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Several researchers have looked at pulsating Fibonacci sequences in the last ten years, which are gener-
alizations of the Fibonacci sequence. They verify the closed form of these sequences via mathematical
induction. This approach is beautiful, but it can only be utilized when patterns of the closed forms are
predicted. In this paper, we introduce the complex pulsating (a;,a,,...
apply matrix theory, particularly eigenvalues, eigenvectors, and block matrices, as well as basic proper-
ties of the floor function to bridge the gap and obtain the closed form of the complex pulsating. Moreover,
the golden ratios of this sequence are provided.
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,am,c)-Fibonacci sequence and

1. Introduction and Literature Review

The Fibonacci sequence {F,} is defined as Fp =0, F; =1 and
F, = F,_1 + F,_, for n > 1, and Binet’s formulas for Fibonacci num-
bers are given by F,= ‘D;jf = “’”\/’_"’", where
1.6180339887 ..., namely, the golden ratio, and ¢ = 1 — ®. This
sequence has been extended in various versions and has also been
studied by many mathematicians. For example, Miles (1960)

defined the k-generalized Fibonacci numbers f;, by

(D:%gz

k
fir=0, 0<j<k=2, fi 1,=1, fjk:ij—n‘kv izk
n=1

Horadam (1961) defined the generalized Fibonacci sequence by
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H,=H,.1+Hy2, n>3, with Hi=p, Hy=p+q

where p and q are arbitrary integers. Kalman and Mena (2003)
generalized the Fibonacci sequence by

F,=aF,_4 +bFn,2, n= 27 with Fo = 07 Fi=1.

Gupta et al. (2012) defined the generalized Fibonacci sequence
by

Fy=pF 1 +qF, 5, k> 2, with Fo=a, F{=b

where p,q,a and b are positive integers. Wani et al. (2017) defined
the generalized k-Fibonacci sequence {Sy,} by

Sn = ksk‘n—l + Sk.n—l: nz= 27Wlth SIc,O =q, Sk.] = qk

where g and k are positive integers. Javaheri and Krylov (2020) gen-
eralized the Fibonacci sequence by

Fny1 = PF, — QF,_;, with Fo=0, F; =1

where P and Q are nonzero integers. However, Atanassov et al.
(1985, 2001) defined four 2-Fibonacci sequences as follows:

Oo :avﬁo :bv(xl :C7ﬂ‘l :d7
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Ont2 = ﬂnﬂ + ﬂnv

(11)
Bria = Olng1 + Oy
U2 = Ot + P, (12)
ﬁn+2 = ﬁn+1 + 0y
U2 = Priq + Oln, (13)
ﬂn+2 = Ont1 + /gn
Oln2 = Olpy1 + Oln, (1.4)

ﬂn+2 = ﬁn+1 + ﬁn

for every nonnegative integer n. We observe that most of them are
related to the form of single-line sequences except for the work of K.
Atanassov is remarkable. So, it is the inspiration for us to study and
ascertain the behavior of this particular sequence.

Atanassov (2013) extended his sequence (1.2) by establishing
the (a, b)-pulsated Fibonacci sequence, which is defined by

o =a, fip =b,
= .82k+1 = Ok + szv

oks2 = 02ks1 + Poks
Baksz = Baks1 + Clak

02k41

(1.5)

where a,b € R and k € N U {0}. One year later, he also proposed a
generalized version of (1.5), so called the (a;,a;,...,ay,)-pulsated
Fibonacci sequence, which was published in Atanassov (2014)
and is defined as follows:

%10 =0y, Ko =40y, ..., O(m,o:arm

O12k+1 = 022kt = -« = Olm2k+1 = ZOC: 2%s (1.6)

O 2k+2 = O 2k+1 + Om—j+12k

for any nonnegative integers j, k, and m such that a;,a,,...,a, € R
and 1 <j < m. Moreover, the latest version of pulsating Fibonacci
sequence was reported by Halici and Karatas (2019). They defined
a new sequence, complex pulsating Fibonacci sequence, as
follows:

Py =a+c QO =b+ci,

Re( +1) = Im(Py), Re(Quyq) =Im(Qy),

Im(Pni2) = Im(Q2n+2) Im(P2ni1 + Qans1)s (1.7)
Im(PZnH) = lm(PZn) + Re(QZn)

Im(Q2n11) = Im(Q2n) + Re(P2n)

where a,b and c are real numbers and n € N U {0}.

