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In this work, a general class of pantograph type nonlinear fractional integro-differential equations (PT-
FIDEs) with non-singular and non-local kernel is considered. A numerical scheme based on the orthogo-
nal basis functions including the shifted Legendre polynomials (SLPs) is proposed. First, we expand the
unknown function and its derivatives in terms of the SLPs with unknown coefficients. Then, we present
several theorems based on the SLPs for the help to achieve the approximate solution of the problem
under study. Finally, by utilizing these theorems together with the collocation points, the main problem
is transformed to a system of linear or nonlinear algebraic equations, which can be simply solved. An
investigation for error estimate is discussed. The accuracy and efficiency of the proposed scheme are
reported by four illustrative examples.
� 2020 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction 2015; Losada and Nieto, 2015), Atangana–Baleanu (AB)
Fractional calculus is an extension of the classical one which
deal with derivatives and integrals of arbitrary real or complex
order (Atangana and Hammouch, 2019; Baleanu et al., 2012;
Podlubny, 1999; Srivastava et al., 2021; Yang et al., 2020). Frac-
tional derivatives have been widely applied to describing various
problems in different fields of applied science. These derivatives
are useful in rheology as crucial features of cell rheological behav-
ior (Djordjevic et al., 2003). Recently, the dynamics of coronavirus
(2019-nCov) have modeled by with fractional derivative in Khan
and Atangana (2020). Since in definition of the most important
fractional operators such as Riemann–Liouville (RL) and Caputo
exists a kernel of type local and sinqular, it is difficult or impossible
to describe many non-local dynamics systems. Hence several def-
initions for fractional integral and derivative operators have been
introduced such as Caputo–Fabrizio (CF) (Caputo and Fabrizio,
(Atangana and Baleanu, 2016) and Yang–Abdel–Aty–Cattani
(YAAC) (Yang et al., 2019) operators. The most important advan-
tage of these operators is the existence of the non-local and non-
sinqular kernel which introduced to describe complex physical
problems (Algahtani, 2016; Djida et al., 2017).

In this work, we consider a class of PT-FIDEs of the form

ABCDa
t z tð Þ ¼ kF t; z tð Þ; z qtð Þ; Itz tð Þ; Iqtz tð Þ� �

; t 2 0; T½ �; 0 < q

< 1; 0 < a 6 1; ð1Þ
with

Itz tð Þ ¼ R t
0 K1 t; sð Þ/1 s; z sð Þð Þds;

Iqtz tð Þ ¼ R qt
0 K2 t; sð Þ/2 s; z sð Þð Þds;

ð2Þ

and the initial condition

z 0ð Þ ¼ z0; ð3Þ
where k and z0 are real constants, K1;K2;/1 and /2 are given func-
tions, z tð Þ is a solution to be determined in 0; T½ �. ABCDa

t denotes the
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AB derivative in the Caputo sense. This new fractional derivative is
introduced by Atangana and Baleanu which has non-singular ker-
nel. In definition of this operator, there exists a kernel that is
included a Mittag–Leffler (ML) function which is non-local and
non-singular. Many properties of this operator are investigated in
Atangana and Kocab (2016). The special cases of the Eq. (1) have
been solved in Muroya et al. (2003), Rahimkhani et al. (2017),
Zhao et al. (2017), Nemati et al. (2018).

Volterra nonlinear fractional integro-differential equations (V-
NFIDEs) appear widely in many fields of science. The class of PV-
IDEs is one of the most important classes of V-FIDEs. Many
researchers have presented several numerical techniques for solv-
ing these equations (Muroya et al., 2003; Rahimkhani et al., 2017;
Zhao et al., 2017).

Orthogonal basis functions have been generally used to achieve
approximate solution for many problems in various fields of
science. Approximation of the solution using these functions is
known as a useful tool in solving many classes of equations,
numerically, e.g., differential equations (Jafari et al., 2011; Mishra
et al., 2016; Sabermahani et al., 2018; Sabermahani et al., 2020;
Singh and Srivastava, 2019; Srivastava et al., 2019), partial differ-
ential equations (Ait Touchent et al., 2018; Deiveegan et al.,
2019; Ganji et al., 2019; Yang et al., 2018; Yang and Tenreiro
Machado, 2017; Ziane et al., 2019) and integro-differential
equations (Ganji and Jafari, 2020; Ganji and Jafari, 2019; Nemati
et al., 2018; Sedaghat et al., 2014; Nieto and Samet, 2017;
Jothimani et al., 2019) of various orders (fixed, fractional or vari-
able order).

