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A B S T R A C T   

Objective: The present investigation aimed to analyze the in vivo study in support with in silico molecular docking 
mechanism of natural phenolic compounds Syringic acid (SA), Resveratrol (RV), Gallic acid (GA) and combi-
nation (COMB) with SA + RV against Isoproterenol (ISO) in myocardial necrotic rats. Methods: The compounds 
were tested for in vivo and in silico lipid metabolism enzymes HMG-CoA reductase and lipoprotein lipase (LPL) 
regulatory activities. Rats were orally pretreated with 50 mg/ kg of each compounds SA, RV, GA and COMB (SA 
25 mg/ kg + RV 25 mg/ kg) for 30 days. GA has taken as positive control. After the treatment period, ISO (50 
mg/ kg) in sub-cutaneous route was administered to the rats for two consecutive days. Then the rats sacrificed 
and the cardiac tissues were used for enzyme inhibitory analysis. 
Results: SA, RV, GA and COMB exhibited HMG-CoA reductase enzyme inhibitory activity. Also, the compounds 
augmented the LPL enzyme activity in the rats administered with ISO. Furthermore, in silico molecular docking 
reports also supported to the activity of SA, RV, GA and COMB compounds towards the enzymes HMG-CoA 
reductase and LPL. 
Conclusion: This report for the first time indicates the potential of phenolic compounds SA, RV, GA and COMB as 
excellent natural compounds in the therapeutic treatment of lipid metabolism disorders.   

1. Introduction 

Cardiovascular diseases (CVD) endure the prime cause of mortality 
worldwide. Among CVD the myocardial infarction (MI) is occurred by 
an interrupted blood supply to the demand of myocardium, which leads 
to the cardiac necrosis (Filho et al., 2011). MI exhibits edema, reduced 
cardiac output, abnormal cardiac rhythms that promotes to impair 
cardiac function. The reduced cardiac output stimulates baroreceptors 
that proceed to activate the compensatory mechanisms like sympathetic 
nerves system and renin-angiotensin-aldosterone system. 

Isoproterenol (ISO) is a beta-adrenergic agonist chemical that in-
duces severe cardiac stress which leads to the necrotic damage of heart 
muscle (Nwokocha et al., 2017). The mechanism of action of ISO is auto 
oxidation, generation of free radicals and hyper stimulation of beta 

adrenoceptors that causes to the myocardial injury (Haenen et al., 
1990). ISO may also increase cardiac output by positive inotropic and 
chronotropic phenomena. 

Lipid, lipoproteins and lipid metabolism are the crucial contributing 
factors for the genesis and progression of CVD. The lipid metabolism 
marker enzymes 3-hydroxy-3-methylglutaryl (HMG) CoA reductase 
(HMG-CoA reductase) and lipoprotein lipase (LPL) play a major role in 
the occurrence of CVD (Upadhyay, 2015a). The inhibition of these lipid 
metabolizing marker enzymes leads to the cardio protection and pre-
vention of CVD. 

CVD is prevented with the utilization of natural products. The 
ameliorative effect of these natural products may be due to phenolic 
compounds. These compounds reported various physiological activities 
like antioxidant and antibacterial (Lyu et al., 2020), anti-cancer (Hazafa 
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et al., 2020), regulation of lipid metabolism (Toma et al., 2020) Toma 
and risk reduction of CVD (Lutz et al., 2019). The phenolic compounds 
like Syringic acid (SA), Resveratrol (RV) and Gallic acid (GA) have been 
exhibited many pharmacological activities and have been reported as 
anti-cancer (Pei et al., 2021)(Wu et al., 2019), anti-diabetic (Sabahi 
et al., 2021)(Jeyaraman et al., 2020) and cardio protective (Liu et al., 
2020)(Li et al., 2022). In our previous study, we reported the cardio 
protective effect of these phenolic compounds via attenuating inflam-
matory marker enzymes (Manjunatha et al., 2020). The aim of this study 
is to examine the action of phenolic compounds such as SA, RV and GA 
in the management of myocardial necrosis by improving enzymes of 
lipid metabolism such as HMG-CoA reductase and LPL in ISO adminis-
tered experimental animals by in vivo and in silico molecular mechanism 
analysis. 

