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Objective: Breast Cancer (BC) is one of the deadliest diseases in women, causing thousands of deaths
annually despite the advent of high-throughput genomic platforms in the recent past. Microarray-
based gene expression profiling with different statistical methods have been extensively used to under-
stand the disease at the molecular level. We plan to apply Welch Satterthwaite t-test, Kaplan-Meier esti-
mator plot and Huber Loss robust regression model on microarray data to improve the analysis and find
biomarkers for future diagnosis, prognosis, and treatment.
Methods: We retrieved microarray data (GSE10810 dataset) of 31 breast tumor samples and 27 normal
breast samples from Gene Expression Omnibus (GEO, NCBI). Welch Satterthwaite t-test was applied to
identify the most statistically significant genes, Huber loss robust regression model was applied to inves-
tigate the existing mathematical relations between tumor and control variables, and Kaplan-Meier
Plotter was used to confirm their association with overall metastatic relapse-free survival of BC patients.
Results: We identified 1837 differentially expressed genes, including 638 overexpressed (COL11A1,
KIAA0101, S100P, GJB2, TOP2A, LINC01614, RRM2, INHBA, C15orf48 and CKS2) and 1199 under expressed
(LEP, ADIPOQ, PLIN1, PCK1, PCOLCE2, ADH1B, LYVE1, FABP4, ABCA8, and CHRDL1) genes passing the thresh-
old (fold change ± 2 and p value < 0.001). KM analysis revealed 12 out of 20 DEGs (log rank p value < 0.05)
as potential prognostic and therapeutic biomarkers.
Conclusion: Huber loss robust regression model was found to be one of the best performing algorithms
for the mathematical relationship between the control and breast tumor samples with co-relation coef-
ficient of 0.4398 and mean absolute error of 1.069 ± 0.020. In conclusion, with high mathematical confi-
dence, we detected DEGs have high potential to be BC biomarkers using Welch t-test and Kaplan-Meier
plot having minimum underlying assumptions.
� 2022 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
rabia.
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1. Introduction

Cancer is a complex disease where irregular cell differentiation
and proliferation converts normal cells into tumors. Individual’s
genetic factors stimulated by carcinogenic factors cause cancer
(Parkin, 2006; Plummer et al., 2016; Zapatka et al., 2020). In
2020, the World Health Organization reported 1.8 million deaths
from lung cancer, 935,000 deaths from colorectal cancer, 830,000
deaths from liver cancer, 769,000 deaths from stomach cancer,
and 685,000 deaths from breast cancer (BC). BC usually affect the
epithelium of the ducts (85 %) or lobules (15 %) in the glandular tis-
sue of the breast (‘‘Breast cancer”, Who.int, 2021). BRCA1 and
BRCA2 genes are frequently used as an inherited diagnostic marker.
However, hundreds of genes and pathways have been found to be
associated with BC. Therefore, a detailed functional study is needed
to understand the complexity and polymorphisms of cancer at the
genetic level.

Recent advent of genomic and trancriptomic technologies
have helped researchers to find variation at the nucleotide level
and determine the simultaneous expression of thousands of
genes at any specific stage of BC (Russo et al., 2003). The selec-
tion of the most appropriate statistical methods/models is a key
step in microarray data analysis to identify the significantly
associated up-and down-regulated genes with a higher level of
confidence. Mathematical model like Pearson’s correlation is
used to measure the relation between gene expression values
for linearly associated data, whereas rank correlation is preferred
for nonlinear data (de Siqueira Santos et al., 2013). Student t-test
is a commonly used statistical method for comparing two inde-
pendent groups in clinical data that might give biased results
because of the underlying assumption of normality and
homoscedasticity (homogeneity of variance), and lead to
unsound and unreliable mathematical inferences (Erceg-Hurn
and Mirosevich, 2008). Welch Satterwaite’s t-test, Yuen’s t-test,
and a bootstrapped t-test are other popular t-tests based on
the underlying assumption and used for analysis (Rasch et al.,
2009; Delacre et al., 2017).

We aim to check the mathematical relation between tumor and
control. Outliers are the troublemaker while applying any statisti-
cal model to determine the mathematical relation. We compared
the efficiency results of linear, Huber, RANSAC, and Theil-Sen
robust regression models and used Huber loss robust regression
model to investigate the mathematical correlation between tumor
and control samples.