The outline of this work is as follows. A brief review of defini-
tions of RL and AB operators and their important properties are
presented in Section 2. Section 3 the SLPs with their properties
are reviewed. We proposed a numerical scheme for solving prob-
lem (1) under the initial condition given by (3) in section (4). In
section (5), we discussed about error bound of the proposed
scheme. Some illustrative examples are solved in Section 6. In
the last section, we conclude the paper.

2. RL and AB operators and their properties

In this section, we first recall many special functions and then
bring definitions of (RL and AB)- integral and derivative operators
with their properties which will be used further.

Definition 1 (See Podlubny (1999)). The Beta and Mittag–Leffler
functions are defined, respectively, by

The Beta functionð Þ B l; mð Þ ¼ R 1
0 s

l�1 1� sð Þm�1 ds;
Re lð Þ&Re mð Þ > 0;

One parameter ML functionð Þ Ea tð Þ ¼
X1
i¼0

ti
C aiþ1ð Þ ;

Two parameters ML functionð Þ Ea;b tð Þ ¼
X1
i¼0

ti
C aiþbð Þ :
Definition 2 (See Podlubny (1999)). The a order RL-integral is
given by

RLIat z tð Þ ¼ 1
C að Þ

Z t

0
t � sð Þa�1z sð Þ ds:

The RL-integral of order a satisfies the following property

RLIat t
f ¼ C 1þ fð Þ

C aþ fþ 1ð Þ t
aþf; f P 0:
2

Definition 3 (See Atangana and Baleanu (2016), Yang (2019)). Let

0 < a 6 1; z 2 H1 0;1ð Þ and @ að Þ be a normalization function such
that @ 0ð Þ ¼ @ 1ð Þ ¼ 1 and for 0 < a < 1; @ að Þ ¼ 1� aþ a

C að Þ. Then

(1) The ABC-derivative is defined as follows
ABCDa
t z tð Þ ¼

AB að Þ
1�a

R t
0 Ea � a

1�a t � sð Þa� �
z0 sð Þ ds;

z0 tð Þ a ¼ 1:

(
ð4Þ

(2) The AB-integral is given by

ABIat z tð Þ ¼ 1� a
@ að Þ z tð Þ þ a

@ að ÞC að Þ
Z t

0
t � sð Þa�1z sð Þds: ð5Þ

Let ta ¼ 1�a
@ að Þand xa ¼ 1

@ að ÞC að Þ, then we can rewrite (5) by

ABIat z tð Þ ¼ taz tð Þ þxaC aþ 1ð ÞRLIat z tð Þ: ð6Þ
It is easy to report that the AB operators satisfy the following

properties (Atangana and Baleanu, 2016; Ganji and Jafari, 2020;
Ganji et al., 2020)

ABCDa
t C ¼ 0; C 2 R;

ABCDa
t t

b ¼ @ að Þb!tb
1�a Ea;1þb � a

1�a t
a� �
; b P 0;

ABIat C ¼ C ta þxatað Þ; C 2 R;

ABIat t
b ¼ tb ta þxa aþ 1þ bð ÞB 1þ b;1þ að Þtað Þ;

ABIat
ABCDa

t z tð Þ� � ¼ z tð Þ � z 0ð Þ:

Theorem 1 (See Tajadodi (2020)). Let 0 < a 6 1. Then, we can
rewrite the AB-derivative by

ABCDa
t z tð Þ ¼ AB að Þ

1� a
X1
r¼0

�a
1� a

� �r
RLIraþ1

t z0 tð Þ:
3. The SLPs and their properties

Now, firstly we express some basic properties of the SLPs. After
that we explain to approximate a function with SLPs and obtaining
OM based on SLPs.