2. Materials and methods 

2.1. Chemicals 

SA, RV, GA and ISO were bought from Sigma Aldrich of USA. Other 
all chemicals used in the experimental analysis are of analytical grade. 
The activity of HMG-CoA reductase (Venugopala Rao and Ram-
akrishnan, 1975) was analyzed in cardiac tissue homogenate and also 
the activity of LPL (Fugman et al., 1984) was analyzed in heart ho-
mogenate. The protein (LOWRY et al., 1951) levels were measured in 
heart homogenate. 

2.2. Animals and experimental method 

Male Albino Wistar rats weighing around 100 to 120 gm were 
maintained to acclimatization of the laboratory conditions for one week 
and standard pellet diet with sufficient water provided. Animal house 
was ventilated well, dark and light cycles maintained continuously and 
the room temperature was maintained with 25 ◦C. All animal studies 
strictly followed animal ethical committee regulations. Preliminary dose 
dependent study was conducted to fix the dose of compounds and 50 
mg/kg of SA, RV and GA was chosen. GA was taken as positive control. 

The animals were categorized into 7 groups with 6 rats in each group 
as followed.  

1. Control  
2. ISO (50 mg/kg)  
3. SA (50 mg/kg)  
4. GA (50 mg/kg) + ISO (50 mg/kg)  
5. SA (50 mg/kg) + ISO (50 mg/kg)  
6. RV (50 mg/kg) + ISO (50 mg/kg)  
7. COMB (SA 50 mg/kg + RV 50 mg/kg) + ISO (50 mg/kg) 

The groups 3, 4, 5, 6 and 7 were orally pretreated with respective 
compounds for 30 days and ISO was sub-cutaneously injected on the last 
two consecutive days to the groups 2, 3, 4, 5, 6 and 7. There was no 
mortality of animals occurred due to the toxicity of ISO. Cervical 
dislocation employed to sacrifice the animals then blood and myocardial 
tissues were collected. Serum was separated from blood and homoge-
nate was prepared from heart tissue to analyze various biochemical 
parameters. 

2.3. Molecular docking mechanism analysis 

2.3.1. In silico inhibition analysis of SA, RV and GA on HMG-CoA 
reductase and LPL 

The structures of HMG-CoA reductase and LPL from Homo sapiens 
were acquired from the protein databank. Due to the unavailability of 
three-dimensional structures in database, the predicted models of PDB 
format were accumulated (Birrane et al., 2019; Istvan and Deisenhofer, 
2001). To select the domain, HMG-CoA reductase and LPL from Homo 

sapiens were submitted to the server SBASE. Later, the stabilization of 
protein is achieved by adding hydrogens to the 3D structures by mo-
lecular dynamics simulation studies. NAMD (2.8) software and 
CHARMM (27) force field software were applied to perform the pre-
dicted models of MD simulations. The algorithm namely multiple-time- 
stepping was used in which, the calculation was conducted at every two 
steps for long range electrostatics and the calculation was conducted at 
every level step for short range forces. In this analysis, at new positions 
the new velocities were achieved by MD procedure with the support of 
equations of motion proposed by Hamilton. Advanced thermodynamic 
properties were employed to obtain the final model and followed by 
Root Mean Square Deviation (RMSD) to stabilize the information. 

HMG-CoA reductase and LPL structures from Homo sapiens in mo-
lecular dynamics studies with lesser RMSD were procured. Ramachan-
dran plot was employed by using PROCHECK server to test the protein 
structures stereo-chemical quality. Later ERRAT server for evaluation of 
structure was employed to examine the environment profile (Laskowski 
et al., 1993). 

2.3.2. Identification of HMG-CoA reductase and LPL active sites from 
Homo sapiens 

CASTp server (Tian et al., 2018) was used to build the possible 
binding sites of HMG-CoA reductase and LPL from Homo sapiens. 

