 Akyol (Akyol,
2021), respectively.

Theorem 6. Let P : M; g;Fð Þ ! N;hð Þ be a CGS from a l.p.R
manifold M; g;Fð Þ onto a RM N;hð Þ. Then, the horizontal distribution
kerP�ð Þ? defines a totally geodesic foliation on M iff
(i) h rP�ð Þ X;FV1ð Þ;P�Yð Þ ¼ k2g Y;VrXFV1ð Þ.
(ii) h rP

XP� bV2ð Þ;P� CYð Þ
	 


¼ �k2 g a AXCYþVrXBYð Þ;V2ð Þþf
g AXBY�X ln kð ÞCY� CY ln kð ÞXþ g X;CYð Þr ln k; bV2ð Þg,

for any X;Y 2 C kerP�ð Þ?;V1 2 C Dð Þ and V2 2 C D1ð Þ.
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Theorem 7. Let P : M; g;Fð Þ ! N;hð Þ be a CGS from a l.p.R mani-
fold M; g;Fð Þ to a RM N;hð Þ. Then, the vertical distribution kerP�ð Þ
defines a totally geodesic foliation on M iff

h rP�ð Þ U;bVð Þ;P� CXð Þð Þ ¼ k2 g r̂UaV; BX
	 


� g bV;TUBXð Þ þ g TUbV;CXð Þ
n o

, for

any U;V 2 C kerP�ð Þ and X 2 C kerP�ð Þ? .

We recall that a horizontal conformal map
u : M1; g1ð Þ ! M2; g2ð Þ between two RMs is called horizontally
homothetic if and only if H Gkð Þ ¼ 0.

We now imitate Theorem 4 and Theorem 6 as follows;

Theorem 8. Let P be a CGS from a l.p.R manifold M; g;Fð Þ to a RM
N;hð Þ i.e., P : M; g;Fð Þ ! N;hð Þ and additionally P is horizontally

homotheic map. Then, the distribution kerP�ð Þ? is integrable iff

(i) There is no component of V rXBY�rYBXð Þþ AXCY�
AYCX in C Dð Þ.

(ii) k2g a VrXBYþVrYBX�AXCYþAYCXð Þ;U2ð Þ	 

K U;Vð

K X;Yð
¼ h rP�ð Þ Y;BXð Þ � rP�ð Þ X;BYð Þ þrP
XP� CYð Þ �rP

YP� CXð Þ;P� bU2ð Þ ;

for any X;Y 2 CkerP�Þ?;U1 2 C Dð Þ and U2 2 C D1ð Þ.
Theorem 9. Let P : M; g;Fð Þ ! N;hð Þ be a CGS from a l.p.R mani-
fold M; g;Fð Þ to a RM N;hð Þ and P is horizontally homothetic. Then,

the horizontal distribution kerP�ð Þ? defines a totally geodesic foliation
on M iff

(i) h rP�ð Þ X;FV1ð Þ;P�Yð Þ ¼ k2g Y;VrXFV1ð Þ.
(ii) h rP

XP� bV2ð Þ;P� CYð Þ
	 


¼ k2 �g a AXCYþVrXBYð Þ;V2ð Þ þ g AXBY;bV2ð Þf g,

for X;Y 2 C kerP�ð Þ?;V1 2 C Dð Þ and V2 2 C D1ð Þ.
From Theorems 6 and 7, we deduce the following:

Theorem 10. LetP : M; g;Fð Þ ! N; hð Þ be CGS from a l.p.R manifold
M; g;Fð Þ onto a RM N;hð Þ. Then, the total space M is a generic
product RM M ¼ M kerP�ð Þ �M kerP�ð Þ? iff

h rP�ð Þ X;FV1ð Þ;P�Yð Þ ¼ k2g Y;VrXFV1ð Þ;

h rP
XP� bV2ð Þ;P� CYð Þ

	 

¼ k2 �g a AXCYþVrXBYð Þ;V2ð Þf

þg AXBY�X ln kð ÞCY� CY ln kð ÞXþ g X;CYð Þr ln k;bV2ð Þg
and

h rP�ð Þ U; bVð Þ;P� CXð Þð Þ ¼ k2 g r̂UaV ;BX
	 


� g bV ;TUBXð Þ þ g TUaV ;CXð Þ
n o

;

Þ ¼ bK aU;aVð Þ þ kTaUaVk2 � g TaVaV ;TaUaUð Þ þ 1
k2
K� P�bUð

þ k2

2 g bU;bVð Þg rbVG
1
k2

	 

;bU

	 

� g bV ; bVð Þg rbUG

1
k2

	 

;bU

	n
þ k4

4 g bU;bUð Þg bV ;bVð Þ � g bV ;bUð Þg bU;bVð Þð ÞkG 1
k2

	 

k2 þ k

n
�g rbVT

� �
aUbV ;aU

	 

� kTaUbVk2 þ g raVAð ÞbUbU;aV

	 

þkAbUaVk2 � g rbUT

� �
aVbU;aV

� �� kTaVbUk2;
Þ ¼ bK BX; BYð Þ þ kTBXBYk2 � g TBYBY;TBXBXð Þ þ 1

k2
K� F�CX; F�CYð Þ �

þ k2

2 g CX; CYð Þg rCYG
1
k2

	 