3.1. The SLPs

The explanation of the SLPs on 0; T½ � is

L�i tð Þ ¼ Li
2
T
t � 1

� �
; i ¼ 0;1;2; . . . ; ð7Þ

where Li tð Þ is the well-known Legendre polynomial (LP) of degree i.
The recursive formula of LP on �1;1½ � given by

Liþ1 tð Þ ¼ 1þ 2i
1þ i

t Li tð Þ � i
1þ i

Li�1 tð Þ; i ¼ 1;2;3; . . . ;

where L0 tð Þ ¼ 1 and L1 tð Þ ¼ t.
The SLPs L�i tð Þ given in (7), could be written the following ana-

lytic form

L�i tð Þ ¼
Xi

s¼0

ai;sts; ð8Þ

where

ai;s ¼ �1ð Þiþs iþ sð Þ!
i� sð Þ! s!ð Þ2Ts

: ð9Þ
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For the SLPs, the orthogonality condition is as followsZ T

0
L�i tð ÞL�s tð Þdt ¼

T
1þ2i ; i ¼ s;

0; i– s:

�
For two arbitrary functions z1; z2 in L2 0; Tð Þ, the inner product

and norm are defined, respectively, by

z1 tð Þ; z2 tð Þh i ¼ R T
0 z1 tð Þz2 tð Þdt;

kz1 tð ÞkL2 0;Tð Þ ¼ z1 tð Þ; z1 tð Þi12 ¼ R T
0 j z1 tð Þj2 dt

� �1
2
:

	

3.2. Approximation of a function

Assume that we can expand z tð Þ 2 L2 0; Tð Þ in terms of the SLPs
as

z tð Þ ¼
X1
i¼0

zi L
�
i tð Þ; ð10Þ

where

zi ¼ 1þ 2i
T

Z T

0
z tð Þ L�i tð Þdt:

We can present z by using a truncated series as

z tð Þ ’ zM tð Þ ¼
XM
i¼0

zi L
�
i tð Þ ¼ ZT L tð Þ; ð11Þ

where Z ¼ z0; z1; . . . ; zM½ �T and

L tð Þ ¼ L�0 tð Þ; L�1 tð Þ; . . . ; L�M tð Þ
 �T
: ð12Þ

Also, we can approximate the function z t; sð Þ 2 L2 0; Tð Þ � 0; Tð Þð Þ
in terms of the SLPs by

z t; sð Þ ’ LT tð ÞZL sð Þ;
where Z ¼ zi;j


 �
is an M þ 1ð Þ � M þ 1ð Þ matrix which

zi;j; i; j ¼ 0;1; . . . ;M are given by

zi;j ¼
z t; sð Þ; L�i tð Þ� 


; L�j sð Þ
D E

kL�i tð Þk22 kL�j sð Þk22
; i; j ¼ 0;1; . . . ;M:

Lemma 1. Suppose 0 < q < 1and L tð Þgiven by (12). Then

L qtð Þ ’ HL tð Þ;
where H is given by

H ¼

r0;0;0 r0;1;0 � � � r0;M;0X1
s¼0

r1;0;s

X1
s¼0

r1;1;s � � �
X1
s¼0

r1;M;s

..

. ..
. � � � ..

.

XM
s¼0

rM;0;s

XM
s¼0

rM;1;s � � �
XM
s¼0

rM;M;s

266666666664

377777777775
;

with

ri;k;s ¼ ai;shs;kqs:
Proof. By substituting t ¼ qt into (8), we get

L�i qtð Þ ¼
Xi

s¼0

ai;sqsts i ¼ 0;1; . . . ;M: ð13Þ
3

Now, we approximate the function ts in terms of the SLPs by

ts ’
XM
k¼0

hs;kL
�
k tð Þ: ð14Þ

Now for i ¼ 0 to i ¼ M, By substituting (14) into (13), leads

L�i qtð Þ ’
Xi

s¼0

ai;sqs
XM
k¼0

hs;kL
�
k tð Þ

 !
¼
XM
k¼0

Xi

s¼0

ai;shs;kqs

 !
L�k tð Þ

¼
XM
k¼0

Xi

s¼0

ri;k;s

 !
L�k tð Þ;

which completes the proof.
Lemma 2 (See Ganji et al. (2020)). The operational matrix (OM) of
the product and integration of the vector L tð Þ given by (12) can be
approximated, respectively, as

L tð ÞLT tð ÞZ ’ bZL tð Þ;R t
0 L sð Þds ’ PL tð Þ;

where bZ and P are given in Ganji et al. (2020).
Theorem 2. Suppose L tð Þ given by (12). ThenZ qt

0
L sð Þ ds ’ P�L tð Þ;

where P� is given by

P� ¼

10;0;0 10;1;0 � � � 10;M;0X1
s¼0

11;0;s
X1
s¼0

11;1;s � � �
X1
s¼0

11;M;s

..

. ..
. � � � ..

.

