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A B S T R A C T   

The seismogenic characteristics of the Gulf of Aqaba zone have been assessed using the maximum likelihood 
method to estimate various earthquake recurrence parameters. These parameters encompass the β-value, annual 
recurrence rate (λ), and maximum probable magnitude (Mmax). This assessment has identified three sub- 
seismogenic zones, each corresponding to specific structural faults within the Gulf. These zones are associated 
with the Aragonese, Arnona and Aqaba faults, delineating pull-apart basin structures in the Gulf of Aqaba. An 
updated earthquake catalogue has been compiled using a unified moment magnitude (Mw) scale to improve the 
analysis, established by developing two empirical relationships. According to the findings of this study, there is a 
possibility that the Aragonese seismogenic zone could experience an earthquake with a maximum magnitude of 
7.7, highlighting a significant seismic hazard in the region. While acknowledging the inherent uncertainties in 
this assessment, a probabilistic seismic hazard was calculated for hard rock conditions within a spatial area 
divided into elementary cells, each measuring 0.1◦×0.1◦. The highest peak ground acceleration (PGA) is asso
ciated with a spectral frequency of 5.0 to 10.0 Hz and could significantly impact building codes in the region. The 
spatial distribution variations of seismic hazard corresponding to the proposed sub-seismogenic zones indicate a 
high degree of crustal heterogeneity and seismotectonic complexity. This comprehensive assessment contributes 
to understanding seismic hazards that may import from the Gulf of Aqaba seismogenic zone.   

1. Introduction 

Saudi Arabia’s vision for 2030 includes significant development 
projects in the northwest region, such as constructing an international 
bridge connecting Saudi Arabia and Egypt. Given the scale of critical 
infrastructure development in the region, understanding, estimating, 
and mitigating earthquake hazards is paramount. 

The extent of damage caused by earthquakes to structures depends 
on various factors, including peak ground acceleration (PGA), ground 
motion intensity, structural design and foundation, soil rigidity, lique
faction potential, site geology, and the structure’s location relative to the 
earthquake epicenter (Sengezer et al., 2008). Seismic hazard assess
ments are vital for accurately estimating potential property and life 
losses in risk analyses. These assessments determine site-specific ex
pected ground motions near critical infrastructure like railways, 

highways, bridges, and dams. A crucial aspect of a comprehensive 
seismic hazard analysis is defining seismogenic zones and characterizing 
seismic hazards, which involves understanding the spatial distribution 
of peak ground accelerations (PGAs), response spectra, exceedance 
probabilities, and return periods. 

From the perspective of Saudi Arabia, the Gulf of Aqaba seismogenic 
zone is a significant concern as it is considered the most earthquake- 
prone area in the Red Sea region. The region experienced two signifi
cant earthquakes in August 1993 and November 1995. The 1993 
earthquake with a local magnitude of 5.8 (Abdel Fattah et al., 1997) 
occurred near the western coastline of the Gulf along the Aragonese/ 
Arnona fault and likely contributed to the 1995 earthquake with a 
moment magnitude of 7.2 (Hofstetter et al., 2003). The 1995 earthquake 
caused extensive damage in northwest Saudi Arabia, followed by intense 
aftershocks. This seismic event significantly impacted and destroyed the 
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coastlines of nations adjacent to the Gulf. Severe destruction was wit
nessed in Nuweiba, Egypt, the city nearest the epicenter, with most 
buildings suffering extensive or complete destruction (Klinger et al., 
1999). It is essential to highlight that the Gulf of Aqaba earthquake 
source zone poses a potential seismic threat to neighboring regions, 
including Saudi Arabia, Egypt, Jordan, and Palestine. The rapid devel
opment of megacities near this seismogenic zone, like Neom in Saudi 
Arabia, may raise concerns about potential hazards. 

Seismogenic models describing the spatial and temporal distribution 
of potential seismic sources are crucial to seismic hazard assessment. In 
the Gulf of Aqaba, the tectonics are influenced by three major strike-slip 
faults: the Aqaba Fault, the Aragonese Fault, and the Arnona Fault, 
which generate pull-apart basin structures. The presence of these sub- 
seismogenic zones was not thoroughly considered in previous assess
ments but has been incorporated into the seismic source modeling in this 
study. It is important to note that earlier studies have indicated that the 
highest PGAs in the Gulf of Aqaba seismogenic zone tend to align par
allel to the coast and decrease in magnitude as one moves away from the 
coast. 