;CX

	 

� g CY;CYð Þg rCXG

1
k2

	 

; CX

	 

þ g

n
þ k4

4 g CX;CXð Þg CY;CYð Þ � g CY;CXð Þg CX;CYð Þð ÞkG 1
k2

	 

k2 þ kCX

	n
�g rCYTð ÞBXCY; BX

� �� kTBXCYk2 þ g rBYAð ÞCXCX;BY
� �þ g rBYð�

þkACXBYk2 � g rCXTð ÞBYCX;BY
� �� kTBYCXk2;

6

for any X;Y 2 C kerP�ð Þ?;U;V 2 C kerPð Þ;V1 2 C Dð Þ and
V2 2 C D1ð Þ, where M kerP�ð Þ and M kerP�ð Þ? are leaves of the distributions

kerP� and kerP�ð Þ?, respectively.
We now conclude this section with the necessary and sufficient

condition for CGS to be harmonic map.

Theorem 11. LetP : M; g;Fð Þ ! N;hð Þ be a CGS, where M; g;Fð Þ is
a l.p.R. manifold and N;hð Þ is a RM. Then, P is harmonic if and only if

tracej Dð ÞP� CTFUU þ br̂FUU
	 


þ tracej D1ð Þ P� CT Vð ÞaV þ br̂Va Vð Þ þ bTVbV þ CHrM
V bV

	 

�tracej kerP�ð Þ? rP

XP� C2
Xþ bBX

	 

þP� CAXBXþ CHrM

XCXþ bAXCXþ bVrM
XCXÞ

	 

¼ 0:

	

Proof. For any vertical vector field U 2 C Dð Þ;V 2 C D1ð Þ and
X 2 C kerP�ð Þ?, using (16), (13), (19), (20) and Proposition (2), we
have

rP�ð Þ FU;FUð Þ þ rP�ð Þ V ;Vð Þ þ rP�ð Þ X;Xð Þ ¼ �P� FrM
FUU

	 

�P� F rM

V aV þrM
V bV

	 
	 

þrP

XP� C2
Xþ bBX

	 

�P� F rM

XBXþrM
XCX

	 
	 

:

In view of the Eqs. 19,20, we get

rP�ð Þ FU;FUð Þ þ rP�ð Þ V ;Vð Þ þ rP�ð Þ X;Xð Þ ¼ �P� CTFUU þ br̂FUU
	 


�P� CTVaV þ br̂VaV þ bTVbV þ CHrM
V bV

	 

þrP

XP� C2
Xþ bBX

	 

�P� CAXBXþ CHrM

XCXþ bAXCXþ bVrM
XCX

	 

:

Hence, the assertion follows directly.
5. Curvature relations on conformal generic submersions

This section investigates the sectional curvatures of the fibres of
a CGS as well as the total space and base manifold. Let
P : M; g;Fð Þ ! N;hð Þ be a CGS whose total space M; g;Fð Þ is a l.
p.R. manifold and the base space N; hð Þ be a RM. We denote the

Riemannian curvature tensors by bR;RM and R� for any fibre
P�1 pð Þ;M and N, respectively. The sectional curvature denoted
by K, defined as follows;

K X;Yð Þ ¼ R X;Y;Y;Xð Þ
kXk2kYk2

; ð32Þ

where X and Y are the pair of non-zero orthogonal tangent vectors
on M.

Theorem 12. LetP be a CGS from a l.p.R. manifold M; g;Fð Þ to a RM
N;hð Þ. Then, for any horizontal vector field X;Y and vertical vector
fields U;V
;P�bVÞ � 3
4 kV bU; bV½ �k2


þ g bV ;bUð Þg rbUG
1
k2

	 

;bV

	 

� g bU;bUð Þg rbVG

1
k2

	 

;bV

	 
o
bU 1

k2

	 

bV � bV 1

k2

	 

bUk2

o
þ g raUAð ÞbVbV ;aU

	 

þ kAbVaUk2 ð33Þ

3
4 kV CX;CY½ �k2

CY;CXð Þg rCXG
1
k2

	 

;CY

	 

� g CX; CXð Þg rCYG

1
k2

	 

; CY

	 
o
1
k2



CY� CY 1

k2

	 

CXk2

o
þ g rBXAð ÞCYCY;BX

� �þ kACYBXk2

AÞCXCX;BY
� ð34Þ



K X;Uð Þ ¼ bK BX;aUð Þ þ kTBXaUk2 � g TaUaU;TBXBXð Þ
þg rBXAð ÞbUbU; BX

	 

þ kAbUBXk2

�g rbUT
� �

BXbU;BX
� �� kTBXbUk2 þ g raUAð ÞCXCX;aV

� �
þkACXaUk2 � g rCXTTð ÞaUCX;aU

� �� kTaUCXk2
þ 1

k2
h R� P�CX;P�bUð ÞP�bU;P�CXð Þ

� 3
4 kV CX; bU½ �k2 þ 2g V CX; bU½ �;V bU;CX½ �ð Þg

þ k2

2 g CX;bUð Þg rbUG
1
k2

	 

