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Recently in literature many families of distributions have been introduced to study the skewness, kurto-
sis and to explore the shape of the distribution more intensely. These families of distribution have wider
applicability in variety of fields. In this paper, we introduce a five-parameter distribution, called the
Kumaraswamy generalized Kappa distribution which extends the three-parameter Kappa distribution.
The new distribution is more flexible and is applicable in the study of the highly-skewed data. Some
mathematical properties of the proposed distribution are studied that includes the explicit expression
for generating functions, moments, inequality indices, and entropies. The maximum likelihood estimates
are computed using the numerical procedure. An application of the Kumaraswamy generalized Kappa
distribution is illustrated using a real data set on stream flow.
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1. Introduction

Many families of distribution have been recently proposed
which are more flexible and have wider applicability ranging from
survival analysis, reliability engineering, and related fields. Classi-
cal distributions do not provide adequate fits to the real data which
are highly skewed. To overcome this drawback numerous methods
of introducing additional shape parameters, and generating new
families of distributions are available in the statistical literature.

Some well-known generators are the Marshall and Olkin
(1997), exponentiated generalized (exp-G) class of distributions
based on Lehmann-type alternatives suggested by Gupta et al.
(1998), generalized-exponential (GE) also known as exponentiated
exponential (EE) distributions introduced by Gupta and Kundu
(1999), beta-generated distributions proposed by Eugene et al.
(2002) and Jones (2004), Kumaraswamy generalized (Kum-G) dis-
tribution suggested by Cordeiro and de Castro (2011), McDonald
generalized (Mc-G) distribution introduced by Alexander et al.
(2012), gamma-generated type-1 distributions proposed by
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Zografos and Balakrishnan (2009) and Amini et al. (2014),
gamma-generated type-2 distributions by Ristic and Balakrishnan
(2012) and Amini et al. (2014), exponentiated generalized (exp-
G) distribution introduced by Cordeiro et al. (2013) and odd
Weibull-generated distribution proposed by Bourguignon et al.
(2014). The induction of one, two or three more shape parameters
to the base-line distribution increases the chances to investigate
skewness and vary tail weights. The earlier mentioned generaliza-
tions also help to deduce sub-model of generalized distributions
that greatly enhances the applicability.

There is no general class of distribution to model skewed data in
every practical situation. Mielke (1973) presented a class of asym-
metric positively skewed distributions, known as the Kappa distri-
bution, for explaining and examining rainfall data and weather
modification. Mielke and Johnson (1973) presented the maximum
likelihood estimates and the likelihood ratio tests for the three-
parameter Kappa distribution. The Kappa distribution has obtained
attention from the hydrologic experts. Conventionally, the log nor-
mal and gamma distributions are fitted to precipitation data but
these distributions have their own limitations due to non-
existence of closed forms of the cdfs and quantile functions. The
class of Kappa distribution have closed algebraic expressions that
can easily be analysed.

Let X be a three-parameter Kappa random variable, then the pdf
and cdf of the Kappa distribution are given by

()
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(1.1)
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o,B,0>0and x > 0.

Parameter f is scale while parameters o and 6 are shape.

In this paper [deduced from Hussain (2015)], we have extended
the three parameter Kappa distribution, namely the Kumaraswamy
generalized Kappa (KGK) distribution by introducing additional
shape parameters. The paper is organized as follows. In Section 2
we have defined KGK distribution, its sub-models and the beha-
viour of its pdf. The mathematical properties such as: quantile
functions, moments, and generating functions are derived in Sec-
tion 3. The Reliability properties are presented in Section 4. Some
inequality indices are given in Section 5. Entropies are discussed
in Section 6. Maximum likelihood estimation of the parameters
of the distribution is presented in Section 7. The application on real
life data set of stream flows amount is provided in Section 8.
Finally, Section 9 concludes the manuscript.