This study generated hazard spectra on a hard rock site in Neom, 
Saudi Arabia, for various return periods based on the characteristics of 
earthquakes in the Gulf of Aqaba seismogenic zone. Earthquake data 
from 1964 to 2023 was collected and analyzed to update probabilistic 
seismic hazard maps on both sides of the Gulf. The methodology used is 
based on established techniques for estimating fundamental earthquake 
hazard parameters, including maximum regional magnitude (Mmax), 
magnitude-frequency relationship (β value), and mean seismic activity 
rate (λ). These parameters help enhance our understanding of seismic 
hazards, aid earthquake preparedness and mitigation and are calculated 

using the maximum likelihood estimation method. We used the method 
introduced by Kijko and Sellevoll (1989, 1992) and Kijko (2004) to es
timate the maximum regional magnitude Mmax and other related 
earthquake hazard parameters. 

2. Tectonics and seismicity 

The Gulf of Aqaba seismogenic zone is situated near the transform 
fault that connects the Red Sea rifting system with the Dead Sea trans
form fault system, as previously reported by Mechie and El-Isa (1988). 
However, the current tectonic dynamics in this seismogenic zone are 
primarily influenced by the ongoing separation of the Arabian and Af
rican plates. This separation significantly affects the rotational move
ment of the Sinai sub-plate, as Salamon et al. (2003) discussed. Fig. 1 
visually represents the ongoing tectonic processes and the spatial dis
tribution of epicenters in the northern Red Sea region from 750BCE to 
2020 CE Additionally, Fig. 1 presents the spatial distribution of focal 
mechanism solutions for the earthquakes listed in Table 1. The 
arrangement of hypocenters in terms of latitude and longitude indicates 
that the Gulf of Aqaba seismogenic zone spans approximately 120 km in 
length and 15 km in width. Most of the seismic events within this zone 
occur at depths ranging from 5 to 20 km. According to the International 
Seismological Centre, the mainshock of the 1995 earthquake sequence, 
with a moment magnitude (Mw) of 7.2, is the most significant known 
earthquake in the region. However, the Gulf of Aqaba seismogenic zone 
experiences relatively infrequent earthquakes with magnitudes 
exceeding 6.5, as noted by Klinger et al. (1999). 

Seismic activity in the Gulf of Aqaba seismogenic zone is charac
terized by isolated seismic sequences occurring spatially and temporally, 

Fig. 1. Tectonic settings and seismicity distribution in the Gulf of Aqaba and its vicinity region.  
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as described by Abdel-Fattah et al. (2006). Notable earthquake se
quences have occurred in various years, including 1983, 1990, 1993, 
1995, 2015, and 2016, as documented by Almadani (2020). The dis
tribution of fault plane solutions across the Gulf of Aqaba has revealed 
different earthquake faulting mechanisms. Normal earthquake faulting 
mechanisms are observed in the southernmost parts of the Gulf of Aqaba 
and the northern region of the Red Sea. In contrast, earthquake activity 
is primarily associated with strike-slip faulting mechanisms in the cen
tral and northernmost regions of the Gulf of Aqaba, highlighting the 
significant role of strike-slip faulting in this area. This transition in fault 
mechanism styles from south to north suggests that faulting processes in 
the northern Red Sea do not directly extend into the Gulf. Seismic to
mography analysis conducted by El Khrepy (2016) did not uncover ev
idence of oceanic crust development within the Gulf. 

3. Earthquake catalogue 

An earthquake catalogue from 750BCE to 2020 CE was compiled for 
the study area. Data sources include historical earthquake records re
ported by Ambraseys et al. (2005) and instrumental earthquake data 
from various sources, including Maamoun et al. (1984), the Interna
tional Seismological Center (ISC) data file, Harvard Seismology, the 
USGS/NEIC catalogue, ISC Bulletin, and catalogue, Preliminary Deter
mination of Epicenters (PDE) from the National Earthquake Information 

Centre (NEIC), Bulletins of the Egyptian National Seismic Network, and 
the Saudi Geological Survey (SGS). The distribution of earthquakes was 
assumed to follow a Poisson distribution, as Cornell (1968) described. In 
order to maintain the accuracy and reliability of the seismic activity rate, 
dependent events like foreshocks and aftershocks were excluded from 
the catalogue to avoid short-term anomalies. The algorithm proposed by 
Reasenberg (1985) was employed to remove the effects of non- 
background earthquakes. 