;CX

	 

� g bU;bUð Þg rCXG

1
k2

	 

;CX

	 

þ g bU; CXð Þg rCXG

1
k2

	 

;bU

	 

� g CX; CXð Þg rbUG

1
k2

	 

; bU

	 
n o
þ k4

4 g CX;CXð Þg bU;bUð Þ � g bU;CXð Þg CX;bUð Þð ÞkG 1
k2

	 

k2 þ kCX 1

k2

	 

bU� bU 1

k2

	 

CXk2

n o
;

ð35Þ
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where K;K� and bK be the sectional curvatures of the total spaceM, the
base space N and fibers, respectively.
Proof. Since P is a CGS and M is a l.p.R. manifold, using (19), we
obtain

KM U;Vð Þ ¼ K FU;FVð Þ ¼ K aUþ bU;aV þ bVð Þ
¼ K aU;aVð Þ þ K aU;bVð Þ þ K bU;aVð Þ þ K bU; bVð Þ:ð37Þ

Using (32) and (9), we arrive at

K aU;aVð Þ ¼ g R aU; aaVð ÞaV ;aUð Þ ¼ g bR aU;aVð ÞBY;BX
	 


þg TaUaV ;TaVaUð Þ � g TaVaV ;TaUaUð Þ
¼ bK aU;aVð Þ þ kTaUaVk2 � g TaVaV ;TaUaUð Þ:

ð38Þ

Similarly, using (12), we arrive at
K bU;bVð Þ ¼ g R bU;bVð ÞbV ;bUð Þ ¼ 1
k2
h R� P�bU;P�bVð ÞP�bV ;P�bUð Þ

þ 1
4 g V bU;bV½ �;V bV ;bU½ �ð Þ � g V bV ;bV½ �;V bU;bU½ �ð Þ þ 2g V bU;bV½ �;V bV ; bU½ �ð Þf g

þ k2

2 g bU; bVð Þg rbVG
1
k2

	 

;bU

	 

� g bV ;bVð Þg rbUG

1
k2

	 

; bU

	 

þ g bV ; bUð Þg rbUG

1
k2

	 

; bV

	 

� g bU;bUð Þg rbVG

1
k2

	 

;bV

	 
n o
þ k4

4 g bU;bUð Þg bV ;bVð Þ � g bV ; bUð Þg bU;bVð Þð ÞkG 1
k2

	 

k2 þ g bU 1

k2

	 

bV � bV 1

k2

	 

bU;bU 1

k2

	 

bV � bV 1

k2

	 

bU

	 
n o
:

Also by direct calculations, we obtain
K bU; bVð Þ ¼ 1
k2
K� P�bU;P�bVð Þ � 3

4 kV bU; bV½ �k2

þ k2

2 g bU;bVð Þg rbVG
1
k2

	 

;bU

	 

� g bV ; bVð Þg rbUG

1
k2

	 

;bU

	 

þ g bV ;bUð Þg rbUG

1
k2

	 

;bV

	 

� g bU;bUð Þg rbVG

1
k2

	 

;bV

	 
n o
þ k4

4 g bU;bUð Þg bV ;bVð Þ � g bV ;bUð Þg bU;bVð Þð ÞkG 1
k2

	 

k2 þ kbU 1

k2

	 

bV � bV 1

k2

	 

bUk2

n o
:

ð39Þ
Similarly, using (11) we have

K aU; bVð Þ ¼ g R aU;bVð ÞbV ;aUð Þ ¼ g raUAð ÞbVbV ;aU
	 


þ kAbVaUk2

�g rbVT
� �

aUbV ;aU
	 


� kTaUbVk2:
ð40Þ

On using (11), we obtain

K bU;aVð Þ ¼ K aV ;bUð Þ ¼ g R aV ; bUð ÞbU;aVð Þ ¼ g raVAð ÞbUbU;aV
	 


þkAbUaVk2 � g rbUT
� �

aVbU;aV
� �� kTaVbUk2:

ð41Þ
K CX;bUð Þ ¼ g R CX;bUð ÞbU;CXð Þ ¼ 1
k2
h R� P�CX;P�bUð ÞP�bU;P�CXð Þ

� 3
4 kV CX;bU½ �k2 þ k2

2 g CX; bUð Þg rbUG
1
k2

	 

;CX

	 

� g bU;bUð Þg rCXG

1
k2

	 

; C

	n
þ k4

4 g CX;CXð Þg bU;bUð Þ � g bU; CXð Þg CX; bUð Þð ÞkG 1
k2

	 

k2 þ kCX 1

k2

	 

bU� bU

n

7

In view of (38), (39), (40), (41) and (37), we get (35).
As M is a l.p.R. manifold, for unit vector fields X and U, using

(19) and (20) we have

K X;Uð Þ ¼ K FX;FUð Þ ¼ K BX;aUð Þ þ K CX;aUð Þ þ K BX; bUð Þ þ K CX; bUð Þ:
ð42Þ