F(x) = (1.2)

2. Kumaraswamy generalized Kappa distribution

Cordeiro and de Castro (2011) defined a general class of general
distributions for double-bounded random process based on
Kumaraswamy (1980) which is known as the Kumaraswamy gen-
eralized (Kum-G) distribution.Let X be a random variable, the cdf of
Kum-G class of distribution is given by

Frum c() = 1—[1 - {F(x)}’

where a and b are additional shape parameters to generalized dis-
tribution, which govern skewness and tail weights. The probability
density function (pdf) corresponding to (2.1) is

frum-c(®) = abf X){Fx)}*'[1 - {F(x)}]

Inserting (1.2) in (2.1), the cdf of the Kumaraswamy generalized
Kappa (KGK) distribution is given by

” aqb

(2.1)

b (2.2)

Frex(x) =1 — 3 ;x>0 (2.3)
“+ (3
The pdf corresponding to (2.3), will be
a-1
(o+1) ol =
af /x\"! ra N B LY
fKGK(X):ab?(B> {OC+ (ﬁ) ‘<> 0
()
4 b-1
(E) o0 o
x |1 ! . x>0 (2.4)

X o6
o+ <ﬁ)
with a, b, o, 8,0 > 0, where a,b, o and 0 are shape parameters while
B is scale parameter.

2.1. Special sub-models
The KGK has the following distributions as special sub-models.
« Exponentiated Kappa Lehmann type II (EK-L2) distribution:

If a = 1, the KGK reduces to the exponentiated Kappa (Lehmann
type II) distribution with parameters b, «, f and 0.

« Exponentiated Kappa Lehmann type I (EK-L1) distribution: If
b =1, the KGK reduces to the exponentiated Kappa (Lehmann
type 1) distribution with parameters a, «, f and 6.

o Three-parameter Kappa distribution: If a =b =1, the KGK
reduces to three-parameter Kappa distribution with parameter
o, B and 0.

o Two-parameter Kappa distribution: If a = b = 6 = 1, the KGK
reduces to two-parameter Kappa distribution with parameter
o and B.

e One-parameter Kappa distribution: If a=b=0= =1, the
KGK reduces to one-parameter Kappa distribution with param-
eter o.

2.2. A useful representation of KGK density function

Using the binomial (1-w)"' =

Z]—jo(—l)j(b ; 1 )a)f, where b is real non-integer and |o| < 1.

expansion,

The KGK density given in (2.4) in more simplified form can be
expressed as

S ()6 G

(25)

If a is an integer, Eq. (2.5) reveals that KGK density function is
equals to Kappa density function multiplied by an infinite power
series of W;.

0 fa(j+1)-1 00 —&U+D-1
Frox () = Wj% <%> {0‘ + (%) }

where W; = aszio(—l)f<b ; 1 >

Graphical representation of the density function for various val-
ues of the parameters selected arbitrarily provided in Fig. 1. It can
be observed from the Fig. 1 that increasing the value of the shape
parameters (a, b, o, 0) the peakedness of the density function tends
to increase. Similarly, the increase in the value of the scale param-
eter S shifts the density function away from the origin.

(2.6)

3. Statistical properties

In this section, various statistical properties of the KGK distribu-
tion, viz. Quantile function, median, random number generation,
mode, moments, moment generating function (mgf), characteristic
function (cf), mean deviation from mean and mean deviation from
median.

3.1. Quantile function and random number generation

The gth quantile, x4, of the KGK distribution can be obtained by

Now, for solving x4, gives us quantile function of the Kum general-
ized Kappa (KGK) distribution.

1

1 L

xq:ﬁoﬁ{l—(1—p)5}“0{]—{1—(1—p)%}ﬂ Y 0<p<1 3.1

The median (Q,) of the KGK distribution will be
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Fig. 1. Plots of density function of KGK distribution by varying the parameter values.
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The lower quartile (Q;) and upper quartile (Q3) of the KGK distribu-
tion are

g

Qq =Xo25 = ﬁd%{l -(1- 0.25)%}“% [1 _ {1 - 0.25)%}%}

and

==t 10730} 1 {1075y

By the inversion method, the random numbers from KGK distribu-
tion can be generated as

a7 b
a

(5 o0

1- 1=

o+ (5) "
[

=u; u~U(@0,1)

After simplification, we get

ﬁocw{l—(l—u)} {1 —{1—(l—u)%}} o (3.3)