2.3.3. Docking analysis with SA, RV and GA 
The software GOLD 3.0.1 was employed and the conformations of 

binding for SA, RV and GA were procured by executing docking studies 
(Jones et al., 1997). The compounds SA, RV and GA were docked to the 
HMG-CoA reductase and LPL enzymes active sites to analyze the prob-
ability of regulatory activity of these compounds. Later the process of 
docking, the protein–protein complex individual binding poses were 
selected and the binding energies were analyzed. Most energetic com-
plex conformation was selected and employed for analysis of docking. 

2.4. Statistical analysis 

Duncan’s multiple range (DMR) test was performed to analyze the 
statistical study by considering p < 0.05. Result was expressed as means 
± SD. 

3. Results 

3.1. In vivo activity of SA, RV, GA and COMB on lipid metabolizing 
enzymes 

3.1.1. Effect of SA, RV, GA and COMB on HMG-CoA reductase 
The Table 1 represents SA, RV, GA and COMB activity on lipid 

metabolizing enzyme HMG CoA reductase in heart homogenate. ISO 
administered animals showed a significant (p < 0.05) increase in the 
activity of enzyme in comparison to control animals. Pretreatment of SA, 
RV, GA and COMB to ISO animals revealed significant (p < 0.05) reduce 

Table 1 
Effect of SA, RV, GA and COMB on lipid metabolizing enzyme HMG-CoA 
reductase.  

Groups HMG CoA / Mevalonate ratio 

Control 2.4 ± 0.2a 

ISO (50 mg/kg) 0.6 ± 0.1b 

SA (50 mg/kg) 2.5 ± 0.3a 

GA (50 mg/kg) + ISO (50 mg/kg) 1.0 ± 0.2c 

SA (50 mg/kg) + ISO (50 mg/kg) 1.6 ± 0.1d 

RV (50 mg/kg) + ISO (50 mg/kg) 1.9 ± 0.1d 

COMB (SA 50 mg/kg + RV 50 mg/kg) + ISO 2.3 ± 0.2a 

Values are mean ± S.D. (n = six rats). Values not shared a common superscript 
(a, b, c and d) differ significantly from each other (p < 0.05, Duncan’s multiple 
range test). 
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in the activity of enzyme in comparison with ISO group. However, 
pretreatment with COMB in ISO administered animals ameliorated the 
enzyme activity to near normal. Animals pretreated with SA alone did 
not show significant difference when compared with control animals. 
Lower ratio of HMG CoA/Mevalonate denotes higher activity of HMG- 
CoA reductase and vice versa. 

3.1.2. Effect of SA, RV, GA and COMB on LPL 
Table 2 shows the effect of SA, RV, GA and COMB on lipid metabo-

lizing enzyme LPL in heart tissue. Rats injected with ISO demonstrated 
significant (p < 0.05) decrease of LPL activity in comparison with con-
trol rats. Administration of SA, RV, GA and COMB to ISO injected rats 
increased the LPL enzyme activity significantly (p < 0.05) when 
compared to ISO alone treated rats. COMB pretreatment to ISO treated 
rats markedly brought the LPL enzyme activity to near normal level. 
Pretreatment with SA showed no significant difference in comparison 
with control rats. 

3.2. In silico activity of SA, RV and GA on HMG-CoA reductase and LPL 
lipid metabolizing enzymes by docking studies 

The possible activity of SA, RV and GA on HMG-CoA reductase and 
LPL from Homo sapiens, a 3-dimensional structure was procured from 
protein databank (Fig. 1 A and B). Molecular dynamics of validation 
with Ramachandran plot was conducted by applying the program 
PROCHECK. The binding sites of HMG-CoA reductase and LPL were 
searched using CASTp server as well as comparing with template. The 
design and optimization of SA, RV and GA were carried out by the 
software Chemsketch and docking of compounds to the binding regions 
of enzymes HMG-CoA reductase and LPL was carried out by the GOLD 
(3.0.1) software. The particular docked conformations of SA, RV and GA 
with HMG-CoA reductase and LPL binding sites were selected. 