With the help of (32) and (9), we obtain

K BX;aUð Þ ¼ g R BX;aUð ÞaU;BXð Þ ¼ g bR BX;aUð ÞaU;BX
	 


þg TBXaU;TaUBXð Þ � g TaUaU;TBXBXð Þ
¼ bK BX;aUð Þ þ kTBXaUk2 � g TaUaU;TBXBXð Þ:

ð43Þ

Using (11), we have
K BX; bUð Þ ¼ g R BX;bUð ÞbU;BXð Þ ¼ g rBXAð ÞbUbU;BX
	 


þ kAbUBXk2

�g rbUT
� �

BXbU;BX
� �� kTBXbUk2:

ð44Þ

Lastly, using (11) we get

K CX;aUð Þ ¼ K aU; CXð Þ ¼ g R aU; CXð ÞCX;aUð Þ ¼ g raUAð ÞCXCX;aV
� �

þkACXaUk2 � g rCXTð ÞaUCX;aU
� �� kTaUCXk2: ð45Þ

Similarly, from (12) we have
X


þ g bU;CXð Þg rCXG

1
k2

	 

; bU

	 

� g CX;CXð Þg rbUG

1
k2

	 

;bU

	 
o
1
k2

	 

CXk2

o
:

ð46Þ
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Hence, (36) follows by (42), (44) and (43) and (46).
Since M is a l.p.R. manifold, using (17) and (19) for unit vector

fields X and Y, we have

K X;Yð Þ ¼ K FX;FYð Þ ¼ K BX;BYð Þ þ K CX;CYð Þ
þK BX;CYð Þ þ K CX;BYð Þ: ð47Þ

Using (9), we derive

K BX;BYð Þ ¼ g R BX;BYð ÞBY; BXð Þ ¼ g bR BX;BYð ÞBY; BX
	 


þg TBXBY;TBYBXð Þ � g TBYBY;TBXBXð Þ
¼ bK BX;BYð Þ þ kTBXBYk2 � g TBYBY;TBXBXð Þ:

ð48Þ
K̂M U;Vð Þ 6 bK aU;aVð Þ þ 1
k2
K� P�bU;P�bVð Þ þ kTaUaVk2 � g TaVaV ;TaUaUð Þ � 3

4 kV bU; bV½ �k2

þ k2

2 g bU;bVð Þg rbVG
1
k2

	 

;bU

	 

� g bV ;bVð Þg rbUG

1
k2

	 

; bU

	 

þ g bV ; bUð Þg rbUG

1
k2

	 

; bV

	 

� g bU; bUð Þg rbVG

1
k2

	 

;bV

	 
n o
þ k4

4 g bU;bUð Þg bV ; bVð Þ � g bV ;bUð Þg bU; bVð Þð ÞkG 1
k2

	 

k2 þ kbU 1

k2

	 

bV � bV 1

k2

	 

bUk2

n o
þ g raUAð ÞbVbV ;aU

	 

þ kAbVaUk2

�g rbVT
� �

aUbV ;aU
� �� kTaUbVk2 þ g raVAð ÞbUbU;aV

	 

þkAbUaVk2 � g rbUT

� �
aVbU;aV

� �� kTaVbUk2 þ g TVV ;TUUð Þ:
Similarly, using (12), we get
K CX;CYð Þ ¼ g R CX; CYð ÞCY;CXð Þ ¼ 1
k2
h R� P�CX;P�CYð ÞP�CY;P�CXð Þ

þ 1
4 g V CX;CY½ �;V CY;CX½ �ð Þ � g V CY; CY½ �;V CX;CX½ �ð Þ þ 2g V CX;CY½ �;V CY;CX½ �ð Þf g

þ k2

2 g CX;CYð Þg rCYG
1
k2

	 

;CX

	 

� g CY; CYð Þg rCXG

1
k2

	 

;CX

	 

þ g CY;CXð Þg rCXG

1
k2

	 

;CY

	 

� g CX;CXð Þg rCYG

1
k2

	 

;CY

	 
n o
þ k4

4 g CX;CXð Þg CY;CYð Þ � g CY;CXð Þg CX;CYð Þð ÞkG 1
k2

	 

k2 þ g CX 1

k2

	 

CY� CY 1

k2

	 

CX;CX 1

k2

	 

CY� CY 1

k2

	 

CX

	 
n o
:

Also by direct calculations, we obtain
K CX;CYð Þ ¼ 1
k2
K� P�CX;P�CYð Þ � 3

4 kV CX;CY½ �k2

þ k2

2 g CX;CYð Þg rCYG
1
k2

	 

; CX

	 

� g CY;CYð Þg rCXG

1
k2

	 

;CX

	 

þ g CY;CXð Þg rCXG

1
k2

	 

;CY

	 

� g CX;CXð Þg rCYG

1
k2

	 

;CY

	 
n o
þ k4

4 g CX;CXð Þg CY; CYð Þ � g CY; CXð Þg CX; CYð Þð ÞkG 1
k2

	 

k2 þ kCX 1

k2

	 

CY� CY 1

k2

	 

CXk2

n o
:

ð49Þ
In a similar way, using (11) we have

K BX;CYð Þ ¼ g R BX; CYð ÞCY;BXð Þ ¼ g rBXAð ÞCYCY;BX
� �þ kACYBXk2

�g rCYTð ÞBXCY; BX
� �� kTBXCYk2:

ð50Þ

Lastly, using (11) we have
8

K CX;BYð Þ ¼K BY;CXð Þ¼ g R BY;CXð ÞCX;BYð Þ ¼ g rBYAð ÞCXCX;BY
� �

þkACXBYk2�g rCXTð ÞBYCX;BY
� ��kTBYCXk2: ð51Þ

Writing (48), (49), (50) and (51) in (47), we get (35).