3.2. Mode

The mode of the KGK is obtained as

logf (x) = log(abﬂac@) + (6a — l)log<%) (OC i a> log{oc + (ﬁ) w}

The first derivative of logf (x) for the KGK distribution is 2 logf (x). So
the modes of the KGK distribution are the roots of the following
equation 2 logf (x) = 0 which gives
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There may be more than one root to Eq. (3.4). If x = X, is a root of Eq.
(3.4) then it corresponds to a local maximum or local minimum or a
point of inflection depending on whether Z; logf( )< or> or =0,
respectively.
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p

=%

3.3. rth moment

The rth moment for KGK random variable X is given by

1 = EXT) = / " X fra 09X

o0

using (2.6), we have

/ . a0 0a(+1)—1 \ —EU+)-1
= [ xw b’(ﬂ) {‘“(E) } dx

Let Z = (%)x then dx — 2 dzAfter simplification, we get

00Z

W ﬁ, o g . . ) 7 1 §U+1)+1dZ
W= PCTEITER A - - +&

Let W=1—-(1+9) " and dZ = ;%-dW

After simplification, we get

_ Wjﬂra%—] / Wera(‘]Jrl [1 ]I—W—1 dW
0
Using beta function,
1071 L M =
= Wi o B( +- u+1) <x0>’ r=1,2,3,4 (3.5)

where B(a,b) = [, U*"'[1 — U]’ 'dU is the beta function.
The mean and the variance of the KGK distribution are, respec-
tively, given by

mean = W; /fow*lB< ! += (1 +1),1 %) (3.6)
. 2 a,. 2
— W Ras1g( 2 L2 _“
Variance = W;p"o B<<x6+oc0+1)’1 oc0>
1 1 a,. 1 2
_ Ry 1B — o+ = _
{Wjﬂot B(aeJra(]Jrl),l a@)} (3.7

where W; = aby > (~1)’ (b;1>.

3.4. Moment generating function and characteristic function

The moment generating function and characteristic function of
the KGK distribution are given by

=t >t r rooa,. r
_ X\ _ Sy = e R a1 I e R
M(e) = E(e )*; Hr ; Wil B (g 0+ 1= )

r=12734 (3.8)

and
i = ltr /
o0 =E@) = Cru
r=|
(i) e (T A .
= W B<@+—0+1),1—@), r=1,2,3,4

(3.9)

where W; = aszio(fl)j<b ; 1 >

4. Reliability properties

In this section, we have derived the reliability properties such as
survival (or reliability) function, hazard rate, reversed hazard rate,
cumulative hazard rate, mean residual life and mean waiting time
for the Kumaraswamy generalized Kappa distribution.

A life time random variable t is said to have KGK (a,b, «, 8, 6)
distribution, when its cdf and pdf are represented as follows

o0 i b
t
(/‘>

FI(GK(t) =1-|({1- T HE 0 (41)
o+ (/%)
and
(x-+a) ()O(() g b-1
o0 6a—1 t ad) @ %
frax0 =055 () {“* ) B AT
o+ (E)
(4.2)
t>0,a,b,o,p,0>0.
The survival (or reliability) function, S(t), is given by
aq b
(Lj) ol o
S(t)=1-F(t)= |1 ! (4.3)

¢ o0
o+ (ﬁ)

The failure rate or hazard rate function, h(t), for KGK distribution is
given by

o-tiest)” b0} {0
(4.4)

Various shape of the hazard function for different parameter values
are presented in Fig. 2.

It is observable from Fig. 2 that the hazard rate of the KGK
distribution tends to increase initially, and then after reaching a
certain level it starts decreasing. This indicates that the KGK
distribution can be useful to model first increasing then decreasing
hazard rate.

The cumulative hazard rate function, H(t), and reversed hazard
rate, r(t), of KGK distribution are given respectively as

o &
t
(2

¢ o0
o+ (ﬁ)

o0 (t fa-1 ¢ o0 ,<x+u) (%)w, g b-1
£t ab?(ﬁ) {tx+(§) } {1_{%(/_5)10 } "

rit)=%===

SRR T

-1

Gl

- / "h(t)dt = —Ins() = —bin| 1 - (4.5)
0

and
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Fig. 2. Plots of hazard rate of KGK distribution by varying the parameter values.