XM
s¼0

1M;0;s

XM
s¼0

1M;1;s � � �
XM
s¼0

1M;M;s

266666666664

377777777775
;

with

1i;k;s ¼
ai;sds;kqsþ1

sþ 1
:

Proof. By (12), for i ¼ 0;1; . . . ;M, we have

Z qt

0
L�i sð Þ ds ¼

Z qt

0

Xi

s¼0

ai;sss
 !

ds ¼
Xi

s¼0

ai;s

Z qt

0
ss ds

� �

¼
Xi

s¼0

ai;sqsþ1

sþ 1
tsþ1; ð15Þ

We expand tsþ1 in the above equation by using the SLPs. It gives

tsþ1 ’
XM
k¼0

ds;kL
�
k tð Þ: ð16Þ

By putting (16) into (15), we getZ qt

0
L�i sð Þ ds ’

Xi

s¼0

ai;sqsþ1

sþ 1

XM
k¼0

ds;kL
�
k tð Þ

 !

¼
XM
k¼0

Xi

s¼0

ai;sds;kqsþ1

sþ 1

 !
L�k tð Þ ¼

XM
k¼0

Xi

s¼0

1i;k;s

 !
L�k tð Þ;

now the proof is completed.
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Theorem 3. Suppose 0 < a 6 1. The a order AB-integral of a vector
L tð Þ given in (12) might be approximated by

ABIat L tð Þ ’ IaL tð Þ;

where Ia ¼ taI þxaC aþ 1ð ÞFa is called the OM of the AB-integral
based on the SLPs and I is an M þ 1ð Þ � M þ 1ð Þ identity matrix. Also,
Fa is called the OM of RL-integral based on the SLPs which is given by

Fa ¼

q0;0;0 q0;1;0 � � � q0;M;0X1
s¼0

q1;0;s

X1
s¼0

q1;1;s � � �
X1
s¼0

q1;M;s

..

. ..
. � � � ..

.

XM
s¼0

qM;0;s

XM
s¼0

qM;1;s � � �
XM
s¼0

qM;M;s

266666666664

377777777775
;

with

qi;k;s ¼
C sþ 1ð Þai;ses;k
C sþ aþ 1ð Þ :
Proof. By applying the AB-integral operator on the vector L tð Þ
yields

ABIat L tð Þ ¼ taL tð Þ þxaC aþ 1ð ÞRLIat L tð Þ: ð17Þ
Now, we must obtain the OM of RL-integral of order a. To do

this, we apply the LR-integral operator, RLIat , on
L�i tð Þ; i ¼ 0;1; . . . ;Mas

RLIat L
�
i tð Þ ¼ RLIat

Xi

s¼0

ai;sts
 !

¼
Xi

s¼0

ai;s RLIat t
s

� � ¼Xi

s¼0

C sþ 1ð Þai;s

C sþ aþ 1ð Þ t
sþa:

By approximating the function tsþa in terms of the SLPs, we get

tsþa ’
XM
k¼0

es;kL
�
k tð Þ: ð18Þ

In view of (18) and for i ¼ 0;1; . . . ;M, we get

RLIat L
�
i tð Þ ’

Xi

s¼0

C sþ1ð Þai;s
C sþaþ1ð Þ

XM
k¼0

es;kL
�
k tð Þ

 !
¼
XM
k¼0

Xi

s¼0

C sþ1ð Þai;ses;k
C sþaþ1ð Þ

 !
L�k tð Þ

¼
XM
k¼0

Xi

s¼0

qi;k;s

 !
L�k tð Þ:

Therefore, for i ¼ 0;1; . . . ;M, we can write

RLIat L tð Þ ¼ FaL tð Þ; ð19Þ

where

Fa ¼

q0;0;0 q0;1;0 � � � q0;M;0X1
s¼0

q1;0;s

X1
s¼0

q1;1;s � � �
X1
s¼0

q1;M;s

..

. ..
. � � � ..

.