Theorem 12 has the following direct consequences, which we
state below:

Corollary 2. Let P : M; g;Fð Þ ! N;hð Þ be a CGS from a l.p.R.
manifold M; g;Fð Þ to a RM N;hð Þ. Then, for any U;V 2 C ker F�ð Þ
The equality holds iff the fibers are totally geodesic and bkerP� is
integrable.
Proof. Using Corollary 1, (O’Neill, 1966), Eq. (34) can be rewritten
as



bK U;Vð Þ P bK aU;aVð Þ þ 1
k2
K� P�bU;P�bVð Þ þ kTaUaVk2 � g TaVaV ;TaUaUð Þ � 3

4 kV bU; bV½ �k2

þ k2

2 g bU;bVð Þg rbVG
1
k2

	 

; bU

	 

� g bV ; bVð Þg rbUG

1
k2

	 

;bU

	 

þ g bV ;bUð Þg rbUG

1
k2

	 

;bV

	 

� g bU;bUð Þg rbVG

1
k2

	 

;bV

	 
n o
þg raUAð ÞbVbV ;aU

	 

þ kAbVaUk2

�g rbVT
� �

aUbV ;aU
� �� kTaUbVk2 þ g raVAð ÞbUbU;aV

	 

þkAbUaVk2 � g rbUT

� �
aVbU;aV

� �� kTaVbUk2 � kTUVk2 þ g TVV ;TUUð Þ;
which proves our claim.

Furthermore,

Corollary 3. Let P be a CGS from a l.p.R. manifold M; g;Fð to a RM
N;hð Þ i.e., P : M ! N. Then,

bK U;Vð Þ P bK aU;aVð Þ þ 1
k2
K� P�bU;P�bVð Þ þ kTaUaVk2 � g TaVaV ;TaUaUð Þ � 3

4 kV bU; bV½ �k2

þ k2

2 g bU;bVð Þg rbVG
1
k2

	 

; bU

	 

� g bV ; bVð Þg rbUG

1
k2

	 

;bU

	 

þ g bV ;bUð Þg rbUG

1
k2

	 

;bV

	 

� g bU;bUð Þg rbVG

1
k2

	 

;bV

	 
n o
þg raUAð ÞbVbV ;aU

	 

þ kAbVaUk2

�g rbVT
� �

aUbV ;aU
� �� kTaUbVk2 þ g raVAð ÞbUbU;aV

	 

þkAbUaVk2 � g rbUT

� �
aVbU;aV

� �� kTaVbUk2 � kTUVk2 þ g TVV ;TUUð Þ;

for U;V 2 C kerP�ð Þ. In above expression equality is satisfied iff P is a
homothetic submersion.

Corollary 4. Let P : M; g;Fð Þ ! N;hð Þ be a CGS from a l.p.R. manifold M; g;Fð Þ to a RM N;hð Þ. Then,
K X;Yð Þ P bK BX;BYð Þ þ kTBXBYk2 � g TBYBY;TBXBXð Þ þ 1

k2
K� F�CX; F�CYð Þ � 3

4 kV CX;CY½ �k2

þ k2

2 g CX;CYð Þg rCYG
1
k2

	 

;CX

	 

� g CY;CYð Þg rCXG

1
k2

	 

;CX

	 

þ g CY;CXð Þg rCXG

1
k2

	 

;CY

	 

� g CX;CXð Þg rCYG

1
k2

	 

;CY

	 
n o
þ k4

4 g CX;CXð Þg CY;CYð Þ � g CY;CXð Þg CX;CYð Þð ÞkG 1
k2

	 

k2 þ kCX 1

k2

	 

CY� CY 1

k2

	 

CXk2

n o
þ g rBXAð ÞCYCY;BX

� �þ kACYBXk2

�g rCYTð ÞBXCY;BX
� �� kTBXCYk2 þ g rBYAð ÞCXCX;BY

� �þ g rBYAð ÞCXCX;BY
� �

þkACXBYk2 � g rCXTð ÞBYCX;BY
� �� kTBYCXk2;

for X;Y 2 C kerP�ð Þ?
	 


. The equality holds iff for any X;

Y 2 C ker F�ð Þ?
	 


;TBXBY ¼ 0;ACYBX ¼ 0 and either rankl ¼ 1 or Gkjl ¼ 0.