The mean residual life (MRL) or life expectancy at a given time ¢t
measures the expected remaining life time of an individual of age
t. It is defined as

m(t) = % /tm ((t)dt — t (4.7)

which can also be written as

m(t) = % {E(t) - /0 t tf(t)dt} -

Now consider

[ [ () o))

After simplification and using incomplete beta function, we get

= wjﬁa%*‘B( G+1) 1 ,l)

1 1
o1 —@> (4.8)

fO ta- l

- Wit B (5 04+1)

where W =1 — (1 +§)’],Z: (%)a and By(a,b) =

is the incomplete beta function.

— " 'dt

Using the results of (4.8) in (4.7), the MRL of the KGK distribu-
tion obtained as

Wipeer [B(5G+1) +35.1—55) ~Bw (§06+1) +355.1—35)]

]
(4.9)

The mean waiting time (MWT) of an item failed in an interval [0, t]
is defined as

m(t)= —t

_ 1 t
o) =t - —/t rdr} 4.10
ue.0) =t~ {gs [ 0 (410)
The MWT of the KGK distribution is given as
(t,0)=t— |W;pozr'B (1+1)+l 1—l
K - J w a0’ ol
" -1
A ol o
(2
x |1 1 (4.11)

¢ o
o+ </§)
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5. Inequality measures

In this section, inequality measures such as Gini index, Lorenz
curve, Bonferroni curve, Zenga index, Atkinson index, Pietra index
and generalized entropy for the KGK distribution have been
obtained.

5.1. Gini index

The most well-known inequality index is Gini index, suggested
by Gini (1914), is defined as

F(x (x)}dx (5.1)
i )y "

Consider

w0\ a0 &
FX){1 - F(x)} = 1~ Lﬂ - 1= Lﬂ
() ()
(5.2)

Now integrating and applying binomial expansion on (5.2) for KGK
distribution, we get

: w0
/OF(x){l—F(x)}dx:/O w; r()o dx

where W; = Z?ioH)"(I,?) and W, = Zkio(*l)k<2]<b>'

Now simplifying further, we have

| Feott - Foopdx—w [~
w [

. . o6
Using transformation, Z = (%)

4

o o
76) ¢ ax
2+ (3)

w0y i
W dx (5.3)

such that dx = £

o0

=%

Zo'dZ we may
write,

z )
ditd-1 _ =
-t a/ z [ {1 1+ H dz
oo -1 %k
A R (R Y
o Jo o

then dZ = W

LetW=1-(1+%"

oo %—1 .
/ — /;(XH |:W1 / £1+W71 [1
0 0

W, / W11 fW]‘%‘ldW} (55)
0

(5.4) becomes

} w ]dW

Using beta function, we get

/ " Foo{1 — Fo Y

[focwl 1 1 a 1 1

Substituting the results of (5.6) and (3.6) in (5.1), the Gini index for
KGK distribution obtained as

(WiB(1 + 355, —5) ~ WiB(Gk + 55— 5)]

= OW,B(L +¢ o+1)17@)

al

where W= 351 (7). w0 (F). wi-

abZ}‘?jo(—l)j<b f 1 ) and E(x) = Wpos ' B(L+2(+1),1- 1) is
the mean of KGK distribution.

5.2. Lorenz curve

Lorenz (1905) provided a curve, L(p), which is defined as

= ;7 /Oxxf(x)dx (5.8)

having a cdf, F(x), with a finite mean .
The L(p) for KGK distribution is given as

Bw(@(i+1)+4,1-5)
B(§U+1)+;w] %)

Lp) = (5.9)

5.3. Bonferroni curve

The curve suggested by Bonferroni (1930) based on partial
means for inequality measure can be determined through the
relation

L
BCp) =1 (5.10)
Using (5.9) and (2.3), we obtain BC(p) for KGK distribution as

po —1

a
3

Bw(@(G+1)+4,1-1)
BEe(G+1)+L,1-1)

(5.11)

5.4. Zenga index

Zenga (1984, 1990) provided the following income inequality
index

Fx

7-1_"® 512
0 (5.12)
where
_ 1 X
m /O xf(x)dx (5.13)
and
‘1 o0
which can also be written as
+ 1 ¥
Mo = 1= {1 [, Moix (5.15)

For KGK distribution, we obtain
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and

+ y— W R 1 a 1,1 _
,u(x)f{,u W, o BW<“U+1)+0(9,1 a@)} 1

(5.17)