Im(Py) Re(Py) Im(P)

Re(Py)

Im(Py)

Re(P)

Re(Qo)

Im(Qo) Re(Qq) Im(Q)

Journal of King Saud University — Science 34 (2022) 102063

We note that it was sheer coincidence that the sequences in
(1.1)~(1.7) were confirmed in their closed form by using mathe-
matical induction.

In this paper, we use matrix theory, especially eigenvalues,
eigenvectors and block matrices, and basic properties of the floor
function to find the closed form of the Fibonacci sequence that
merges (1.6) and (1.7), named the complex pulsating
(a1,az,...,a,,c)-Fibonacci sequence. This sequence is defined
as follows: Let a;,a,,...,a, and c be real numbers. Then,

Pio=ay+ci, Pyg=a; +ci, ..., Pno=0an +i,
Re(Pj,k+1) = In](P]k)7

m
Im(Pyzk42) = ImM(Pagks2) = -+ = Im(Ppoii2) = Im (Z P::zzm)

i1
Im(P;311) = Im(Pj2k) + Re(Pm_jir2k),

(1.8)

for all nonnegative integers j, k, and m such that 1 < j < m. To make
it easier to visualize the complex pulsating (a;,as,...,0m,C)-

Fibonacci sequence, we show in case m is equal to 2, that is equiv-
alent to (1.7), as Fig. 1.

Outline of the paper. In Section 2, we give some results which
affect the main obtained result. Section 3 is devoted to our main
results. The complex pulsating (ai,ay,...,am,c)-Fibonacci
sequence is given in the closed form. Besides, the golden ratios of
this sequence are investigated. Finally, in Section 4, we summarize
and discuss our results.

2. Preliminaries

Throughout this paper, let I, be an m-by-m identity matrix and
J» be an m-by-m matrix in which every entry is one. Let K, be an
m-by-m reversal matrix that is a permutation matrix in which
kim-is1 =1fori=1,2,...,m and all other entries are zero.

In this section, to simplify the process of finding the closed form
in Theorem 3.2, we construct the following lemmas.

Lemma 2.1. For any integer m > 2, the eigenvalues of matrix
U =]y +Kn are m+1 of multiplicity 1, —1 of multiplicity |%| and
1 of multiplicity |51|. Moreover, the eigenvectors of matrix U are

1. [1],,.; with eigenvalue . =m +1,

2. [v"],., with eigenvalue 7= -1 forh=1,2,...,|3|, where
1 ;i=h
M={-1;i=m-h+1
0 ; otherwise,
Re(P3) Im(P,)  Re(Ps)
Im(P3) Re(P4) Im(Ps)

Im(Q3)

Re(Q4) Im(Qs)

Re(Q3) Im(Qy) Re(Qs)

Fig. 1. The complex pulsating (a;, a,, c)-Fibonacci sequence.
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Fig. 2. The complex pulsating (1,2, 3,4, 5)-Fibonacci sequence.
Table 1
The complex pulsating (a;,az,. .., am, ¢)-Fibonacci sequence in case m =4,a,; = 1,a, = 2,a3 =3,a, =4 and c = 5.
k Pk Py P3 Py
Re(P1x) Im(Py ) Re (P, ) Im(P;) Re(Ps) Im(Ps ) Re(P4x) Im (Pyy)
1 1 5 2 5 3 5 4 5
2 5 9 5 8 5 7 5 6
3 9 30 8 30 7 30 6 30
4 30 36 30 37 30 38 30 39
5 36 150 37 150 38 150 39 150
3. [wh], ., with eigenvalue i =1 forh=1,2,..., ||, where if m is Proof. Obviously, by the properties of the floor function, we have
even, then

1 ;i=hand i=m—-h+1
p=9—-1;i=%and i=3+1
0 ; otherwise,

and if m is odd, then

1 ;i=hand i=m—-h+1

— . — mtl
=4 2:i="

0 ; otherwise.