Primary magnitude data in terms of body wave magnitude (Mb) and 
local magnitude (ML) were obtained from the ISC to calibrate moment 
magnitude (Mw). The ML values were calculated using the empirical 
relation by Shapira (1988), which was initially associated with sample 
ML values derived from short-period amplitude measurements on seis
mograms simulated to a Wood-Anderson instrument. Data for mL and 
mb were collected from the ISC and the National Earthquake Informa
tion Centre (NEIC), while corresponding Mw data were sourced from 
various providers, including CMT Harvard (Ekström et al., 2012), the 
Regional Centroid Moment Tensor catalogue (RCMT), and the Relative 
Moment Tensor catalogue (RMT). 

In order to mitigate discrepancies resulting from the utilization of 
various instrument types, seismic wave measurements, and methods for 
calculating magnitude, earthquake magnitudes were standardized by 
their conversion to moment magnitude (Mw). Empirical relationships 
were developed to relate different magnitude scales (ML and mb) pro

Table 1 
List of focal parameters for earthquakes shown in Fig. 1, as taken from Almadani (2020).  

ID Date To Lat [◦] Long [◦] d [km] M Strike [◦] Dip [◦] Rake [◦] Mo Mw 

1 19820323 104800 27.90 34.30 10 4.7ML 220 65 − 040 4.42E+22 4.4 
2 19830203 134604 29.19 34.77 24 5.3Mw 360 80 014 2.31E+23 5.3 
3 19851231 194241 28.85 35.05 09 4.8ML 155 60 − 030 6.03E+22 4.5 
4 19890909 ——————— 28.57 34.82 10 4.1ML 205 50 − 110 6.84E+21 3.8 
5 19930703 233410 28.86 34.82 18 4.7ML 114 88.69 149 4.42E+22 4.4 
6 19930803 4305 28.73 34.55 17 6.0Mw 007 62 − 117 2.63E+24 6.0 
7 19930803 124305 28.73 34.55 17 6.0ML 294 87.27 − 157 2.51E+24 5.6 
8 19930803 163323 28.36 34.08 15 5.7ML 356 79.41 − 083 9.89E+23 5.7 
9 19930807 45540 28.61 34.63 10 4.2ML 217 50.19 − 042 9.33E+21 3.9 
10 19930820 230959 28.72 34.61 02 4.6ML 116 79.84 140 3.24E+22 4.3 
11 19931103 183932 28.7 34.65 07 4.9ML 086 76.13 − 148 8.22E+22 4.5 
12 19931108 10602 28.69 34.65 08 4.7ML 303 80.49 − 120 4.42E+22 4.4 
13 19931204 233411 28.89 34.8 10 4.6ML 093 68.07 − 148 3.24E+22 4.3 
14 19951122 1526 29.07 34.73 18 7.2Mw 196 59 − 015 1.71E+26 7.2 
15 19951122 124704 29.3 34.74 15 5.0ML 074 80.04 − 150 1.12E+23 4.6 
16 19951122 221657 28.32 34.21 15 5.2ML 357 60.54 − 069 2.09E+23 4.8 
17 19951123 717 29.25 34.64 10 5.7Mw 199 77 007 9.27E+23 5.7 
18 19951124 164345 28.97 34.74 10 4.9ML 165 54.28 − 068 8.22E+22 4.5 
19 19951211 13208 28.92 34.75 19 5.0ML 302 84 147 1.12E+23 4.6 
20 19960103 100526 28.6 35.25 10 4.8ML 113 59.77 − 138 6.03E+22 4.5 
21 19960108 1318 29.38 34.82 06 3.8ML 340 78.86 164 2.69E+21 3.6 
22 19960116 61700 29.34 34.73 06 4.3ML 159 82.79 149 1.27E+22 4.0 
23 19960204 72300 29.45 34.94 06 3.6ML 294 77.43 − 149 1.45E+21 3.4 
24 19960221 5951 28.8 34.78 10 5.3Mw 132 30 − 104 2.31E+23 5.3 
25 19970510 147 28.26 34.7 10 4.6Mw 114 89 150 2.02E+22 4.6 
26 20000308 142226 28.83 34.73 15 4.9Mw 182 48 − 048 5.74E+22 4.9 
27 20000308 122229 28.64 34.57 10 4.8Mw 198 31 − 018 4.06E+22 4.8 
28 20000308 142225 28.77 34.7 07 4.9ML 135 85.1 − 169 8.22E+22 4.5 
29 20000406 63734 28.78 34.83 12 4.8ML 0209 85.1 − 012 6.03E+22 4.5 
30 20000803 142225 28.64 34.57 10 4.8ML 108 82.31 167 6.03E+22 4.5 
31 20010207 33900 29.26 35.01 21 3.6Mw 044 80 − 005 6.25E+20 3.6 
32 20021110 5945 28.23 34.62 16 3.9ML 180 47.3 − 084 3.67E+21 3.6 
33 20040922 120023 28.45 34.6 10 3.2ML 270 64.05 − 076 4.17E+20 3.0 
34 20050120 134100 28.5 34.66 19 3.2ML 041 43 − 056 4.17E+20 3.0 
35 20080302 170600 28.76 34.79 14 3.2ML 058 75 − 029 4.17E+20 3.0 
36 20080404 140500 28.78 34.75 07 3. ML 145 46 − 067 1.97E+21 3.5 
37 20111021 123700 28.52 34.73 09 3.7ML 148 49 − 147 1.97E+21 3.5 
38 20130610 84400 28.06 34.63 06 3.9ML 142 73 − 015 3.67E+21 3.6 
39 20150627 53404 29.04 34.67 22 5.6Mw 200 82 002 6.55E+23 5.6 
40 20160516 14200 28.47 34.72 07 4.3ML 157 52 − 173 1.27E+22 4.0 
41 20160516 4559 28.45 34.51 18 5.2ML 019 88 − 003 1.63E+23 4.7 
42 20160813 30600 28.49 34.82 19 3.9ML 332 47 − 153 3.67E+21 3.6 
43 20161129 113 28.56 34.59 18 4.7Mw 188 59 − 044 2.86E+22 4.7 
44 20170519 141600 27.94 34.56 04 4.1ML 304 50 − 027 6.84E+21 3.8  
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vided by various agencies (Fig. 2a and b), and these empirical re
lationships are expressed as follows: 