Now, from (5.16) and (5.17), the Zenga index obtained for KGK dis-
tribution is
m) ]

Z—1—|: Wﬁo(mlBW( (]+1) l(]

1~ W o By (¢ o+1 1
-1

(5.18)

5.5. Atkinson index

Atkinson (1970) presented a family of subjective indices, is
defined as

1

Ap(0',e) =1 —l{/ x”dF(x)}] ' (5.19)
U Jo
which can also be written as
' 1. %
Ar(0.6) =1 —ﬁ{ul,.g}”fn (5.20)
Using (3.5), we get
1- 1-¢

W, = Wi o B( 7 u+1) W) (5.21)

Using (3.6) and (5.21), the Atkinson index obtained for KGK distri-
bution is

1
{W,B] FOC i IB(] & a U+l) ﬁ)}l—n

Ap(0,6) =1 —
WjﬂOCW7 (1() +9 (] + 1) zx())

(5.22)

5.6. Pietra index

Pietra (1915) offered an index, which is also known as Schutz
index or half the relative mean deviation is defined as

MDx

1 [~ N
Pemgp [ = pldr(o =52 (523)
The Pietra index for KGK distribution is

HF (1) — Wioa By (SG+1) + 4,1 -
PX _ [ J <fl o x())] (5.24)

WipeerB(5 G+ 1) + 55,1~ 35)

5.7. Generalized entropy (GE)

Cowell (1980) and Shorrocks (1980) introduced the generalized
entropy (GE) index and is defined as

. 1 = (/x\° )
GEr(0,0) = 6T /0 {(H) - l}f(x)dx,a;éo,l (5.25)
which can also be written as
/ 1 Hs
GEr(0',0) = 56 -T) {ﬂ” 1} (5.26)
where i is the th moment about origin.
Using (3.5), we get
=W;po B E(j+1) LA (5.27)
- o M AT '

Now, inserting the results of (5.27) and (3.6) in (5.26), the GE
obtained for KGK distribution is
1 Wl B+ 1) + 2,1 - 2)

-1
o0(0—1 1 . 9
(0-1) (Wjﬁom 1B(§(]+1)+$,17;7,)>

GE¢(0/,0) =

(5.28)

If 6 =2 in (5.28), we obtain another inequality measures (squared
coefficient of variation)

cv?
Ex(x) =5
1) WREBEG ) 21 -2) (5.29)
_2 ’

2
(Wi 1BEG+ 1)+ 4.1 - 1))

6. Entropies

The most essential entropies of X ~ KGK(a, b, «, 8,0) are Shan-
non entropy, Rényi entropy, p-entropy. Here we consider two
entropy measures: the Rényi entropy, g-entropy. Entropies and
kurtosis measures play the same role in comparing the shape of
various densities and measuring heaviness of tails.

6.1. Rényi entropy

Rényi (1961) provided an extension of the Shannon entropy
which is defined as:

3 1ylog{/fr(x)dx} (6.1)

where y >0 and y # 1.
Applying binomial expansion on KGK pdf given by (2.4), we get
f"(x) in more simple form

) <aba0> Z( I ( y(b— 1)) <ﬁ>au(y+j>r{a+<z>w}(‘;+1)7“J

k(7)) =

(6.2)
The integral in (6.1) becomes
abof\’ & 1y p(b—1)\ [ (x\“0TH N\ 7(%”)}’7%]‘1
(7 () L G) {“*(E) } x
(6.3)

o0
By using transformation W = (%)1 such that dx = a—"OW%”dW (6.3)
reduces to
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(/ fx dx_-mb)<ﬁ>wlaw101§;(Uj(?@}-ﬂ}

J (6.4)
/ Z" T~ a1 Z} Vg
Using beta function, (6.4) reduces to
0 -1 N ) . _
(/ﬂmm:mw@)<ﬁW§]4wcwﬁﬁ
0 ‘ J (6.5)

B@(V”) oé)() TR %_$>
Substituting the result of (6.5), then (6.1) becomes, the Rényi
entropy for KGK distribution is given by
-1
()

1yzog{<ab)~»r(g)’ SR

N 1
ol ol

Ir(y) =
! (6.6)

) _l
< 7 +J) +a9 s

6.2. p-entropy

Havrda and Charvat (1967) presented p-entropy and later
Tsallis (1988) applied it to physical problems. Furthermore, one-
parameter generalization of the Shannon entropy is p-entropy
which can lead to models or statistical results that are different
from those acquired by using the Shannon entropy.