Cross-validation of DEGs using qPCR brings confidence in high-
throughput result. Prognostic values of genes could be determined
by survival probability using Kaplan Meier (KM) survival estimator,
Nelson–Aalen estimator, Cox Proportional Hazard Model based on
regression (Kaplan and Meier, 1958; Cox, 1972).

In the present study, we used a microarray dataset for (i) re-
analyzing the experiment to identify key differentially expressed
genes, (ii) validating survival associated with most altered genes
using web-based Kaplan Meier Plotter tool, and (iii) investigating
the existence of potential mathematical relationships between
tumor and control variables.
2. Materials and methods

2.1. Data collection:

We obtained gene expression microarray raw data as.CEL files
of ‘‘GSE10810” dataset from Affymetrix Human Genome U133 Plus
2.0 Array [GPL570] with 54,675 probes (Pedraza et al., 2010). The
cohort contains 58 samples including 31 BC and 27 control.
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2.2. Welch Satterthwaite t-test for identification of differentially
expressed genes

The Welch Satterthwaite t-test was applied to compare the
mean of control and BC samples and to detect the significant differ-
ence between control and tumor groups using the following
formula:
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and sample size, the denominator is not primarily linked with
pooled variance estimate.

The degrees of freedom: Welch degree of freedom = xðmÞ com-
bined with this variance estimate, is approximated using the
Welch–Satterthwaite equation
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xðmiÞ ¼ Ni � 1 is the degree of freedom.
If the sample size and variance are equal then both Student t-

test and Welch t-test behave same, however, changes with vari-
ance and sample size (Baguley, 2012). Based on cut-off p-values
�0.05 and fold change ± 1.5, the model could be several stringent,
moderate, and liberal that can give different results. Welch’s t-test
was applied on each row of 3126 probes for filtration and identifi-
cation of significant differentially expressed genes.
2.3. Kaplan–Meier estimator for survival analysis:

The Kaplan-Meier estimator is a non-parametric model used for
survival probability function with minimal assumptions. We
assume the event takes place at a specific time, all the data points
and censored observations have the same chance of surviving.

The Kaplan–Meier (KM) estimator (Kaplan and Meier, 1958) is
mathematically expressed as:

SFatt ¼
Y
i¼ti<t

ni � di

ni
¼

Y
i¼ti<t

ð1� di=niÞ ð5Þ

SF = Survival Function.
ni = number of people at risk at any given time ti and di = the

number of events occurring at any given time ti
The survival curve remains constant between two occurrences,

such as ti andti + 1. Equation (5) can be rewritten using a recursive
formula.

SFattj ¼ nj�1 � dj�1

nj�1

� �
multiply by ðSFÞ at tj�2 ð6Þ

We used ‘‘Kaplan-Meier Plotter” to see if the expression levels
of the selected up and down regulated genes were correlated to
BC patient’s, overall metastatic relapse-free survival with 95 % con-



Table 1
Comparison of expression values of tumor and control using descriptive statistics of
54,675 probe mean.

Descriptive Statistics Mean Tumor Mean Control

Mean 5.5674 5.5715
Standard Error 0.0085 0.0087
Median 5.1751 5.1403
Mode 5.205 5.4836
Standard Deviation 1.9788 2.0278
Sample Variance 3.9158 4.1121
Kurtosis 0.2685 0.274
Skewness 0.8154 0.8411
Range 11.3393 11.4354
Minimum 2.639 2.6563
Maximum 13.9782 14.0917
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fidence interval, calculated hazard ratio (HR), statistical signifi-
cance log rank p value was � 0.05 (https://kmplot.com/analysis/)
(Emmert-Streib and Dehmer, 2019; Lánczky and Gy}orffy, 2021).

2.4. Huber loss robust regression model for mathematical correlation:

We applied the Huber loss robust regression model to investi-
gate the mathematical correlation between BC and control sam-
ples. This model intends to minimize residuals and utilize the
concept of loss function to precisely determine the expected out-
come. Thus, it is critical to pick the best-fitting loss function [mean
square error (MSE) and mean absolute error (MAE)] with certain
weight to outliers (Gupta et al., 2019). MSE is the sum of the
squared distances between the target variable and predicted val-
ues, and MAE is the sum of the absolute differences between our
target and predicted variables:

MSE ¼
Pn

i¼1 yi � yPi
� �2
n

ð7Þ
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Pn

i¼1 jyi � yi
pj

n
ð8Þ

We used Huber loss/smooth mean absolute error, a mixture of
both MSE and MAE. Huber loss is sensitive to outliers, differen-
tiable at zero, the error becomes quadratic for small errors. Quad-
ratic values depend upon the hyperparameter (d, delta).
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We also compared the mean performance of each method, Lin-
ear Regression, Huber Regression, RANSAC Regression, and Theil-
Sen Regression and used a box and whisker plot to compare the
distribution of scores across the cross-validation folds.