Mw = 0.96 ± 0.02 • ML + 0.083 ± 0.08 (1)  

Mw = 1.61 ± 0.07 • mb − 2.99 ± 0.31 (2) 

The method described by Stepp (1972), which relies on analyzing 
how the cumulative seismic activity’s slope changes over time, was 
employed to determine the completeness magnitude levels of the 
earthquake catalogue (Mc). Following this technique, the earthquake 
catalogue was considered comprehensive for magnitudes above Mw 3.0 
since 1984, Mw 4.5 since 1965, and Mw 5.0 since 1900. Fig. 3 shows the 
spatial distribution of epicenters for the earthquake catalogue compiled 
in this study. 

4. Seismicity model 

An essential aspect of assessing seismic hazards involves constructing 
seismogenic models that detail seismic sources’ spatial and temporal 
distribution. These models encompass critical parameters, such as 

seismicity rate, maximum earthquake magnitude, earthquake depth 
distribution, and the spatial arrangement of seismic sources. These pa
rameters are estimated by leveraging diverse data sources, including 
historical earthquake records, geological mapping, and geophysical in
vestigations. In the Gulf of Aqaba, the tectonics are influenced by three 
major strike-slip faults, each exhibiting a minor component of normal 
motion alongside their primary strike-slip movement. In this study, the 
seismic source modeling takes these faults into account. 

A combination of extensional and shear deformations appears to 
govern the current tectonic processes in the Gulf, resulting in the 
development of a Neogene structure consisting of a series of pull-apart 
basins that make up the Gulf of Aqaba (Ben-Avraham et al., 1979; 
Tibor et al., 2010; Abdel-Fattah et al., 2016). These basins include the 
Eilat Deep, Aragonese Deep, Arnona Deep, and Dakar Deep, from north 
to south. These basins have varying thicknesses and are bounded by 
three major strike-slip faults: the Aqaba fault, the Aragonese fault, and 
the Arnona fault. The spatial extension of the Gulf of Aqaba Fault model 
and area seismic model is depicted in Fig. 4a and b. 