For a continuous random variable X having pdff(x), the g -
entropy is defined by

1 ,
1) =511 = [ wax (67)
where ' >0 and 8 # 1.
Using the result of (6.5), we get
00 i
/ f (x)dx = (ab)"’( ) o Z < U)
0 4 =0 J (6.8)

B B 1)
o ol

a /
B<&(/f +J) —@'F@?ﬁ
Hence, the expression for g-entropy is given as
1 N
f]—abﬁ<) 1(77"1
SRV Z

F g1
< F +J)—@+@,ﬂ +@—@>}

Iy(y) =

/("%57)

(6.9)

7. Estimation of parameters of KGK distribution

This section considers the estimation of the model parameters of
the KGK distribution by using the method of maximum likelihood.
We assume that X follows the KGK distribution and let
= (a,b,0,B,0) be the parameter vector of interest. The log-
likelihood function ¢ = L(®) for a random sample x,x,,...,X, is

given by
x\
o+ 4)
()]

(7.1)

¢ = nlog(abafp~") + (6a — 1)) logx; — (1
i=1

o\ % g
()
%0
o+ (%)

+ g) glog

l)ilog 1-
i=1

1

} . Then, we can write 7 as

=+(7)

teez, - {0
¢ = nlog(abafp™") + (6a — 1) Zlogx,

_ (1 +§>;log o+ (%)

The components of the score vector U(®) are given by

%glog o+ (%) w}

(72)

(b— 1)zn:log[1 -7
i1

n n
Us = (1 — atlogp) + HZlogx,- -

1 logZ
+(1-b Zz

n n
U, = 5t ;log[l

Lo g Ssla (9] (1493
( ) ZZ“log< >+a17b).

=
N
=%

_

na@ (a+ zZ ]Z'

ﬁ ZZ“+a1— Z]

U/f:_

n
Up=50- aologp) + a'zl:logx —(a+a) ZZ“log<ﬁ>
Za ]Z/

1—-b i0

+a( )i:] 1-7°

To find the MLEs of the five parameters a,b,o,  and 0. Setting
Uq,Up,U,, Uy and U, to zero and solving them simultaneously. For
interval estimation of the model parameters, we require the 5 x 5
observed information matrix J(®) = {Us,} where s,t =a,b,a, 8,0
given in Appendix A. To construct approximate confidence intervals

for a,b, o, f and 0 the multivariate normal NS(O,J(G))*]) distribution
can be used under standard regularity conditions. Here, J(®) is the
total observed information matrix evaluated at @. Then,
100(1 — a*)% confidence interval for a,b,a, 8 and 0 are given by
a+Zy 04 b+Zy 0oy, 8+Z,04 B £Z,0; and 0+Zy )0,
respectively, where Z,. , is the quantile (1 — o*/2) of the standard
normal distribution, and o(,’s denote the diagonal elements of

j(@)q corresponding to a, b, «, f and 0.

To check KGK distribution is strictly superior to the Kappa dis-
tribution for a given data set the likelihood ratio (LR) statistic can
be used. Then, the test of Hy : a =b = 1 versus H; : Hy is not true
is equivalent to compare the KGK and Kappa distributions and

the LR statistic becomes w = 2{¢(a,b,d,p,0)—¢1,1,a p,0)},
where @,b, 4, 3 and 0 are the MLEs under H; and &, 3 and 0 are
the estimates under H,.

8. Empirical illustration

In this section, real data set is examined for illustration purpose.
The MLEs are calculated and the measures of goodness of fit are
used to compare the proposed model Kumaraswamy generalized
Kappa distribution with the other competing models. We com-
puted log-likelihood ¢(-), AIC (Akaike information criterion), BIC
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(Bayesian information criterion) and CAIC (consistent Akaike infor-
mation criterion):

AIC = —24(-) + 2p,BIC = —2/(-) + plogn, and
CAIC = —20() + — 2P
n-p-—1

where ¢(-) signifies the log-likelihood function examined at the
maximum likelihood estimates, p is the number of parameters,
and n is the sample size. We also used conventional goodness-of-
fit tests in order to check which distribution fits better to this data
set. We look at the Cramer-von Mises (W*) and Anderson-Darling
(A") statistics. In general, the smaller the values of these statistics,
the better the fit to the data.