Proof. On using (35) we have,

K X;Yð Þ �kTBXBYk2 � kACYBXk2 � kCX 1
k2

	 

CY� CY 1

k2

	 

CXk2

¼ bK BX;BYð Þ þ kTBXBYk2 � g TBYBY;TBXBXð Þ þ 1
k2
K� F�CX; F�CYð Þ � 3

4 kV CX;CY½ �k2

þ k2

2 g CX;CYð Þg rCYG
1
k2

	 

;CX

	 

� g CY;CYð Þg rCXG

1
k2

	 

;CX

	 

þ g CY;CXð Þg rCXG

1
k2

	 

;CY

	 

� g CX;CXð Þg rCYG

1
k2

	 

;CY

	 
n o
þ k4

4 g CX;CXð Þg CY;CYð Þ � g CY;CXð Þg CX;CYð Þð ÞkG 1
k2

	 

k2 þ kCX 1

k2

	 

CY� CY 1

k2

	 

CXk2

n o
þ g rBXAð ÞCYCY;BX

� �þ kACYBXk2

�g rCYTð ÞBXCY;BX
� �� kTBXCYk2 þ g rBYAð ÞCXCX;BY

� �þ g rBYAð ÞCXCX;BY
� �

þkACXBYk2 � g rCXTð ÞBYCX;BY
� �� kTBYCXk2;

which proves the assertion. The necessary and sufficient condition for
the equality is

kTBXBYk2 þ kACYBXk2 þ kCX 1
k2

� �
CY� CY

1
k2

� �
CXk2 ¼ 0:

Hence, we obtain TBXBY ¼ 0;ACYBX ¼ 0, for any X;Y 2 C ker F�ð Þ?
	 


and either rankl ¼ 1 or Gkjl ¼ 0.

Moreover,

Corollary 5. Let P : M; g;Fð Þ ! N;hð Þ be a CGS from a l.p.R. manifold M; g;Fð Þ to a RM N; hð Þ. Then,
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K X;Yð Þ 6 bK BX;BYð Þ þ kTBXBYk2 � g TBYBY;TBXBXð Þ þ 1
k2
K� F�CX; F�CYð Þ

þ k2

2 g CX;CYð Þg rCYG
1
k2

	 

; CX

	 

� g CY;CYð Þg rCXG

1
k2

	 

;CX

	 

þ g CY;CXð Þg rCXG

1
k2

	 

;CY

	 

� g CX;CXð Þg rCYG

1
k2

	 

;CY

	 
n o
þ k4

4 g CX;CXð Þg CY; CYð Þ � g CY; CXð Þg CX;CYð Þð ÞkG 1
k2

	 

k2 þ kCX 1

k2

	 

CY� CY 1

k2

	 

CXk2

n o
þ g rBXAð ÞCYCY;BX

� �þ kACYBXk2

�g rCYTð ÞBXCY;BX
� �þ g rBYAð ÞCXCX; BY

� �þ g rBYAð ÞCXCX;BY
� �

þkACXBYk2 � g rACXTð ÞBYCX;BY
� �� kTBYCXk2;

for X;Y 2 C kerP�ð Þ?. The equality holds iff TBXCY ¼ 0 and CX;CY½ � 2 C Hð Þ.

Corollary 6. Let P : M; g;Fð Þ ! N;hð Þ be a CGS from a l.p.R. manifold M; g;Fð Þ to a RM N;hð Þ. Then,

K X;Uð Þ P bK BX;aUð Þ þ kTBXaUk2 � g TaUaU;TBXBXð Þ
þg rABXAð ÞbUbU; BX

	 

þ kAbUBXk2

�g rbUT
� �

BXbU;BX
� �� kTBXbUk2 þ g raUAð ÞCXCX;aV

� �
þkACXaUk2 � g rCXTð ÞaUCX;aU

� �� kTaUCXk2
þ 1

k2
h R� P�CX;P�bUð ÞP�bU;P�CXð Þ

� 3
4 kV CX;bU½ �k2 þ 2g V CX;bU½ �;V bU;CX½ �ð Þg

þ k2

2 g CX;bUð Þg rbUG
1
k2

	 

;CX

	 

� g bU;bUð Þg rCXG

1
k2

	 

;CX

	 

þ g bU;CXð Þg rCXG

1
k2

	 

;bU

	 

� g CX;CXð Þg rbUG

1
k2

	 

;bU

	 
n o
þ k4

4 g CX;CXð Þg bU;bUð Þ � g bU;CXð Þg CX;bUð Þð ÞkG 1
k2

	 

k2 þ kCX 1

k2

	 

bU � bU 1

k2

	 

CXk2

n o
;

for X 2 C ker F�ð Þ?
	 


and U 2 C ker F�ð Þ. The equality holds iff AFUBX ¼ 0;G 1
k2

	 

¼ 0 and F horizontally homothetic submersion.