According to Ribot et al. (2021), the Aragonese fault spans approx
imately 53 km, the Arnona fault covers around 83 km, and the Aqaba 

Fig. 2. Displayed the magnitude conversion relationships derived in this study.  
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fault extends over 160 km. The slip rates for these faults were deter
mined by Bungum (2007) using GPS data from stations around the Gulf 
of Aqaba, revealing slip rates of 4.5 mm per year for the Aragonese fault, 
4.5 mm per year for the Arnona fault, and 4.7 mm per year for the Aqaba 
fault. In order to determine the highest anticipated magnitude (Mamx) 
along each fault, recent scaling relationships from Thingbaijam et al. 
(2017) were employed. The seismicity parameters for these three faults 
are summarized in Table 2. These faults are incorporated into the first 
seismogenic model (Fig. 4a), which was developed to depict potential 
earthquake activity in the Gulf of Aqaba. The second model, the Aqaba 
Area seismic model (Fig. 4b), was created to account for seismicity 
associated with these faults using area-based seismogenic models. The 
seismicity parameters for these sub-seismogenic zones describe the 
likelihood of various magnitude earthquakes projected to occur in the 
region, with the distribution of earthquake magnitudes assumed to 
follow the Gutenberg and Richter (1954) relationship, as per Cornell 
(1968): 

log(n) = a − bm (3) 

where ‘n’ represents the cumulative number of earthquakes with a 
magnitude greater than or equal to ‘m,’ ‘a’ stands for the seismicity rate, 
and ‘b’ denotes the potential seismicity encompassing small and large 
earthquakes. The relationship expression is limited to the range between 
the lower threshold magnitude (Mmin) and the maximum expected 
magnitude (Mmax), with earthquakes more minor than Mmin excluded 
from consideration. The mean annual rate of exceedance (represented as 
λM) is calculated using a doubly truncated exponential relationship, 

λM = α exp[ − β(M − Mmin) ] − exp[ − β(Mmax − Mmin) ]
1 − exp[ − β(Mmax − Mmin) ]

(4) 

where α = N(Mmin), and β = b.ln10.
The activity parameters (β and λ) in the previous relationship were 

determined through the maximum likelihood estimation method 
developed by Weichert (1980), while Mmax was derived using the sta
tistical approach described by Kijko (2004). The seismicity parameters 
for the seismic models we proposed are provided in Table 3. 

Fig. 3. The complied earthquake catalogue for the Gulf of Aqaba and its surroundings.  
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Fig. 4. Maps show the spatial extension of the Gulf of Aqaba (a) Fault model and (b) Area seismic model.  
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5. Ground-motion models 

Ground motion prediction equations (GMPEs), commonly called 
ground motion models, were employed to estimate the magnitude of 
ground motion resulting from the seismic source characteristics. These 
models are developed based on data from strong-motion recordings of 
previous earthquakes. However, due to the limited availability of such 
records in Saudi Arabia, creating region-specific ground motion models 
presented a challenge. Consequently, ground motion models from areas 
with similar tectonic characteristics were used to predict the expected 
ground motion in the study area. 

Following the recommendations provided by Cotton et al. (2006) 
and Boomer et al. (2010), four Ground Motion Prediction Equations 
(GMPEs) were selected to model ground motion in the current study, 
utilizing the logic tree approach. This approach considers epistemic 
uncertainty by accounting for variations in GMPEs. The chosen models 
include those proposed by Abrahamson et al. (2014), Akkar and Boomer 
(2010), Chiou-Youngs (2014), and Zhao et al. (2006). 

6. Probabilistic seismic hazard calculations 

The traditional approach to conducting a probabilistic seismic haz
ard analysis (PSHA) was initially introduced by Cornell (1968) and has 
subsequently been expanded upon and widely adopted by several re
searchers (e.g., Bender and Perkins, 1987). The likelihood of earthquake 

events, as modeled by the Poisson distribution, can be mathematically 
expressed as follows: 

Pn[m > M, t] =
(λt)nexp( − λt)

n!
. (5) 

