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Some parts of the Middle Benue Trough (MBT) of Nigeria were evaluated with the aim of detecting
prospective geothermal potential regions. Spectral depth analysis using a modified centroid procedure
was applied to analyze high-resolution airborne magnetic data. The Curie point depth (CPD) within
the study area is in the range of 6.0 and 16 km. It was observed that the Gboko Anticlines (GA) that
are interrelated with the Santonian intrusions of Abakaliki Anticlinorium (AA) are characterized by thin
CPD (6.0–8.0 km). The mapped geothermal anomalies within the GA with shallow CPD (<8.0 km) are
dominated by the high geothermal gradient (GG) (>74 �C/km) and heat flow (HF) (>155 mW/m2) values.
The adjoining areas within the study area are defined by medium-deep CPD (8.0–16.0 km), medium–low
GG (<74 �C/km), and HF (<155 mW/m2) values. The further integrated geophysical investigation and sub-
sequent exploitation programs should be sited in the delineated GA and adjoining AA
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nigeria is believed to be rich in geothermal energy resources, par-
ticularly, the eastern, western, and central parts of Nigeria, where hot
springs, brine fields, lead–zinc and barite veins (Ekwok et al., 2020a;
Amoo, 2019; Abraham et al., 2015; Nwachukwu, 1976) exist in the
neighborhood of extensive magmatic intrusions. However, only a
few geothermal investigations involving high-resolution airborne
potential data have been carried out in Nigeria (Ejiga et al., 2022;
Abdullahi and Kumar, 2020; Abraham et al., 2019). The recent
geothermal exploration activities are aimed at offering a comple-
mentary energy source to Nigeria which is challenged with an inad-
equate hydro-power supply.

In recent times, extensive geoscience investigations have been
carried out in the Nigerian Benue Trough (Ekwok et al., 2019;
Ofoegbu and Onuoha, 1991). Earlier studies in this geological
region and adjoining areas were focused on the search for ground-
water (Akpan et al., 2016), coal (Simpson, 1955), lead–zinc
(Mackay, 1946), barites (Akpan et al., 2014), brine (Ekwok et al.,
2022a; Tijani, 2004), limestone (Akpan et al., 2004.), hydrocarbon
(Ofoegbu and Onuoha, 1991), etc. Contemporary geoscience inves-
tigations in the Nigerian Benue Trough are focussed on reconnais-
sance exploration activities for geothermal energy (Ejiga et al.,
2022; Abdullahi and Kumar, 2020; Abraham et al., 2019;
Abraham and Nkitnam, 2017; Abraham et al., 2015) applying mag-
netic data. Nevertheless, supplementary geophysical methods like
the bottom hole temperature, seismic, transient electromagnetic,
electrical resistivity, and magnetotelluric can be used for geother-
mal energy investigation and monitoring (Mariita, 2010;
Nwachukwu, 1976).

Magnetic data is a potent tool that can be applied to probe nat-
ural resources in the subsurface (Ejiga et al., 2022; Abdullahi and
Kumar, 2020; Pham et al., 2021a; Melouah et al., 2021; Saada
et al., 2021a, 2021b; Ben et al., 2022a, 2022b; Ibrahim et al.,
2022), including geothermal reservoirs. Furthermore, the magnetic
method has been effectively used in delineating the subsurface
bedrock topography (Eldosouky et al., 2022a, 2022b; Pham et al.,
2018), and mapping sediment-basement contacts (Agagu and
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Adighije 1983; Adighije, 1981; Adighije, 1979), during the early
phases of geothermal development. Geologic structures and
related rift minerals associated with igneous intrusions can be
effectively studied using the magnetic method (Eldosouky et al.,
2021, 2022a; Saada et al., 2022; El-Sehamy et al., 2022; Pham
et al., 2022). Additionally, it can considerably lessen the number
of drilled wells desired to appraise probable geothermal fields.
Magnetic methods have been reported to be the most cost-
effective geophysical methods for generating satisfactory models
for geothermal structures (Mohammadzadeh-Moghaddam et al.,
2016). Procedures of magnetic data acquisition, reduction, presen-
tation, and analysis have advanced considerably over the years.
However, the inverse problem associated with magnetic data is
often ill-posed which makes the solution non-unique and unstable
(Ekwok et al., 2019). A stable solution to an ill-posed issue can be
achieved by using some advanced approaches coupled with a priori
geologic information (Ekwok et al., 2019).