=

25

It is easily observed that
Ull] g = [(m = 1) + 2] = (m + 1)[1] 4
thus, m + 1 is the eigenvalue of the matrix U with the corresponding
eigenvector [1],,. 4.

Next, to show that U[o"] = —[2"] for all h € {1,2,...,|Z|}, let
U = [u;] and z! be the ith column of U[2"]. Then,
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2_um—hﬂm—hﬂ ;i=m—-h+1
Z =S up vt = U — Uipep = R
' ]Zl Y = Ui~ Uy {1_ui,m—h+1 pigm—ht1
2-1;i=m-h+1 -1;i=h
=<¢1-2;i=h =1 i=m—-h+1=-20.
1 -1 ; otherwise 0 ; otherwise
Finally, ~we show that U[w']=[wt] for all

he{1,2,... |21} Let U=
U[w"]. If m is even, then

[us] and z! be the ith column of

Uip +Uim-p1 — Uim —Uimiq

= fju,-jwjh] =
j=
_ { 2+ Un_ppimoht = Um bt m —Umopmen s i=m—h+1
T tim nn — Uiy si#m—h+1
2+1-1-1;i=m-h+1

—Uimyq

1+2-1-1;i=h 1 ;i=hori=m—-h+1
=<¢141-1-2;i=1 ~1;i=Tori=2+1 =wl.
1+1-2-1;i=%+1 0 ; otherwise
1+1-1-1; otherwise
If m is odd, then
Zuu 1—u1h+u1mh+1 2uva
2 +Un-ht1.m-h+1 *2U1n7h+1‘m74r1 5 i=m—-h+1
N T+ Uimopet —2Ung 3 i#m—h+1
2+1-2(1);i=m-h+1
+ (1); + 1 ;i=hori=m—h+1
1+2-2(1);i=h .
= ={ —2;i=mH =wh.
1+1-2(2);i=m41 2 ‘
0 ;otherwise
1+1-2(1); otherwise

Hence, we have the desired result.

Lemma 2.2. Let U be the matrix which defined in Lemma 2.1 and
n € N. Then,

U'=xJ,, +1In
when n is even, and
U' =x], +Kn

. n_
when n is odd, where x = 171

Proof. By Lemma 2.1, we know that U" = PD"P~!, where P is an m-
by-m matrix such that each column vector is an eigenvector of U

associated with the eigenvalues m+1,—-1 and 1 and
D =diagim+1, —1,..., —1,1,...,1). To understand the following
H/—’

7 et
process more easily, LV\Je separgtejthe proof into two cases.
Case 1 If m is odd, then it is easily found that |21 =r = %],
where m =2r + 1. A useful expression for the correspondingly
partitioned presentation of m-by-m matrices P,D" and P~

[”m] I; I; (m+ l)n O1xr 01
p_ |1 O F2u| |0 U0

[”rx] -K: K; 7 0rx1 0: I
and
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) 1cr
~1K,
1K - 3,

El 1
mllxr m
Pl= 1l 0r.1
[ %} rx1
We know that JK =] = KJ and K? = I. Let x = ™*"=1 Then, by
carrying out a partitioned multiplication and then simplifying,
we write U" as follows:
U, U, U;
U'=|Us Us U
us U, Uy

2
=
]
o
o

n

m+1

e G
)n] rx1 + [_ l}rxl [X]rxl

)n] +( 1 I< +]I( m-]rijr ( +1)1(1’7
= [Rm+ 1"y T+ B, = [ 1],
1

Us=L1(m+1)"+ZL=x+1.

m

+1>Ir7

n\l

m+1

— - -

3= 3= 3=

Uy
U,
U3 m+l

r

(
(
(
(

= [x]lxﬂ

xTr

Then, we can rewrite

U" =X + ((71)2" a 1>Im + (U)n; i 1>1<m

to conclude that if n is even, then U" = XJ,, + I, and if n is odd, then
U" =xJ,, +Kn.