Figs. 2-4 revealed the molecular docking results of the compounds 
SA, RV and GA with HMG-CoA reductase enzyme. The molecular 
docking of SA with active of HMG-CoA reductase revealed one hydrogen 
bond between the LEU470 amino acid and H4 atom of SA (Fig. 2 A and 
B). In docking with RV with HMG-CoA reductase, three hydrogen bonds 
formed between amino acids LEU462, SER463 and ILE467 with atoms 
H14, H12 and H10 respectively (Fig. 3 A and B). The docking of GA with 
HMG-CoA reductase showed four hydrogen bonds between LYS460 with 
H18, LEU484 with H6, and CYS448 with H2 and H4 (Fig. 4 A and B) 
(Table 3). 

Figs. 5-7 represented the SA, RV and GA compounds molecular 
docking results with the enzyme LPL. From the molecular docking of SA 
into the active site of LPL, hydrogen bond noticed between the amino 
acid ILE37 and H4 atom (Fig. 5 A and B). RV also formed one hydrogen 
bond between the amino acid SER115 and H8 atom (Fig. 6 A and B), 
whereas GA formed five hydrogen bonds between ASP36 with H8, ILE37 
with H10, LEU56 with H12, ASP134 with H14 and ARG137 with H16 
amino acids and hydrogen atoms respectively (Fig. 7 A and B) (Table 3). 

Based on the above results, it is clearly revealed that HMG-CoA 
reductase inhibited and LPL enhanced due to binding of SA, RV and 
GA at active sites and forming the complexes with the active residues of 
HMG-CoA reductase and LPL. 

4. Discussion 

The present study, for the first time demonstrated the inhibitory 
activity of phenolic compounds SA, RV, GA and COMB on lipid meta-
bolism enzymes HMG-CoA reductase and LPL in ISO administered car-
diac necrotic rats. 

ISO, an epinephrine induces oxidative stress in cardiomyocytes by 
stimulating adrenergic receptors that causes cell membrane destabili-
zation and myocyte damage (Jagadeesh et al., 2016a). ISO also increases 
myocardial intracellular adenylyl cyclase levels, increases myocardial 
lipid deposition and increases MI (Dhawan et al., 1978). Administration 
of rats with ISO inhibited the lipid metabolizing enzymes, which was 
due to the oxidative damage caused by the free radicals generated by the 
autoxidation of ISO and the condition was reversed with the pretreat-
ment of phenolic compounds SA, RV, GA and COMB. 

CVD genesis and progression are mostly impacted by lipids and li-
poproteins metabolism (Upadhyay, 2015b). The lipid metabolism 
responsible for elevated quantities of lipids and altered quantities of 
lipoproteins is connected with high risk of CVD (Jagadeesh et al., 
2016b). The crucial mechanism to prevent the MI is homeostasis 
maintenance of cellular cholesterol. The elevated cholesterol in ISO 
treated animals is due to surged intake of LDL cholesterol by cardiac 
membrane from the blood stream. The maintenance of equilibrium of 
cholesterol is the main factor in the prevention of CVD. Excess choles-
terol accumulation leads to hypercholesterolemia and atherosclerosis 
that protrudes to CVD. The raise in the levels of lipid biosynthesis play a 
crucial role for elevated levels of myocardial cholesterol in ISO admin-
istered MI (Nagoor Meeran et al., 2015). The increase in myocardial 
cholesterol induces phospholipid degradation and alters ion perme-
ability, membrane bound enzymes stability, and membrane fluidity 
(Dhivya et al., 2017). The antilipidemic drugs targeting the positive 
effect on lipid profile are regulating through HMG-CoA reductase, which 
is the rate limiting enzyme of cholesterol metabolism. In our earlier 
report the beneficiary activities of SA, RV and COMB on lipid profile 
stimulated us to carry out this current research to investigate its effect on 
the activity of HMG-CoA reductase (Manjunatha et al., 2020). A signif-
icant increase in HMG-CoA reductase activity causes to increased syn-
thesis of cholesterol resulting in foam cell formation, is the main step to 
initiate and accelerate atherosclerosis (Esterbauer et al., 1992). The 
available medications for treating hypercholesterolemia, statin in-
hibitors of HMG-CoA reductase are involved to maintain the cholesterol 
metabolism by downregulating the HMG-CoA reductase enzyme activ-
ity. Our results represented the pretreatment of SA, RV and COMB 
regulated the cholesterol biosynthesis by inhibiting HMG-CoA reductase 
in ISO treated experimental rats. Especially COMB showed the enhanced 
activity in the regulation of lipid metabolizing enzymes than individual 
compounds which may be due to the potent therapeutic antioxidant and 
anticholesterolemic activities of COMB. In our earlier report the COMB 
has been proved for its antioxidant activity (Sammeturi et al., 2019). 