XM
s¼0

qM;0;s

XM
s¼0

qM;1;s � � �
XM
s¼0

qM;M;s

266666666664

377777777775
;

with

qi;k;s ¼
C sþ 1ð Þai;ses;k
C sþ aþ 1ð Þ :

By substituting (19) into (17), the proof completes.
4

4. Numerical scheme

The purpose of this section is to present a numerical scheme for
solving Eq. (1) under the initial condition (3). To this aim, we first
approximate the function ABCDa

t z tð Þ in terms of the SLPs as

ABCDa
t z tð Þ ’ ZTL tð Þ: ð20Þ

First we apply the a order AB-integral on the both sides of (20)
and use the initial condition, we have

z tð Þ ’ ZTIaL tð Þ þ z0: ð21Þ
By approximating z0 ’ BTL tð Þ, (21) is rewritten as

z tð Þ ’ YL tð Þ; ð22Þ

where Y ¼ ZTIa þBT . By putting t ¼ qt in (22) yields

z qtð Þ ’ YL qtð Þ: ð23Þ
By employing Lemma 1, (23) is approximated as

z qtð Þ ’ YHL tð Þ: ð24Þ
For approximating the Volterra parts of Eq. (1), we expand

K1;K2;/1 and /2 using the SLPs as

K1 t; sð Þ ’ LT tð ÞK1L sð Þ;
K2 t; sð Þ ’ LT tð ÞK2L sð Þ;
/1 t; z tð Þð Þ ’ CT L sð Þ;
/2 t; z tð Þð Þ ’ DT L sð Þ:

ð25Þ

By utilizing (25), Lemma 2, Theorem 2, and in a similar way
(Ganji et al., 2020), we obtain

Itz tð Þ ’ R t
0 LT tð ÞK1L sð Þ� �

LT sð ÞC� �
ds ¼ LT tð ÞK1 bC R t

0 L sð Þds ¼ LT tð ÞK1 bCPL tð Þ;
Iqtz tð Þ ’ R qt

0 LT tð ÞK2L sð Þ� �
LT sð ÞD� �

ds ¼ LT tð ÞK2 bD R qt
0 L sð Þds ¼ LT tð ÞK2 bDP�L tð Þ:

ð26Þ
Substituting (20), (22), (24) and (26) into Eq. (1), leads

ZTL tð Þ ¼ kF t;YL tð Þ;YHL tð Þ;LT tð ÞK1 bCPL tð Þ;LT tð ÞK2 bDP�L tð Þ
� �

:

ð27Þ
Also, by substituting (20) into (25) yields

/1 t;YL tð Þð Þ ’ CTL tð Þ;
/2 t;YL tð Þð Þ ’ DTL tð Þ: ð28Þ

Finally, by substituting the collocation points
k

Mþ2 T; k ¼ 1; . . . ;M þ 1 into Eqs. (27) and (28), a system of
3 M þ 1ð Þ nonlinear equations of the vectors of Z;C and D is
formed. By solving this system, the unknown parameters of the
vectors of Z;C and D are obtained. Finally the approximate solu-
tion can be computed by (22).
5. Error estimation

This section deals an estimate for the error of the numerical
solution of Eq. (1) with initial condition (3) obtained by the pro-
posed scheme in Section 4.

It is well known in the interval a; bð Þ, the Sobolev norm of inte-
ger order lP 0 , is defined by

kzkHl a;bð Þ ¼
Xl
k¼0

kz kð ÞkL2 a;bð Þ

 !1
2

;

where z kð Þ denotes the kth derivative of z and Hl a; bð Þ is a Sobolev
space.
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Lemma 3 (See Canuto et al. (2006)). Let lP 0 and z 2 Hm �1;1ð Þ.
Suppose PM zð Þ ¼PM

i¼0ziLi tð Þ be the truncated Legendre series of z.
Then,

kz� PM zð ÞkL2 �1;1ð Þ 6 CM�ljzjHl;M �1;1ð Þ;

where

jzjHl;M �1;1ð Þ ¼
Xl

k¼min 1þM;lf g
kz kð Þk2L2 �1;1ð Þ

 !1
2

;

and C is a positive constant and does not depend to z and integer M.
Lemma 4 (See Ganji et al. (2020)). Let z : 0; Tð Þ�!R be a function in
Hl 0; Tð Þ. Suppose that function �z : �1;1ð Þ�!R is given by
�z tð Þ ¼ z T

2 t þ 1ð Þ� �
for all t 2 �1;1ð Þ. Then, for 0 6 k 6 l

k�z kð ÞkL2 �1;1ð Þ ¼
2
T

� �1
2�k

kz kð ÞkL2 0;Tð Þ:
Theorem 4. Suppose lP 0 and z 2 Hl 0; Tð Þ. Let zM tð Þ ¼PM
i¼0ziL