Case 2 If m is even, then it is easy to see that |";!| =r and
|%| =r+1, where m = 2(r + 1). By the same argument as in Case
1, we obtain the matrix U", where

[”rxl Ir Orx] Ir

1
p | M 0 1] 1L
[”rxl 7Kr Orxl Kr

m+1)" 0, 0 Oy

D 071 (-1 Oy 0,
0 O1xr (=" Op
Orxl Or Orxl Ir
and
N U PP U
Pil: %Ir 0r><2 *%Kr

3 —3] O
11 1Jr [7%}1%2 %Krfijr

we can rewrite

U —x + ((71)2" + 1>1m . ((1)”2+1 + 1>1<m

and hence, if n is even, then U" = xJ,, + I,, and if n is odd, then

, as desired.

1)1
U" = X,y + K, where x = 171

3. Main results

Two portions are divided in this section. The closed form of the
complex pulsating (ai,ay,...,am,c)-Fibonacci sequence, which is
the focus of the study, is demonstrated in the first section. The
golden ratios of this sequence are discussed in the second half.
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3.1. The closed form of the complex pulsating (a;, ay, ..
Fibonacci sequence

-, am, C)'

In this section, matrix theory is an essential proof technique.
We will reveal the reasoning behind this choice in Section 4. How-
ever, to visualize it more clearly, we would like to provide an
example of the following sequence.

Example 3.1. In the circumstances m=4,a; =1,a, = 2,a3 = 3,
a4 = 4, and ¢ = 5, we shall demonstrate an example of the complex
pulsating (aq,ds,...,am,c)-Fibonacci sequence. Table 1 and Fig. 2
provide more information.

Theorem 3.2. The closed form of the complex pulsating

(aq,ay,...,anm,c)-Fibonacci sequence is
m
Im(Pyo12) = -+ = IM(Ppaky2) = (M+ DY g +m(m+1)e,
i-1
(me1)f—1 & k.o p
T —5Na+a+ (m+1)c;kis odd
i=1
Im(Pj k1) = ) lm
M1 S @y 4+ Ay + (M +1)¥c s k is even

Il
—_

for all k € NuU {0}.

Proof. Define a linear transformation T : R*™ — R*" by

T(01, s 0ms Ky ey Koy Sy o Sy s+ M)
= (K1 +0m, K2 + Om-1,- -, Km +01,D,...,D,4,.--,q,
LS LA (3.1)
m m

M + G g 1 + G5 4y + ),

where p = 37 6 + ki and q = 311, 14 Clearly, the matrix repre-
sentation of T with respect to the standard basis is

Q:{g g},where A:[Jim ]Iﬂ and B:{g Jlﬂ

Note that U is the matrix in Lemma 2.1. Then, the matrix A can
be rewritten in the following form:

A_{Im OmHOm ImHIm Om}
Tl -Km In [1O0m U | Kn Inml

We are now ready to find the closed form. For each k € N U {0}, we

let X;= Kf‘,] where X, = [Re(P1x) Re(Pm,k)}[ and
K
X = [Im(P1y) Im(Pp ) }t. Moreover, we observe that
Q[Xz" ] = [Xz"*z}. By computing directly, we have
X2k+1 X2k+3

Xok Xo

e %)

X2k+1 Xl
where Xo=[ar - am ¢ - clim Xi=[c -+ ¢

C+amC+apq---C+ a1]§x2m and k € N. Furthermore, by block
matrix multiplication, we obtain

k
v A0

where

Journal of King Saud University — Science 34 (2022) 102063
A [t O] fO0n US| [Tn On
" —Km In |0, U* Ky In

UK, Uk
- (71<,,,U’<*1+Uk)1<m _KnU £ U

and
ge_ |0 JuU|
0 Ut

As a result,

o) =]

Xokr1 X;
UKo u-! On On X,
(~KnU*" + U)K —KnU*" + U 05 Oy X!
On On On Jo US| | X
0., Om 0, U X

[UMKnXy + UN'X

(~KnU*" + U KX + (—KnU* ™ + U)X
JnU'X]
o

(m+1)k-1
m

We know that J2 =mj,. Next, we let x= and

k-1 . . RT . .
x =1 —1 and consider the terms of matrix multiplication in

two cases:
Case 1 If k is odd, we obtain that U":)<jm+l<m and
U1 = x/J,, + In. Thus,