In this research, magnetic data which investigate various physical
properties (like magnetic susceptibility) of rocks (Ekwok et al.
2022b), were employed to provide a better understanding of the bur-
ied geothermal structures (Abraham et al., 2019). These procedures
have been useful in mapping geologic structures linked to geother-
mal reservoirs, mapping of basement structures, and igneous intru-
sions (Ekwok et al., 2021a), and magma chambers related to the
heat source of a geothermal system (Represas et al., 2013). Further-
more, the magnetic data can be applied in the location of zones with
lessenedmagnetization triggered by thermal activities, hydrothermal
system evaluation, and mapping of buried anomalies initiated by
magmatic and granitic bodies (Elkhateeb and Eldosouky, 2016;
Elkhateeb et al., 2021; Bencharef et al., 2022; Mahdi et al., 2022;
Saada et al., 2022; Eldosouky et al., 2022b; Pham et al., 2019) as well
as connected geologic structures (Pham et al., 2021b; Eldosouky
et al., 2022c; Ekwok et al., 2022c, 2022d, 2022e).
2. Location and geologic setting of the area

The study location is part of the MBT, and it straddles some
parts of Benue and Nasarawa States of Nigeria. Geographically,
Fig. 1. Geologic map o
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the study location lies between latitudes 7.0�N to 8.5�N and longi-
tudes 8.0�E to 9.5�E (Fig. 1).

The MBT is part of the Nigerian Benue Trough that connects the
Gulf of Guinea in the South to the Chad Basin in the North. It is
believed to be associated with the opening of the Atlantic Ocean
that ended in the early Tertiary with the creation of the Tertiary
Niger Delta (Obaje, 2009). The Benue Trough is characterized by
extensive magmatic and tectonic activities as evidenced by the
widespread occurrence of intrusive and extrusive rocks (Ofoegbu,
1985).

The Asu River Group (ARG) of Mid-Albian to Late-Albian, com-
posed of shale, limestone with sandstone intercalation (Offodile,
1976) sits unconformably on the crystalline basement rocks
(Offodile, 1976; Offodile and Reyment, 1978). At various locations,
the Keana Formation (made up of poorly sorted feldspathic coarse-
grained sandstone that sometimes contains pebbly conglomerate)
and the Awe Formation (consisting of flaggy whitish coarse-
medium grained sandstone interbedded with carbonaceous shale,
clay, and sandy limestone), both overlies the ARG. The Ezeaku
and Awgu Formations (Offodile and Reyment, 1978) comprise
black shale, sandstone, coal, and limestone. The reportedly young-
est Lafia Formation is dominated by coarse-grained sandstone,
loose sands, mudstone, and clay (Offodile, 1976; Offodile and
Reyment, 1978).
3. Materials and method

3.1. Data acquisition

The dataset was acquired using a Flux-Adjusting Surface Data
Assimilation System with 0.1 km of flight-line space, 0.5 km of
tie-line space, and terrain clearance ranging from 0.08 to 0.1 km,
by Fugro Airborne Surveys, Canada. The data used in this study
were processed into total magnetic intensity gridded data, which
were then displayed as images in colour raster format (Fig. 2).
Since the data were collected at low latitudes, the magnetic data
were reduced to the equator (RTE). Jain (1988) reported that RTE
N

f the study area.



Fig. 2. (a) Total magnetic intensity map of the study area.
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generates more reliable results, especially at middle and lower
latitudes.