Proof. On Using (36) we have,

KM X;Uð Þ �kAbUBXk2 � k4

4 g CX;CXð ÞkG 1
k2

	 

k2 � kCX 1

k2

	 

bU � bU 1

k2

	 

CXk2

n o
¼ bK BX;aUð Þ þ kTBXaUk2 � g TaUaU;TBXBXð Þ
þg rBXAð ÞbUbU; BX

	 

þ kAbUBXk2

�g rbUT
� �

BXbU;BX
� �� kTBXbUk2 þ g raUAð ÞCXCX;aV

� �
þkACXaUk2 � g rCXTð ÞaUCX;aU

� �� kTaUCXk2
þ 1

k2
h R� P�CX;P�bUð ÞP�bU;P�CXð Þ

� 3
4 kV CX; bU½ �k2 þ 2g V CX; bU½ �;V bU;CX½ �ð Þg

þ k2

2 g CX;bUð Þg rbUG
1
k2

	 

; CX

	 

� g bU; bUð Þg rCXG

1
k2

	 

;CX

	 

þ g bU;CXð Þg rCXG

1
k2

	 

;bU

	 

� g CX;CXð Þg rbUG

1
k2

	 

;bU

	 
n o
þ k4

4 g CX;CXð Þg bU; bUð Þ � g bU; CXð Þg CX; bUð Þð ÞkG 1
k2

	 

k2 þ kCX 1

k2

	 

bU � bU 1

k2

	 

CXk2

n o
;

This follows the inequality. For the equality case,

kAbUBXk2 þ k4

4
g CX;CXð ÞkG 1

k2

� �
k2 þ kCX 1

k2

� �
bU � bU

1
k2

� �
CXk2

� �
¼ 0:

Thus, the eqality follows if and only if AbUBX ¼ 0 and G 1
k2

	 

¼ 0;

CX 1
k2

	 

bU � bU 1

k2

	 

CX ¼ 0 which ensures that P is horizontally homothetic.

We now conclude this section with the following result;
Corollary 7. Let P : M; g;Fð Þ ! N;hð Þ be a CGS from a l.p.R. manifold M; g;Fð Þ to a RM N;hð Þ. Then,
KM X;Uð Þ 6 bK BX;aUð Þ þ kTBXaUk2 � g TaUaU;TBXBXð Þ

þg rBXAð ÞbUbU;BX
	 


þ kAbUBXk2

�g rbUT
� �

BXbU;BX
� �þ g raUAð ÞCXCX;aV

� �
þkACXaUk2 � g rCXTð ÞaUCX;aU

� �� kTaUCXk2
þ 1

k2
h R� P�CX;P�bUð ÞP�bU;P�CXð Þ þ 2g V CX; bU½ �;V bU;CX½ �ð Þg

þkAbUBXk2 þ k4

4 g CX;CXð ÞkG 1
k2

	 

k2 þ kCX 1

k2

	 

bU � bU 1

k2

	 

CXk2

n o
þ k2

2 g CX;bUð Þg rbUG
1
k2

	 

;CX

	 

� g bU;bUð Þg rCXG

1
k2

	 

;CX

	 

þ g bU; CXð Þg rCXG

1
k2

	 

;bU

	 

� g CX;CXð Þg rbUG

1
k2

	 

;bU

	 
n o
þ k4

4 g CX; CXð Þg bU;bUð Þ � g bU; CXð Þg CX; bUð Þð ÞkG 1
k2

	 

k2 þ kCX 1

k2

	 

bU � bU 1

k2

	 

CXk2

n o
;

for X 2 C ker F�ð Þ? and U 2 C ker F�ð Þ. The equality case follows iff TBXbU ¼ 0 and CX;bU½ � 2 C Hð Þ.

F. Sikander, T. Fatima and S.A. Alharbi Journal of King Saud University – Science 35 (2023) 102526

10



F. Sikander, T. Fatima and S.A. Alharbi Journal of King Saud University – Science 35 (2023) 102526
Data Availability Statement

My manuscript has no associated data set.

Author Contributions

All authors contributed to the study conception and design. All
authors read and approved the final manuscript.

Funding

This research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit sectors.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

The authors would like to express their sincere thanks to the
editor and the anonymous reviewers for their helpful comments
and suggestions.

References

Akyol, M.A., 2017. Conformal semi-slant submersions. Int. J. Geometric Methods
Modern Phys. 14 (7), 1750114.

Akyol, M.A., 2017. Conformal semi-invariant submersions from almost product
Riemannian manifolds. Acta Mathematica Vietnamica 42 (3), 491–507. https://
doi.org/10.1007/s40306-016-0193-9.

Akyol, M.A., 2021. Conformal generic submersion. Turk. J. Math. 45, 201–219.
https://doi.org/10.3906/mat-2005-40.

Akyol, M.A., S�ahin, B., 2016. Conformal anti-invariant submersions from almost
Hermitian manifolds. Turkish J. Mathe. 40 (1), 43–70.

Akyol, M.A., S�ahin, B., 2017. Conformal semi-invariant submersions. Commun.
Contemp. Mathe. 19 (2), 1650011. https://doi.org/10.1142/
S0219199716500115.

Akyol, M.A., S�ahin, B., 2019. Conformal slant submersions. Hacettepe J. Mathe. Stat.
48 (1), 28–44.

Ali, S., Fatima, T., 2013. Generic Riemannian submersions. Tamkang J. Mathe. 44 (4),
395–409.
11
Altafini, C., 2004. Redundant Robotic chains on Riemannian submersions. IEEE
Trans. Robot. Automat. 20(20), 335–340.