1)
U KXl + USX) = (X + Kin) Xl + (X + Tn) X
r m
Xy ai+ap

ia mx'c+c

m !
mxc C
XY a +a +

i=

XS g+ an+(m+1)"c

3

Il
—_

n k-1
XY a+a+(m+1)" ¢

L =1 mx1

(-K,,,U’H + Uk)Kmxg + (—KmU’H + Uk>xg
= (KX + In)Kin + (X3 + Kin) K ) X5 + (=K (X + Im)
+(X + Kn))X§
= (_X/.]m - Im +X]m +I"’l)X£) + (_X/]m - Km +X]m +Km)xg
= (=X + X)) X + (=X + )] Xg = (M + 1) (Xo + X5)
_ {(m-&- 151 S g + m(m + l)k’lc} 7
i=1

mx1
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3)
JnU X = I %+ Tn)XT = (X +J)XY
= (mx' + D] X] = (m+ 1) XY
k1 & k-1
m+1)"" Ya+mim+1)" ¢ ,
i=1 mx1
4)
m
XY ai+a + (m+1)c
i=1
UXY = (X + Km)X =
m
XY i+ Gy + (m + 1)kc
i=1 mx1
We conclude that | <2 | = g*|%0| = ] where p; is in the
X2k+1 )(1 Jlamx1’ )

pattern as follows:

k-1 m .
IS G+ g + (M 1) Me ;s 1< <m
i=1

pi= (m+ 1)¥ Zal+mm+l) c;m+1<j<3m

m
””“k LS i+ Qg + +(m+1kc ; 3m+1<j<4m

i=1
Case 2 If k is even, we obtain that Uk:xjm+1m and
U'=xJ, +Kn In the have both
(“KnU*" + U)K X + (KU + U*)X{ and J,,U*'X{ are equal

to

Ssame manner, we

[(m+ ¥ a + mm + 1) '] . However,

& k-1
Xy a+a+(m+1)" ¢
i=1

U KXy + U X =

m
XS0+ ap + (m+ 1)

i=1 mx1

and

m
XY i+ + (M + ke
i=1

U'X; =
= k
> ai+a+(m+1)c
i=1 mx1
As a result,

) m .
S g g+ (m+ 1) e 1<j<m
i=1

pi=¢ m+ 1) S g+mm+1)"c s m+1<j<3m

i=1

(m+1" U
7Za,+a4m_]+1+(m+l) c;3m+1<j<

3.2. The golden ratio of the complex pulsating (a;,a,. ..,
Fibonacci sequence

pm, C)-

In mathematics, the Fibonacci sequence and the golden ratio are
closely related. This ratio is the limit of the ratios of successive
terms of the Fibonacci sequence. In the previous section, we dis-
cover the closed form of the complex pulsating (ai,a,,...,am,c)-

Journal of King Saud University — Science 34 (2022) 102063

Fibonacci sequence, which is a generalization of the Fibonacci
sequence. As a consequence, it is no surprise that we will look at
the golden ratio of this sequence in this section. The consequence
of our closed form in Section 3.1 is the ratios

Re (Pj,2k+2) +ilm (Pj_2l<+2)
k- Re (Pjy2k+‘1 ) + ilm (Pj,2k+l)

and

Re (Pjgkﬂ ) +ilm (Pj,2l<+l)
1m p
k—oo  Re(Pjax) + ilm(P;2)

which seem to be the well-known golden ratio. For further results,
look at the following proposition.

Proposition 3.3. For each j=1,2,...,m, let (P;;,) be a complex
pulsating (aq,as,...,am,c)-Fibonacci sequence as the sequence
(1.8). Then, the golden ratios of this sequence are

(m+1)(m?2+2m) . (m+1)(m2-m-1)
m24(m+1)% m24(m+1)%

Re(Pjaksa ) HiIm(Pigra)
Re(Pjotsr ) HIM(Pjger)
Re(P; )+llm( ]2k+|)

i) ilm(

o limy S

° limkﬂx

)