�
i tð Þ

is the obtained approximate solution by the given scheme in Section 4.
Then,

kz� zMkL2 0;Tð Þ 6 CM�ljzjHl;M;0 0;Tð Þ;

and

kz ið Þ � z ið Þ
M kL2 0;Tð Þ 6 CM�ljzjHl;M;i 0;Tð Þ;

where

jzjHl;M;r 0;Tð Þ ¼
Xl

k¼min 1þM;lf g

T
2

� �2k

kz kþrð Þk2L2 0;Tð Þ

 !1
2

; r P 0:
Proof. With the help Lemma 4, we obtain

kz� zMk2L2 0;Tð Þ ¼ T
2 kz� PM zð Þk2L2 �1;1ð Þ

6 T
2C0M�2l

Xl
k¼min 1þM;lf g

k�z kð Þk2L2 �1;1ð Þ

¼ C0M�2l
Xl

k¼min 1þM;lf g

T
2

� �2kkz kð Þk2L2 0;Tð Þ:

By definition

jzjHl;M;0 0;Tð Þ ¼
Xl

k¼min 1þM;lf g

T
2

� �2k

kz kð Þk2L2 0;Tð Þ

 !1
2

;

the proof completes. By similar way, we obtain

kz ið Þ � z ið Þ
M kL2 0;Tð Þ 6 CM�ljzjHl;M;i 0;Tð Þ;

where

jzjHl;M;i 0;Tð Þ ¼
Xl

k¼min l;Mþ1f g

T
2

� �2k

kz kþið Þk2L2 0;Tð Þ

 !1
2

:

Theorem 5. Suppose 0 < a 6 1 and z 2 Hl 0; Tð Þ satisfies in Theorem
4. Then

kABCDa
t z� ABCDa

t zMkL2 0;Tð Þ 6
AB að ÞT
1� a

Ea;2 � a
1� a

Ta
� �

CM�ljzjHl;M;1 0;Tð Þ:
5

Proof. By employing Theorems 1 and 4, we get

kABCDa
t z� ABCDa

t zMkL2 0;Tð Þ ¼ AB að Þ
1�a

X1
r¼0

�a
1�a
� �rRLIraþ1

t z0 � zM0ð Þ
�����

�����
L2 0;Tð Þ

6 AB að Þ
1�a

X1
r¼0

�a
1�a
� �r Traþ1

C raþ2ð Þ z0 � zM 0k kL2 0;Tð Þ

6 AB að ÞT
1�a Ea;2 � a

1�a T
a� �
CM�ljzjHl;M;1 0;Tð Þ:
Lemma 5. Suppose
k1 ¼ max06t;s6T K1 t; sð Þj j; k2 ¼ max06t;s6T K2 t; sð Þj j, and /1 and /2 sat-
isfy the Lipschitz conditions with the constants L1 and L2, respectively.
Let z 2 Hl 0;1ð Þ satisfies in Theorem 4. Then

Itz� ItzMk kL2 0;Tð Þ 6 k1L1TCM
�ljzjHl;M;0 0;Tð Þ;

Itz� IqtzM
�� ��

L2 0;Tð Þ 6 k2L2qTCM
�ljzjHl;M;0 ; 0;Tð Þ:
Proof. According to (2) and using Theorem 4, the proof completes.
Theorem 6. Suppose lP 0and z 2 Hl 0; Tð Þsatisfies in Theorems 4, 5
and Lemma 5. Let F satisfies the Lipschitz conditions with the constant
L. Then EM, the error bound of the proposed scheme, is bounded as
follows

kEMkL2 0;Tð Þ 6 CM�lT
AB að Þ
1� a

Ea;2 � a
1� a

Ta
� �

jzjHl;M;1 0;Tð Þþ j k j L 2
T
þ k1L1 þ k2L2q

� �
jzjHl;M;0 0;Tð Þ

� �
:

Proof. In view of Eq. (1), we get

kEMkL2 0;Tð Þ 6 ABCDa
t z� ABCDa

t zM � kF t; z tð Þ; z qtð Þ; Itz tð Þ; Iqtz tð Þ� ���
þkF t; zM tð Þ; zM qtð Þ; ItzM tð Þ; IqtzM tð Þ� ���

L2 0;Tð Þ

6 ABCDa
t z� ABCDa

t zM
�� ��

L2 0;Tð Þþ j k j L 2kz� zMkL2 0;Tð Þ

�
þkItz� ItzMkL2 0;Tð Þ þ kIqtz� IqtzMkL2 0;Tð Þ

�
:

By employing Theorems 4, 5 and Lemma 5, the proof completes.
6. Numerical results