Baird, P., Wood, J.C., 2003. Harmonic Morphisms Between Riemannian Manifolds,
London Mathematical Society Monographs, 29. Oxford University Press, The
Clarendon Press, Oxford.

Bourguignon, J.P., 1990. A mathematian’s visit to Klauza-Klein theory, Rend. Sem.
Mat. Univ. Politec. Torino 1989, Special Issue, 143–163.

Bourguignon, J.P., Lawson, Jr. H.B., 1981. Stability and isolation phenomena for
Yang-Mills fields, Comm. Math. Phys. 79(2), 189–230.

Chen, B.Y., 1981. Differential geometry of real submanifolds in a Kaehler manifold.
Monatshefte für Mathematik 91, 257–274.

Chinea, D., 1985. Almost contact metric submersions. Rend. Circ. Mat. Plaeermo, 34
(1), 89–104.

Escobales, R.H. Jr., Riemannian submersions from complex projective space, J.
Differential Geometry 13(1), 93–107.

Falcitelli, M., Ianus, S., Pastore, A.M., 2004. Riemannian submersions and Related
Topics. World Scientific, River Edge, NJ.

Gray, A., 1997. Pseudo-Riemannian almost product manifolds and submersions. J.
Appl. Mathe. Mech. 16, 715–737.

Gromoll, D., Klingenberg, W., Meyer, W., 1975. Riemannsche Geometrie im Groben.
In: Lecture Notes in Mathematics 55. Springer.

Gudmundsson, S., 1992. The Geometry of Harmonic Morphisms. University of
Leeds. Ph.D. Thesis.

Gudmundsson, S., Wood, J.C., 1997. Harmonic Morphisms between almost
Hermitian manifolds. Bollettino dell’Unione Matematica Italiana 11 (2), 185–
197.

Ianus, S., Visinescu, M., 1987. Kaluza-Klein theory with scalar filds and generalised
Hopf manifolds. Classical Quantum Gravity 4(5), 1317–1325.

Ianus, S., and Visinescu, M., 1991. Space-time compactification and Riemannian
submersions in The mathematical mheritage of C, F. Gauss, 358–371, world Sci.
Publ., River Edge, NJ.

Ianus, S., Mazzocco, R., Vilcu, G.E., 2008. Riemannian submersions from
quaternionic manifolds. Acta Appl. Mathe. 104 (1), 83–89.

Marrero, J.C., Rocha, J., 1994. Locally conformal Kähler submersions. Geom.
Dedicata. 52 (3), 271–289.

O’Neill, B., 1966. The fundamental equations of a submersion. Michigan Mathe. J. 13,
458–469.

Özdemir, F., Sayar, C., Tas�tan, H.M., 2017. Semi-invariant submersions whose total
manifolds are locally product Riemannian. Quaest. Mathe. 40 (7), 909–929.

Park, K.S., Prasad, R., 2013. Semi-slant submersions. Bull. Korean Mathe. Soc. 50 (3),
951–962.

S�ahin, B., 2010. Anti-invariant Riemannian submersions from almost Hermitian
manifolds. Central Eur. J. Mathe. 3, 437–447.

S�ahin, B., 2011. Semi-invariant Riemannian submersions from almost Hermitian
manifolds. Can. Mathe. Bull. 56, 173–182.

S�ahin, B., 2011. Slant submersions from almost Hermitian manifolds. Bull. Mathe.
Societe des Sciences Mathe. Roumanie 54 (1), 93–105.

Tastan, H.M., 2014. On Langrangian submersions Hacettepe. J. Math. Stat. 43 (6),
993–1000.

Urakawa, H., 1993. Calculus of Variations and Harmonic Maps. American
Mathematical Society, Providence, RI.

Watson, B., 1976. Almost Hermitian submersions. J. Diff. Geometry 11 (1), 147–165.
Yano, K., Kon, M., 1984. Structures on Manifolds. World Scientific, Singapore.

http://refhub.elsevier.com/S1018-3647(22)00707-8/h0005
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0005
https://doi.org/10.1007/s40306-016-0193-9
https://doi.org/10.1007/s40306-016-0193-9
https://doi.org/10.3906/mat-2005-40
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0020
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0020
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0020
https://doi.org/10.1142/S0219199716500115
https://doi.org/10.1142/S0219199716500115
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0030
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0030
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0030
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0035
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0035
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0045
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0045
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0045
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0060
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0060
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0080
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0080
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0090
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0090
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0095
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0095
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0095
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0100
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0100
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0105
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0105
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0105
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0120
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0120
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0130
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0130
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0135
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0135
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0140
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0140
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0140
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0145
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0145
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0150
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0150
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0155
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0155
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0160
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0160
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0175
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0175
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0180
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0180
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0185
http://refhub.elsevier.com/S1018-3647(22)00707-8/h0190

	A study on curvature relations of conformal generic submersions
	1 Introduction
	2 Conformal Riemannian Submersions
	3 Locally Product Riemannian manifolds
	4 Conformal generic submersions
	5 Curvature relations on conformal generic submersions
	Data Availability Statement
	Author Contributions
	Funding
	Declaration of Competing Interest
	Acknowledgements
	References