3.2. Spectral analysis of magnetic anomalies involving centroid depth
method

Spectral analysis using the centroid method is a potent tool
used in the determination of Curie point depth (Tanaka, 2017;
Tanaka et al., 1999). It is often applied using the azimuthally aver-
aged power spectrum of magnetic anomalies (Tanaka, 2017). The
power spectra of the magnetic anomaly are expressed as:

UDT kx; ky
� � ¼ UM kx; ky

� �
:F kx; ky
� � ð1Þ

where UDT and UM are the power spectra of the magnetic anomaly
and the magnetisation, respectively, kx and ky, are the wavenumbers
in the direction of x and y, respectively, and

F kx; ky
� � ¼ 4p2C2

m Hmj j2 Hf

�� ��2e�2kzt 1� e�kðZb�ZtÞ� �2 ð2Þ
where Cm is the constant. Hf and Hm are the factors related to the
geomagnetic field direction and the magnetisation direction, corre-
spondingly. Zt and Zb are the top depth and bottom depth of the

magnetic layer, respectively. k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
; kx and ky are the

wavenumbers in the directions of x and y, correspondingly.
Assuming that the magnetization and geomagnetic field direc-

tions are constant, Eq. (1) can be rewritten as (Tanaka et al. 1999):

UDT kx; ky
� � ¼ AUM kx; ky

� �
:e�2kZt 1� e�kðZb�ZtÞ� �2 ð3Þ

where A is a constant.
Using random magnetisation models, and if magnetisation M(x,

y) is completely random, UMðkx; kyÞ will be constant (Tanaka et al.,
1999). As a result, Eq. (3) becomes:

UDTðkx; kyÞ ¼ Be�2kZt ð1� e�kðZb�ZtÞÞ2 ð4Þ
where B is a constant. With some simplification, Eq. (4) can be used
to compute the top depth Zt of the magnetic layer. Eq. (4) approxi-
mates at short wavelengths:

lnðUDTðkx; kyÞÞ ¼ B1 � 2kzt ð5Þ
3

where B1 is a constant.
The low-wavenumber portion of the power spectrum can be

approximated to estimate the centroid depth (Zc) of the magnetic
layer (Tanaka et al., 1999):

lnðUDTðkx; kyÞ1=2kÞ ¼ B2 � kzc ð6Þ
where B2 is a constant. When the top depth (Zt) and centroid depth
(Zc) of the magnetic layer are gotten from Eqs. (5) and (6), respec-
tively, the bottom depth (Zb) can be computed as:

Zb ¼ 2Zc � Zt ð7Þ
Assuming the distribution of the magnetization in the crust is

random and uncorrelated, the azimuthally averaged power spec-
trum can be used to calculate Zt and Zb by Eqs. (5)–(7).

3.3. Conductive heat flow

Fourier’s law is a fundamental relationship when considering
conductive heat conveyance (Tanaka et al. 1999). Fourier’s law
takes the following form in the one-dimensional case, assuming a
vertical direction for temperature variation and a constant temper-
ature gradient dT/dz:

q ¼ k
dT
dz

ð8Þ

where q is described as the heat flux and k is the coefficient of ther-
mal conductivity.

The Curie temperature (h) can be defined as:

h ¼ dT
dz

� �
zb ð9Þ

where Zb is the CPD, so long as there is no heat sinks or heat sources
between the Earth’s surface and the CPD, the surface temperature is
0 �C and dT/dz is constant. Tanaka et al. (1999) demonstrated that
any given depth to a thermal isotherm is inversely proportional to
heat flow. Eqs. (8) and (9) were used to calculate HF and GG values,
which were based on CPD estimates derived from magnetic compu-
tations. We utilize the Curie point (h) for magnetite (580 �C) with an
average thermal conductivity of 1.80 and 2.5 Wm�1 k�1 for regions
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of the sedimentary shale formation and igneous rock/older granite
(Abraham et al., 2019), respectively.

3.4. Results

The magnetic method is a powerful procedure in the assess-
ment of the lateral extent of several high-temperature geothermal
sources (Ben et al., 2022a, 2022b), paleo-permeability structures
(Ejiga et al., 2022), and the magnitude of hydrothermally altered
rocks. To map both small and large geothermal anomalies, the
magnetic data (Fig. 2) used in this study were partitioned into
216 spectral blocks with 50% overlap of each block before the cre-
ation of power spectrum plot for each block. Associated parameters
like CPD or Zb, GG and HF were obtained, which were afterwards
gridded in 2- and 3-D formats.