2.5. Validation of microarray results by quantitative PCR:

We validated the expression of over-expressed (KIAA0101,
S100P, TO2A, RRM2, INHBA) and under-expressed (ADIPOQ, PLIN1,
ADH1B, ABCA8, CHRDL1) genes by qPCR assay using Applied Biosys-
tems StepOnePlus Real-Time PCR instrument (ThermoFisher Scien-
tific, USA). Quantification was performed using PowerUpTM SYBRTM

Green Master Mix using GAPDH1 as reference. DataAssistTM Soft-
ware were used for initial Ct values calculation and comparative
Ct (DDCt) method was used for quantitative gene expression.

3. Results

A total of 54,675 probes mean were used to compare the
expression values of tumors and controls with descriptive statisti-
cal parameters including mean, standard error, median, mode,
standard deviation, sample variance, kurtosis, skewness, and range
(Table 1). Initial analysis revealed 3126 probes passing the thresh-
old values of fold change (±2) and p value (<0.05). We finally iden-
tified 1837 differentially expressed (up-and down-regulated)
genes by applying Welch t-test at p < 0.001 and cross-validated
discovered top 10 up and down expressed genes through KM sur-
vival analysis (Supplementary Table 1). A significant difference
between tumor and control samples were established with the fol-
lowing values:

The mean value of tumor (6.824 ± 1.649) and control (7.41
4 ± 2.007), Welch’s t value (-12.70), Welch-Satterthwaite degree
of freedom (6022.8) and p value < 0.0001. For the normality
assumption, control samples were considered as an independent
variable, whereas tumor as a dependent variable and 3126
3

probes mean gene expression values were found not to be fit
within the normality assumption as tested by ‘‘Shapiro-Wilk
test” and ‘‘D’Agostino’s K- squared” test. However, further inves-
tigation of the complete data set of 54,675 probes revealed a
close to normal distribution of data and represented as his-
togram, probability- probability (PP), and quantile–quantile
(QQ) plots for tumor and control samples (Fig. 1). Majority of
the data set fits in the normal distribution while stragglers and
curvature at either end of the normal probability indicated the
lack of symmetry or presence of outliers in the dataset. We
found skewness and kurtosis values between � 1 and + 1 indi-
cating close to normal distribution.

Furthermore, the Kaplan–Meier plot refined the experiment and
analysis for the top 10 up- and-down-expressed genes as a drill-
down approach and down streaming for survival analysis. Finally,
we have 7 out of 10, KIAA0101, S100P, TOP2A, RRM2, INHBA,
C15orf48, and CKS2 as important up-expressed genes, while 5 out
of 10, ADIPOQ, PLIN1, ADH1B, ABCA8, and CHRDL1 are important
down-expressed genes that can be considered as diagnostic, prog-
nostic, and therapeutic biomarkers. Thus, in the present study, we
selected the top 10 up and down regulated DEGs for discussion
(Fig. 2).

Validation of differentially expressed genes were performed by
real time PCR (qPCR) by calculating mean Rq, fold change and p-
values. The qPCR confirmed the overexpression of KIAA0101,
S100P, TO2A, RRM2, INHBA and under-expression of ADIPOQ, PLIN1,
ADH1B, ABCA8, and CHRDL1 in the BC tissues (Fig. 3).

Kaplan-Meier Plotter was used to confirm survival in a larger
dataset and its association with the identified genes. KM Plot
(Figs. 4 and 5) displays the top 9 differentially up and down-
expressed genes, their Hazard ratio with 95 % confidence interval,
log rank p values (Table 2). We consider the gene a significant bio-
marker for prognostic and therapeutic importance if the log rank p
value < 0.05.