In the context of seismic hazard analysis, Pn [m, M, t] denotes the 
probability of experiencing ‘n’ earthquakes with magnitudes greater 
than ‘M’ within a specified area over a period ‘t’ while ‘λ’ represents the 
expected number of earthquake occurrences per unit of time in that area. 
The Poisson model assumes that earthquakes are spatially and tempo
rally independent, that earthquake occurrences are consistent within a 
short time, and that two earthquakes will not happen simultaneously. 
The anticipated number of earthquake occurrences within a particular 
area can be estimated using statistical data from the site, based on the 
frequency-magnitude relationship initially defined by Gutenberg and 
Richter (1954). By taking the inverse logarithm of equation (4) and 
substituting it into the Poisson model, we get: 

Pn[m > M, t] =
{[exp(α − βM)]t}nexp{− [α − βM]t}

n!
(6) 

From the above expression, we can find the probability of having no 
earthquake with a magnitude greater than M over a while t in each area 
as 

P[m ≤ M, t] = Po[m > M, t] = exp{ − [α − βM]t }. (7) 

The probability of having at least one earthquake with a magnitude 
greater than M in time t as 

P[m > M, t] = 1 − P[m ≤ M, t] = 1 − exp{− [α − βM]t} (8) 

The return period of an earthquake with a magnitude greater than M 
is 

TR =
1
λ
= exp(βM − α) (9)  

Table 2 
The estimated Mmax, slip rate, Mo, and a value at each fault segment.  

Fault 
Segment 

Length 
(Km) 

Mmax Slip rate (mm/ 
y) 

M0 (pa) a 
value 

Arnona 83  7.1  4.5 2.64E +
17  

4.43 

Aragonese 53  6.9  4.5 1.68E +
17  

4.34 

Aqaba 160  7.6  4.7 3.01E +
18  

4.30  

Table 3 
The seismicity parameters for each seismic source within the proposed seismic source model.  

Zone No.: Name of Zone Mmin.  β σ β λ Mobs
max Mmax σ Mmax 

1 Arnona Dakar Zone (ADSZ)  3.5  2.1  0.16  0.49  6.1  6.7  0.20 
2 Aragonese Zone (ASZ)  3.0  2.05  0.15  0.75  7.2  7.7  0.50 
3 Aqaba Zone (AQSZ)  3.0  2.07  0.07  0.45  5.1  5.6  0.50  

Fig. 5. The logic tree approach used in the current study. A bold number between brackets is the weight.  
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7. Logic tree 

A logic tree approach addressed the inherent epistemic uncertainty 
in quantifying PSHA. This approach involved considering alternatives 
for seismic source models, standard deviations of model values 
describing maximum expected magnitudes for each seismic source, and 
ground motion attenuation relationships. The logic tree assigns weights 
to various branches to account for the likelihood of each of the three 
alternatives. 

The logic tree comprises three components in the present analysis, as 
illustrated in Fig. 5. The first component deals with the uncertainty in 
seismic source models and has two branches. The first branch pertains to 
the Aqaba fault-source model, while the second is for the area seismic 
source model. The assessment of this component concludes that while it 
is plausible to evaluate hazards for individual faults, the resulting haz
ards are highly influenced by variations in fault seismic characteristics 
due to uncertainties. These uncertainties could lead to overestimating 
the hazard, particularly in the near-source region. Therefore, an equal 
weight is assigned to the fault-source and area seismic source models in 
the developed logic tree in this study. The second component addresses 
the uncertainty in estimating the maximum expected magnitude, where 
the expected mean maximum magnitude carries a weight of 0.75, while 
a weight of 0.25 accounts for deviations from the mean maximum 
magnitude (Mmax + σ). The third component deals with alternative 
equations for modeling the expected ground motion. Four Ground Mo
tion Prediction Equations (GMPEs) are adapted and assigned equal 
weighting. 

The widely accepted software code EZ-FRISK performs calculations 
according to the logic tree. Computations are implemented using a grid 
resolution of 0.1◦×0.1◦, covering the northwestern part of Saudi Arabia 
and the Sinai Peninsula. The calculations generated seismic hazard 
curves, uniform hazard spectra (UHS), and hazard maps illustrating 
PGA. The current analysis considers various spectral periods (0.5, 0.1, 
0.2, 0.3, 1.0, 2.0, 3.0, and 4.0 s) along with three levels of ground 
shaking (with probabilities of exceedance of 10 %, 5 %, and 2 % over 50 
years). These spectral periods and different levels of ground shaking are 
commonly used in building codes. 