Now, we solve some illustrative examples to show the accuracy
and efficiency of the proposed scheme. The codes were written in
Mathematica software. For the difference between the value of the
exact and approximate solutions at some selected points, we use
the following notations

Absolute error ¼ z tkð Þ � zM tkð Þj j; 0 6 k 6 M;

MAE ¼ max
06k6M

z tkð Þ � zM tkð Þj j:

Example 1. Consider the following PT-FIDE

ABCDa
t z tð Þ ¼ z tð Þ � 1

2 ln 1þ t
2

� �
z t

2

� �þ 1
1þt� ln 1þ tð Þ t

2 ln 1þ tð Þ þ1
� �

þR t
0

t
1þs z sð Þdsþ R t

2
0

1
1þs z sð Þds; t 2 0;1½ �;

under the initial condition

z 0ð Þ ¼ 0:

By applying the proposed scheme, the approximate solution for this
problem is computed. By considering M ¼ 5, the approximate solu-



Fig. 1. (Example 1) Approximate solutions for different values of a.

H. Jafari et al. Journal of King Saud University – Science 33 (2021) 101185
tion together with the exact solution (z tð Þ ¼ ln 1þ tð Þwhen a ¼ 1)
for various values of a are illustrated in Fig. 1. Zhao et al. (2017)
have solved this problem using the Sinc collocation method (SCM)
for getting its approximate solution. Hence, in Table 1, the MAE of
z tð Þobtained by the proposed scheme with those obtained in Zhao
Table 1
(Example 1) Comparison of the absolute error at some selected points for a ¼ 1.

Method of Zhao et al. (2017)

M MAE

5 1.70e�3
10 1.11e�4
20 1.96e�6
30 8.70e�8
40 6.26e�9

Fig. 2. (Example 2) The exact and approximate solutions given by dif

Table 2
(Example 2) Comparison of the absolute error at some selected points with different valu

a ¼ 1

t M ¼ 3 M ¼ 5

0.1 1.94e�5 1.20e�6
0.3 2.68e�5 2.73e�7
0.5 8.38e�5 2.25e�6
0.7 1.33e�4 1.41e�6
0.9 5.66e�5 2.06e�6

6

et al. (2017) at different choices of M is compared. As seen from
Fig. 1 and Table 1, by increasing the number of basis functions
the numerical solution converges to the exact one. Also, Table 1
shows the proposed scheme only with a small number of basis
functions gives more favorable results than the method given by
Zhao et al. (2017).
Example 2. Consider the following PV-FIDE

ABCDa
t z tð Þ ¼ z t

2

� �� 1þ t2
4 � t4

64 þ t5
80 � t6

384 þ t 3� 1
2 e

�1þtð Þt �
ffiffiffi
p

p
Erfi 1

2½ �
4e

1
4

� �
þ
ffiffiffi
p

p
tErfi 1

2�t½ �
4e

1
4

þ R t
0 tse

z sð Þ dsþ R t
2
0 sz2 sð Þds; t 2 0;1½ �;

under the initial condition

z 0ð Þ ¼ 0;

where Erfi �ð Þ is the imaginary error function. The exact solution is
given by z tð Þ ¼ t2 � t when a ¼ 1. For different values of a, in
Fig. 2, by setting M ¼ 5;7 and T ¼ 1;2, we have reported the
obtained numerical results by the proposed scheme at some
selected points. Also, by considering T ¼ 1, comparison of the abso-
lute error at those selected points with different values M and a is
shown in Tables 2 and 3.
Present method

M MAE CPU time

3 9.96e�4 0.016
5 3.62e�5 0.063
7 1.57e�6 0.156
10 5.17e�8 0.516
12 2.50e�9 1.047

ferent values of a (a) M ¼ 5and t 2 0;1½ � (b) M ¼ 7 and t 2 0;2½ �.

es M.

T ¼ 1

M ¼ 7 M ¼ 9 M ¼ 11

1.13e�8 2.83e�11 1.62e�12
1.73e�8 1.54e�10 1.44e�12
4.61e�9 2.82e�10 1.19e�12
2.20e�8 6.32e�11 2.57e�12
1.91e�8 3.43e�10 5.13e�13



Table 3
(Example 2) Comparison of the absolute error at some selected points with different values a.