Based on the Huber loss robust regression model, a weak cor-
relation (0.439824) between the control and BC samples was
found, representing significant difference in the two groups (can-
cer and control) as expected. Mean absolute error for Linear,
Huber, RANSAC and Theil Sen Regression were 1.075 ± 0.020, 1.
069 ± 0.020, 1.245 ± 0.105 and 1.093 ± 0.018 respectively. Com-
parative analysis results revealed Huber as the best performing
regression model with MEA with standard deviation = 1.069 ± 0.
020. A box and whisker plot revealed the distribution of results
for each evaluated algorithm and lower distributions for the
Huber robust regression algorithm found in compared to other
linear regression algorithms. We have also shown best-fit line
equations through linear Huber loss robust regression model,
RANSAC Regression, and Theil Sen regression model (Table 3,
Fig. 6).

https://kmplot.com/analysis/


Fig. 1. PP (Probability-Probability) and QQ (Quantile-Quantile) plots for the tumor and control variables with 54,675 probes mean gene expression values for normality check
as the underlying assumption of Welch t-test: (A(top left)) PP plot of tumor, (B(bottom left)) PP plot of control, (C(top right)) QQ plot of tumor, and (D(bottom right)) QQ
plot of control.

Fig. 2. Graph represents the fold change of the top 10 up- and down-regulated differentially expressed genes after passing the filtration criteria.
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4. Discussion

The aim of the present study was to search for precise and
robust statistical methods to identify the differentially expressed
genes with a higher degree of mathematical confidence. Student’s
t-test, Welch’s t-test, Trimmed Means t-Test, Yuen-Welch’s t-Test,
and bootstrapped t-test are commonly used to compare two inde-
pendent groups. Student’s t-test, frequently used for clinical data-
sets, must fulfill the underlying assumption of normality and
4

homoscedasticity (homogeneity of variance) as prerequisites. Vio-
lation of assumptions may lead to biased, unsound, and unreliable
mathematical inferences. Unfortunately, because of outliers,
recording, or measurement errors, the assumptions of
homoscedasticity are often violated. Ignoring the critical assump-
tions has an adverse impact on the validity of the test and should
be addressed carefully for any version of t-test unless the
researcher has strong reasons to suppose equal variance (Erceg-
Hurn and Mirosevich, 2008). We, therefore, applied Welch’s t-



Fig. 3. Bar graph showing quantitative expression of target genes with fold change and p-value.
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test, a robust statistical method for comparing means to address
the assumption of homoscedasticity and generate reliable results
(Delacre et al., 2017; Karch, 2021). Next, to evaluate the prognostic
values of most significantly genes, we cross-validated them on a
survival scale.

Welch’s t-test identified 1837 DEGs (638 upregulated, 1199
downregulated) which might be playing a vital role in cancer ori-
gin and progression. The most significant genes might be a real
game changers of breast tumor. However, it was not feasible to dis-
cuss the individual role of all genes in one manuscript. We, there-
fore, are focusing the top 10 up-and down- regulated genes and
briefly discussing their diagnostic, prognostic, and therapeutic
importance.

Leptin (LEP) was the most downregulated gene (FC �35.63),
which plays a paramount role in the carcinogenesis of BC (Andò
and Catalano, 2011). It increases the proliferation, migration, and
invasion of BC cells and could be a novel biomarker for diagnosis,
and a potential target for therapeutics (Huang et al., 2017;
Maryam et al., 2017). However, Leptin’s log rank p value was
0.13, more than cut off < 0.05 of KM plot, hence, rejected as a
potential prognostic biomarker. Downregulation of adiponectin
C1Q and collagen domain containing (ADIPOQ) (FC �29.72) was
reported to be responsible for the primary tumor initiation, main-
tenance or progression and aggressive BC phenotypes (Mamoor,
2021; Llanos et al., 2020). Perilipin1(PLIN1) was downregulated
(FC �24.63) in BC as reported earlier and high expression of PLIN1
indicates longer survival of BC patients (Zhang et al., 2021). ADIPOQ
and PLIN1 had log rank p-values 0.00071 and 0.0000013 and could
be a potential prognostic biomarker.

Phosphoenolpyruvate carboxykinase1 (PCK1) and Procollagen
C-Endopeptidase Enhancer2 (PCOLCE2) were associated with ovar-
ian and BC (Finkernagel et al., 2016). Alcohol dehydrogenase 1B
beta polypeptide (ADH1B) is well-established cancer biomarker
(Polimanti and Gelernter, 2017). PCK1 and PCOLCE2 had high log
rank p-value of 0.06 and 0.84 while ADH1B passed the cut-off with
a log rank p value of 0.00069 for potential to be prognostic
biomarkers. Lymphatic Vessel Endothelial Hyaluronan Receptor1
(LYVE1) causes disease by altered expression in lymphatic vessel
endothelium and used as a cancer marker (Hara et al., 2018). Fatty
5