—_m 242m lm —m-1
+ilm(P; 51, ) m2+1 m2+1 °

Proof. First, for eachj=1,2,...,m, we consider the ratio by using

Theorem 3.2

Im(l’] 2k 2)
koo IM(P2ks1)

m m
(m+1) k E a;+m(m+1) ke (m+1) k E a;+m( m+1

< max { lim = ,lim e
m\]kl ka( \1)"1 k
a;+aj+ m+1 — Qi+ _j g Hm+1)"c
i=1 i=1

and in the same manner, we have

ll ( 12k+2)

kesoo IM(Pi2ii1)

m m
m+1DK Y grm(m+1) (m+1)k E aj+m(m+1)¢
> min 11m = ,lim =1
m+1 1§ Tk (m+1) k 1§
a;+0j+( m+l Qi+ _jy1+( m+1
i=1 i=1

Im(Pia2) _

As a result, limy_ m(Prcr) — m. In addition, by the same argu-
2k+1

ment, we obtain

lm(Pjvzk) _ m
k—o00 Im(Pj‘szF]) m+1
forallj=1,2,...,m. So, we have

Im Pk 1 ) +im (Piags2)

ll Re( j2k+2)+llm(Pj 2k+2) —
Koo Iln(Pj_zk)Hlm(Pj_zk,l)

k—oc Re(Piakct ) +HIm(Pj2es1)

. "“(Pj.2k+2))
_ llm 1+ (]'"(szk\ ])

koo M)
m(Bjgp.1)
_ 1+im _ (m+1)(m2+2m) .(m+1)(m2,m,1)
ARt T m2e(m+1)? ()
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And,

Re(Pjatet ) +HIM(Pia1)

1m (P i) +ilm(P; 5141 )

lim
koo (P21 )+iIm(Py2k )

koo Re(Pigi)+ilm(P;5)

; '"‘(”j.zk+1)>
— lim v ( m(21)

k—o0 ]m(Pj.Zkfl)

+i
[“‘(Pj_zk)
i(mtl
— 1+(%) — m?i2m _ jm?-m-1
i m2+1 m2+1

4. Conclusion and Discussion

Actually, the heart of this paper is to find the appropriate matrix
Q to use in the proof of Theorem 3.2 but the matrix Q can take
many different forms. The variety of Q depends on a linear map T
which obeys the rule in (1.8). Here is one of the examples of Q that
we ever used to solve (1.8). Let X,=[Re(Pin)Im(P;ip) -
Re(Pyn)Im(Py, )] for n e NU{0} and T : R*™ — R*™ be defined by
T(x1,X2, ..., Xam) = (X2 +Xam-1,Y,Xa + Xom-3,Y, - - -, Xom + X1, ¥, Y, Xam+

V:Y:Xam 2 +Y,. .., Y:Xami2 +y) where y =371 X)m). Then the
matrix Q is in the form {I(L)‘ g} where

1; (jis odd and i =2m —j),
or (jisevenandi=j—1),
0 ; otherwise,

Asmsam = [aij} =

0; jis odd,
2;j<m, jisevenandi=2m+j-2,
0 ; otherwise,

Bomxom = [by] =

0; jis odd,
2;j=m+1,jisevenand i =2m —j+2,
0 ; otherwise.

and Comsom = [¢j] =

In the same manner, we know that {XZ” } =Q" {XO}, where
X2n+1 Xl

Xo=[m ¢ a ¢ - au c)iom

Xi=[c c+am € CHn ¢ c+all,, The matrix Q"

looks uneasily to compute its closed form.So, here is the reason that
we choose the map T in (3.1) because its matrix representation is in

the form Q = {'3 g}
Kn In
Jn I

which is easily compute Q". Even though, the

matrix A = { ] looks so complicated but it can be decom-
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posed as follows:A = {Im 0"‘} {0'” I”‘] {I"‘ Om

Ky In | |0 U ||Kn In
I O Im  Opm
—Kn In Kn In
it easier to see A". Then, the computation of Q" is simplified to only
find the matrix U". So, we have to collect all of the eigenvalues and
eigenvectors in Lemma 2.1 and complete our work in Lemma2.2 for
finding the closed form of U". Until now, we can see that the con-
struction of Q relies on the rearrangement in the entries of the
matrix X, and the formula of a map T. Both of these may lead us
to vary directions for getting Q.

By the way, we believe that our tactics to create the matrix Q in
Section 3.1 are not the best. So, we wish to see a friendly matrix Q
that can be computed favorably.

] . Moreover,

the matrix { ] is the inverse of { ] which makes
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