8. Results and discussions 

The PSHA is the likelihood of ground motion exceeding a specific 
level at a given location within a designated return period (Bommer and 
Pinho, 2006). In this study, within the framework of the logic tree 
approach, ground motion acceleration was computed in the vicinity of 
the Gulf of Aqaba under bedrock conditions. The outcomes created 
seismic hazard curves for each point in the predefined grid of 0.1◦×0.1◦

that covers the northwestern part of Saudi Arabia and the Sinai Penin
sula. Uniform hazard spectra (UHS) and seismic hazard maps were then 
developed using these curves. For Neom City, UHS was generated for 
return periods of 475, 975, and 2475 years, corresponding to proba
bilities of ground motion exceeding 10 %, 5 %, and 2 % over 50 years, as 
depicted in Fig. 6. The results indicated that the expected PGA values at 
Neom City are approximately 55 cm/s2, 71 cm/s2, and 95 cm/s2 for 
return periods of 475, 975, and 2475 years, respectively. The highest 
values are observed at a spectral period of 0.1 s, with values of 124 cm/ 
s2, 161 cm/s2, and 234 cm/s2 for the same order of return periods. 
Fig. 7a-c illustrate the spatial distribution of expected PGA originating 
from the Gulf of Aqaba earthquake source zone. The highest value is 
around 385 cm/s2 for a return period of 475 years, reaching about 577 
cm/s2. 

Comparisons with previous studies in the area, such as El-Eraki et al. 
(2015), Mostafa et al. (2018), and Abdelwahed et al. (2020), show that 
the estimates of PGAs are comparable. In contrast, the results of Al-Arifi 
et al. (2013) and Gorshkov et al. (2019) reported relatively lower PGA 
values, ranging from 100 to 325  cm/s2, for a return period of 475 years. 
Additionally, Mostafa et al. (2018) observed PGAs at 0.2 s and 0.3 s, 
while in this study, the PGAs are in the range of 0.1–0.2 s, respectively. 
These results suggest that the Gulf of Aqaba plays a dominant role in 
controlling seismic hazards in the region, particularly in comparison to 
studies that considered multiple earthquake source zones. 

9. Conclusions 

This study explores the seismic characteristics of the Gulf of Aqaba 
seismogenic zone and assesses the potential seismic hazard that could 
affect the northwestern region of Saudi Arabia. Using an updated 

Fig. 6. Uniform hazard spectra at the rock site in Neom City for return periods of 475, 975 and 2475 years.  

A. Abdelfattah et al.                                                                                                                                                                                                                            



Journal of King Saud University - Science 36 (2024) 103114

9

Fig. 7. Mean peak ground acceleration (cm/s2) on the rock sites, (a) with a 10 % probability of exceedance in 50 years (475-year return period), (b) with a 5 % 
probability of exceedance in 50 years (975 year return period), and (c) with 2 % probability of being exceeded in 50 years (2475 years return period). 
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earthquake catalogue developed in this study, employing a unified 
moment-magnitude scale, the maximum likelihood method was applied 
to estimate critical seismic activity parameters representing the seis
mogenic zone of the Gulf of Aqaba. These parameters include the 
maximum expected magnitude (Mmax), seismic hazard parameters that 
describe the magnitude-frequency relationship (β-value), and the mean 
seismic activity rate (λ). The seismicity model proposed in this study 
accounts for three seismogenic zones corresponding to the Aqaba fault, 
the Aragonese fault, and the Arnona fault. 

The current findings reveal that the maximum PGA values reach 
approximately 385 cm/s2 for an event expected every 475 years with a 
10 % chance of occurrence, 498 cm/s2 for an event anticipated every 
975 years with a 5 % likelihood, and 688 cm/s2 for an event projected 
every 2475 years with a 2 % chance. The response spectrum demon
strates that PGA energies exhibit high-frequency characteristics in the 
range of 5.0 Hz to 10.0 Hz, which raises concerns about soil response at 
sites near the Gulf. It is essential to avoid resonant vibrations that may 
coincide with the natural periods of structures. 

The PSHA results indicate that the Gulf of Aqaba is a significant 
seismic hazard zone, particularly the Aragonese sub-seismogenic zone, 
where an earthquake with a moment magnitude of 7.7 is considered a 
realistic possibility, implying that decision-makers and policymakers in 
the region should consider seismic risk factors when making land use 
and building code decisions, especially in mega-project cities. 
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