Triglycerides elevated levels involve in the activation of endothelial 
cells which produce 9-hydroxyoctadecadienoic acid by the enzyme LPL 
and promote atherosclerosis (Goldberg et al., 2011). Earlier it has been 
reported that elevated and reduced levels of LPL are considered as anti- 
atherogenic and atherogenic respectively (Reymer et al., 1995). In our 
study, ISO administration reduced the activity of LPL. Pretreatment of 
SA, RV, GA and COMB increased the activity of LPL in ISO treated rats. 
COMB enhanced the activity of LPL in ISO treated rats than SA and RV 
alone ISO treated rats, that clearly indicates the lipid metabolism 
regulation property of COMB. Our present reports are in accordance 
with earlier report which stated that Maslinic acid and GA protected 
lipid metabolizing enzymes by enhancing LPL enzyme in ISO 

Table 2 
Effect of SA, RV, GA and COMB on lipid metabolizing enzyme lipoprotein lipase 
(LPL).  

Groups Lipoprotein lipase (LPL) U/mg 
protein 

Control 38.3 ± 2.2a 

ISO (50 mg/kg) 21.4 ± 3.1b 

SA (50 mg/kg) 39.1 ± 1.8a 

GA (50 mg/kg) + ISO (50 mg/kg) 24.8 ± 1.2c 

SA (50 mg/kg) + ISO (50 mg/kg) 25.6 ± 1.5c 

RV (50 mg/kg) + ISO (50 mg/kg) 29.5 ± 1.1d 

COMB (SA 50 mg/kg + RV 50 mg/kg) + ISO 37.6 ± 1.4a 

Values are mean ± S.D. (n = six rats). Values not shared a common superscript 
(a, b, c and d) differ significantly from each other (p < 0.05, Duncan’s multiple 
range test). 
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administered cardiotoxicity (Shaik et al., 2020). 
Thus, this investigation revealed the regulation of lipid metabolizing 

enzymes by analyzing in vivo and in silico molecular docking studies by 
phenolic compounds against Isoproterenol (ISO) in myocardial necrotic 
rats. 

5. Conclusion 

In conclusion, the phenolic compounds SA, RV, GA and COMB 
illustrated protective effect and regulation of lipid metabolism activities 
by inhibiting the HMG-CoA reductase and enhancing LPL enzymes. 

Fig. 1. A and B. 3-Dimentional structures of lipid metabolizing enzymes HMG-CoA reductase and Lipoprotein lipase (LPL).  

Fig. 2. A and B. Molecular docking of Syringic acid (SA) with HMG-CoA reductase enzyme.  

Fig. 3. A and B. Molecular docking of Resveratrol (RV) with HMG-CoA reductase enzyme.  
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Furthermore, the molecular mechanism evidenced with molecular 
docking studies conformed that the compounds SA, RV, GA and COMB 
effectively regulated lipid metabolism enzymes and revealed the 
cardioprotection. 
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