acid binding protein 4 (FABP4) plays a crucial role in tumor pro-
gression, particularly in adipose tissue associated cancers by pro-
viding fatty acids to the tumor cells (Guaita-Esteruelas et al.,
2018). ATP binding cassette subfamily A member8 (ABCA8) codes
for transporter protein and found significantly downregulated in
BC (Hlaváč et al., 2013). Chordin-Like1 (CHRDL1) is an established
prognostic factor for BC, and downregulation of CHRDL1 advocates
a low survival rate of BC patients (Li et al., 2019). LYVE1 and FABP4
did not pass the log rank p value cut off, while ABCA8 (6.30e-11)
and CHRDL1 (4.5e-09) were acceptable as potential prognostic
biomarkers in BC.

Collagen type X alpha1 (COL10A1) was the most upregulated
gene (FC, 22.74) and over expression was reported to enhance
the proliferation and metastasis of BC cells (Yang et al., 2020).
KIAA0101 regulates the centrosome of dividing BC cells and
enhances cell proliferation and progression (Lv et al., 2018). S100
calcium binding proteinP (S100P) increases chemo-resistivity in
BC patients and has therapeutic importance (Cong et al., 2020).
COL10A1 with high log rank p value was rejected while KIAA0101
and S100P with low log rank p-value (1e-16 and 6.3e-13) were
highly accepted for potential prognostic and therapeutic impor-
tance. Overexpression of gap junction protein beta 2 (GJB2) is
reported in early-stage BC and could be used for an early diagnostic
marker (Liu et al., 2019). Topoisomerase II alpha (TOP2A) was
reported to be linked to tumor grade in early-stage luminal BC
(An et al., 2018). Over expression of long intergenic non-protein
coding rna 1614 (LINC01614) and ribonucleotide reductase M2
(RRM2) were associated with overall poor survival of BC patients
(Wang et al., 2020; Mazzu et al., 2019). GJB2 (0.79) and LINC01614
(0.11) were rejected while TOP2A (1.1e-16) and RRM2 (1e-16) had
high acceptance range for potential biomarkers. Over-expression
of inhibin betaA (INHBA) increases the motility of BC cells (Yu
et al., 2021). Chromosome15 open reading frame48 (C15orf48)
and Cdc28 protein kinase regulatory subunit2 (CKS2) were overex-
pressed in BC and responsible for initiation and progression
(Mamoor, 2021). INHBA; C15orf48 and CKS2 with log rank p values
of 0.0017, 0.000046 and 1e-16 respectively, were good candidate
for prognostic marker. Pedraza et al. focused on the classification
of phenotypes with stages of BC, ER (estrogen receptor) status,



Fig. 4. Figure shows the Kaplan–Meier metastatic relapse-free survival analysis for LEP, ADIPOQ/ACDC, PLIN1, PCK1, PCOLCE2, LYVE1, FABP4, ABCA8, and ADH1B genes along
with the hazard ratio (HR) with 95% confidence intervals (CI) and log rank p value.
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tumor histology, and lymph node involvement. However, we
designed the experiment in a slightly different way wherein focus
was concentrated on gene expressions, irrespective of stages of BC,
ER status, tumor histology, and lymph node involvement (Kaplan
and Meier, 1958).

Additionally, we checked the mathematical relation between BC
and control samples via a robust mathematical method (Huber loss
robust regression model) and compared it with other regression
models (Linear, RANSAC, and Theil-Sen) to get mathematical confi-
dence. Two well-known loss functions are mean square error (MSE,
L2 Loss) and mean absolute error (MAE, L1 Loss), and both have
some advantages and disadvantages. We applied a mixture of
MSE/L2 and MAE/L1 in Huber loss robust regression model as it
is sensitive to outliers than the squared error loss, differentiable
at zero, the error is squared for small values. It gives less weight
to outliers with extreme values. Based on the solid theoretical
6

and mathematical justification, the result showed a weak relation-
ship between tumor and control samples, as both groups are differ-
ent from each other.