M ¼ 7 T ¼ 1

t a ¼ 0:7 a ¼ 0:8 a ¼ 0:9 a ¼ 0:99 a ¼ 1

0.1 7.20e�1 3.53e�1 1.37e�2 1.13e�3 1.13e�8
0.3 7.28e�1 3.34e�1 1.22e�2 9.58e�3 1.73e�8
0.5 6.53e�1 2.71e�1 8.78e�2 6.14e�3 4.61e�9
0.7 5.51e�1 1.91e�1 4.54e�2 1.90e�3 2.20e�8
0.9 4.51e�1 1.08e�1 8.75e�5 2.66e�3 1.91e�8

Table 4
(Example 3) Comparison of the absolute error at some selected points for a ¼ 1.

Method of Zhao et al. (2017) Present method

M MAE M MAE CPU time

5 3.60e�3 3 2.30e�3 0.031
10 2.23e�4 5 2.83e�5 0.078
20 5.72e�6 7 1.20e�7 0.406
30 2.89e�7 10 4.50e�10 1.016
40 2.21e�8 12 1.42e�10 2.203

Fig. 3. (Example 3) The exact and approximate solutions given by different values
of a.
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Example 3. Consider the following PT-FIDE

ABCDa
t z tð Þ ¼ 1

2 z tð Þ þ z t
4

� �þ 1
2 � t

4 e
t
4 þ t2

32 � 1
2 e

3t þ e2t

þ R t
0 e

tþs z sð Þdsþ R t
4
0 sz sð Þds; t 2 0;1½ �;

under the initial condition

z 0ð Þ ¼ 0:

Zhao et al. (2017) have considered this example and solved it by the
SCM to achieve its approximate solution. Hence, in Table 4, the MAE
of z tð Þ obtained by the proposed scheme with those obtained in
Table 5
(Example 4) Comparison of the absolute errors for a ¼ 1.

Muroya et al. (2003) Rahimkhani et al. (201

t M ¼ 32

2�2 1:08e� 5 8:79e� 9

2�3 3:81e� 5 1:89e� 8

2�4 1:26e� 5 8:92e� 9

2�5 4:09e� 5 3:55e� 8

2�6 1:20e� 5 1:83e� 6

7

Zhao et al. (2017) at various values ofM is compared. Also, by taking
M ¼ 5, the approximate solution together with the exact solution
(z tð Þ ¼ et � 1 when a ¼ 1) with different choices of a are shown in
Fig. 3.
Example 4. Consider the fractional pantograph differential
equation
ABCDa
t z tð Þ ¼ �z tð Þ þ 0:1z 0:2tð Þ � 0:1e�0:2t; t 2 0;1½ �;
under the initial condition
z 0ð Þ ¼ 1:

By employing the proposed scheme, we have achieve the
approximate solution by setting M ¼ 5 and plotted the approxi-
mate solution along with the exact solution (z tð Þ ¼ e�t when
a ¼ 1) at various values of a. This problem is solved with different
methods given in Muroya et al. (2003), Rahimkhani et al. (2017),
Nemati et al. (2018) which include collocation method, operational
matrix based on Bernoulli wavelets and hat functions, respectively.
By setting M ¼ 10;a ¼ 1 and T ¼ 1, the results obtained are com-
pared with methods given in Muroya et al. (2003), Rahimkhani
et al. (2017), Nemati et al. (2018) at some selected points in Table 5.
Table 5 shows the proposed scheme gives more favorable results
than the method given by Muroya et al. (2003), Rahimkhani
et al. (2017), Nemati et al. (2018). Also, comparison of the absolute
error at some selected points with different values ais shown in
Table 6.
7) Nemati et al. (2018) Presented method

k ¼ 2; M ¼ 6 M ¼ 10

1:05e� 8 2:22e� 15

5:79e� 9 2:66e� 15

2:00e� 8 3:11e� 15

3:70e� 9 7:77e� 15

2:03e� 8 4:33e� 15



Fig. 4. (Example 4) Approximate solutions given by different values of a.
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7. Conclusion

In this article, an efficient method has been proposed to obtain
numerical solution of pantograph Volterra nonlinear fractional
integro-differential equations which is described in the
Atangana-Baleanu sense. For solving the considered equations,
the properties of the shifted Legendre polynomials together with
the collocation points have been used. By this way, the problem
under study is reduced to a system of algebraic equations which
greatly simplifies the problem. Then, an error estimate is proved
for the proposed scheme. Finally, some examples have been pre-
sented to show the accuracy and efficiency of the proposed
scheme. The numerical results confirm the superiority of this
method compared to the other existing state of the art methods.
see Fig. 4.
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