The following data set from Mielke and Johnson (1973) consists
of Stream flow amounts (1000 acre-feet) for 35 year (1936-70) at
the U.S. Geological Survey (USGS) gaging station number 9-3425
for April 1-August 31 of each year:

192.48, 303.91, 301.26, 135.87, 126.52, 474.25, 297.17, 196.47,
327.64, 261.34, 96.26, 160.52, 314.60, 346.30, 154.44, 111.16,
389.92, 157.93, 126.46, 128.58, 155.62, 400.93, 248.57, 91.27,
238.71, 140.76, 228.28, 104.75, 125.29, 366.22, 192.01, 149.74,
224,58, 242.19, 151.25.

Table 1 presents the estimated values of the MLEs of the param-
eters of the distributions and their standard errors. Estimated val-
ues for AIC, BIC, CAIC, A" and W* against all the fitted distributions
are provided in Table 2. The histogram of the data set and the esti-
mated pdfs and cdfs for the fitted models are displayed in Fig. 3. It

Table 1
MLEs and their standard errors (in parentheses) for Stream flow amounts (1000 acre-feet).
Distribution a b o B 0
KGK 37.6739 4.8300 0.1678 17.3661 7.2191
(563.6182) (9.7572) (1.0243) (219.7929) (44.7869)
EK (Lehmann type-I) 58.6622 - 0.2164 32.0895 11.7289
(1716.8957) - (1.6786) (373.3277) (91.2334)
EK (Lehmann type-II) - 8.3742 0.0629 515.3789 16.8224
- (36.9606) (0.1273) (1623.1231) (26.8103)
Kappa3 - - 0.0457 161.5442 56.7357
- - (0.2369) (15.9801) (287.0343)
Kappa2 - - 10.7420 312.1797 -
- - (5.9393) (46.5958) -
Table 2
The ¢(-), AIC, BIC, CAIC, A", W* values for Stream flow amounts (1000 acre-feet).
Distribution £(-) AIC BIC CAIC A w
KGK 206.4671 422.9343 430.7110 425.0033 0.4555 0.0788
EK (Lehmann type-I) 207.0059 422.0117 428.2331 423.3450 0.4931 0.0794
EK (Lehmann type-II) 206.6339 421.2678 427.4892 422.6011 0.4867 0.0844
Kappa3 207.0037 420.0074 424.6735 420.7816 0.4919 0.0799
Kappa2 214.1449 432.2899 435.4006 432.6649 1.0876 0.1802
Estimated pdfs Estimated cdfs
© o
38 4 — Kappa2 ~ 7| = Kappa2
- — Kappa3 — Kappa3
0 —— KGK — KGK
S — EK(Lehmann1) ® { — EK(Lehmann1)
2 4\\ EK(Lehmann2) EK(Lehmann2)
<
o
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o © |
o
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Fig. 3. Plot of estimated pdf and cdf for stream flow amounts.
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is evident from the lower value of the statistics A" and W* for KGK
distribution in comparison to the rest of the fitted distributions
that it is the best fit distribution in the given circumstances. These
findings are further supplemented by the estimated pdf and cdf
plots given in Fig. 3 which clearly depicts that KGK distribution
is a better fitted model as compared to others.

9. Conclusion

In this paper, we propose a five-parameter Kumaraswamy gen-
eralized Kappa distribution. Algebraic expressions for various
properties of the proposed distribution are provided. The method
of maximum likelihood is employed to estimate the parameters
along with an empirical illustration expressing the application by
using stream flow amount data set. The proposed distribution is
compared with some similar existing distributions by using
Cramer-von Mises (W*) and Anderson-Darling (A") statistics as
measure of goodness of fit. It is concluded that KGK distribution
is good competitive model for stream flow data set. The proposed
distribution KGK has the potential to attract wider application in
various areas such as hydrology, reliability and survival analysis.
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Appendix A

The elements of the 5 x5 observed information matrix
J(®) = {Us;} where s,t =a,b,a, 0 are given by
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Y20z -1 7z -1
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