Previous group had used a moderate student t test for normal
data and Mann Whitney test for non-normal data analysis
(Kaplan and Meier, 1958). However, we have gone one step further
as a complementary approach with underlying assumptions of the
mathematical model using robust Welch’s t test and tried to corre-
late control and tumors samples through the Huber loss robust
regression model. Additionally, first, we cross-validated the reanal-
ysis results using Kaplan– Meier plot to examine if the expression
values are linked with the overall metastatic relapse- free survival
of BC patients and second confirmed the expression level by qPCR
assay on bigger cohort of BC. Thus the significantly expressed
genes have prognosis, diagnosis, and therapeutics potential and
needs to be further evaluated.



Fig. 5. Figure shows the Kaplan–Meier metastatic relapse-free survival analysis for COL10A1, KIAA0101, S100P, GJB2, TOP2A, RRM2, INHBA, C15orf48, and LINC01614 genes
along with the hazard ratio (HR) with 95% confidence intervals (CI) and log rank p value.

Table 2
Kaplan–Meier Plot values for the top 10 up- and down-expressed genes.

Gene Symbol Fold
Change

Hazard Ratio
(HR)

Confidence
Interval (95 %)

Log rank p
value

Decision

COL10A1 22.74 0.98 0.88–1.08 0.66 Reject
KIAA0101 12.61 1.56 1.41–1.73 < 1e-16 Accept
S100P 11.54 1.45 1.31–1.61 6.3E-13 Accept
GJB2 11.03 1.02 0.88–1.19 0.79 Reject
TOP2A 10.43 1.53 1.39–1.70 1.1E-16 Accept
LINC01614 9.99 1.13 0.97–1.32 0.11 Reject
RRM2 9.68 1.83 1.65–2.03 < 1e-16 Accept
INHBA 8.70 1.18 1.06–1.30 0.0017 Accept
C15orf48 8.56 0.73 0.63–0.85 4.6E-05 Accept
CKS2 7.72 1.67 1.51–1.85 < 1e-16 Accept
LEP �35.64 0.93 0.84–1.02 0.13 Reject
ADIPOQ �29.73 0.84 0.76–0.93 0.00071 Accept
PLIN1 �24.63 0.78 0.70–0.86 1.30E-06 Accept
PCK1 –23.93 0.97 0.88–1.08 0.06 Reject
PCOLCE2 –22.83 1.01 0.91–1.12 0.84 Reject
ADH1B �21.54 0.84 0.76–0.93 0.00069 Accept
LYVE1 �20.20 0.91 0.82–1.00 0.061 Reject
FABP4 �20.12 0.96 0.83–1.12 0.062 Reject
ABCA8 �19.42 0.71 0.65–0.79 6.30E-11 Accept
CHRDL1 �18.49 0.74 0.67–0.82 4.50E-09 Accept

S. Karim, M.S. Iqbal, N. Ahmad et al. Journal of King Saud University – Science 35 (2023) 102447

7



Table 3
Comparison of model performance based on mean absolute error, standard deviation, regression coefficient, regression intercept and Equation of best Fit Line for Linear, Huber,
RANSAC and TheilSen regression.

Models/Algorithms MAE Standard
Deviation

Regression
Coefficient

Regression
Intercept

Mean Tumor = coefficient �
Mean Control + intercept

Linear Regression 1.075 0.02 0.50353571 3.09092 0.5035* Mean Control + 3.0909,
Huber Regression 1.069 0.02 0.47639532 3.219997 0.4763* Mean Control + 3.2199
RANSAC Regression 1.245 0.105 0.614 1.676 0.6140* Mean Control + 1.6700
TheilSen Regression 1.093 0.018 0.58977372 2.471666 0.5897* Mean Control + 2.4716

A B 

Fig. 6. (A) Box and Whisker plot for Linear, Huber, RANSAC, and Theil-Sen regression models and (B): Scattered diagram with the best fit line through Linear, Huber, RANSAC
and TheilSen regression models for comparative 3126 probes mean gene expression values in normal and tumor samples.
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5. Conclusions

Statistical method like Welch Satterthwaite t-test and Huber
loss robust regression model algorithms gave mathematical confi-
dence in detecting DEGs and improved the understanding of
microarray gene expression profiling of BC. It revealed a weak
mathematical relation (co– relation coefficient: 0.43) that repre-
sents the differences between tumor and control samples. Using
minimum underlying assumptions for Welch Satterthwaite t-test
and Kaplan-Meier estimator plot models were novel approach.
Refined survival analysis of most significantly expressed genes
showed twelve genes correlated with the overall metastatic
relapse-free survival. Finally, ten clinically associated genes were
validated by qPCR that may be promising diagnosis, prognosis,
and/or therapeutics biomarkers of BC.
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