The CPD values (Fig. 3) were observed to vary from 6 to 8 km
(shallow), 8–12 km (medium), and 12–16 km (deep) from mag-
netic data analysis. Fig. 3 indicates shallow CPD (red colour) within
Gboko and Otukpo areas. Research showed that Gboko and Otukpo
regions that fall within the GA dominated by granite (2.64 gcm�3)
and gabbro (2.90 gcm�3) are the contributing effects of Abakaliki
Anticlinorium (Abdullahi and Kumar, 2020). The remaining area
which is dominated by medium-deep CPD is characterised by some
sparely distributed shallow CPD. The GG maps (Fig. 4) for magnetic
data are characterised as low (38–62 �C/km), medium (62–74 �C/
km) and high (74–94 �C/km), respectively. Additionally, the mag-
netic (155–235 mW/m2) result indicates that the Otukpo and
Gboko regions are dominated by high HF. Other areas like Agana,
Doma, Lafia, Akiri, and Akwana are characterized by low HF values
(95–125 mW/m2). The correlated high GG (Fig. 4) and HF (Fig. 5)
locations coincide with the positions (Gboko and Otukpo) of shal-
low CPD in Fig. 3. In general, it has been observed by Ejiga et al.
(2022) and Abraham et al. (2019) that CPD and other related
parameters are reliant on tectonic events.
Fig. 3. Curie point depth m
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4. Discussion

Magnetic technique is the main operational geophysical tool
that can efficiently map geothermal reservoirs, and interconnected
geothermal systems (Represas et al., 2013). The range of CPD (6.0–
16.0 km) obtained in this study differs fairly with Curie depth of
11 ± 2–18 ± 4 km and 9–20 km obtained by Abdullahi and
Kumar (2020), and Abraham et al. (2019) findings, respectively.
The GG range (38–94 �C/km) from the magnetic data are higher
than the range of values (29.0–45.8 �C/km) previously obtained
in the AA (Abraham et al., 2019; Onuoha and Ekine, 1999). The
shallow CPD (6.0–8.0 km) (Figs. 3 and 6) witnessed within Gboko
and Otukpo indicates the signature of Santonian intrusions related
to the AA (Abdullahi and Kumar, 2020; Abraham et al., 2019) that
straddled into the MBT. The remaining parts within the study area
are defined by medium-deep CPD (8.0–16.0 km) characterised by
some pockets of relatively medium–low GG and HF (Figs. 4 and
5). However, results of Moho depths from regional seismological
and gravity investigations reported Moho depths of 10–20 km
(Abdullahi et al. 2019; Fairhead et al. 1991). Likewise, the reported
HF (Fig. 6) values (95–235 mW/m2) were significantly greater than
previous results (Abraham et al., 2019; Onuoha and Ekine, 1999).
Generally, previous researches have shown that regions with
anomalous HF values >80 mW/m2 indicate geothermal anomaly
(Abraham et al., 2015; Sharma, 2004). The delineated structures
(Figs. 4 and 5) within GA, which coincide shallow CPD (<8.0 km)
matches with high GG (>74 �C/km) and HF (>155 mW/m2) region.
These geothermal anomalies are associated to AA (Ekwok et al.,
2022a, 2021a, 2021b, 2020b). The 3-D presentation of CPD, GG
and HF (Fig. 6) revealed succinctly that the GA is characterised
by high geothermal potentials. The shallow CPD zones (<8 km)
defined by spikes (Fig. 6(a)) correlate with the positions of high
GG (Fig. 6(b)) and HF and (Fig. 6(c)). Bansal et al. (2011) observed
that probable geothermal regions are defined by shallow CPD, and
ap of the study area.



Fig. 4. Geothermal gradient map of the study area.
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Fig. 5. Heat flow map of the study area.
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Fig. 6. (a) 3-D Curie point depth, (b) geothermal gradient, and (c) heat flow models of the study area.
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high GG and HF. These main geothermal anomalies (in Gboko and
Otukpo) plus the scantily distributed geothermal anomalies
(Ofoegbu, 1985) in the remaining parts of the study area, are
thought to be the main source of brines (Ekwok et al., 2022b,
2021c, 2021a, 2019) and lead–zinc mineralisation (Ekwok et al.,
2022a; Akpan et al., 2014).
5. Conclusions

In this research, CPD, GG and HF estimates of the Middle Benue
Trough of Nigeria were presented. The Curie depths computed
from this study vary from 6.0 to 16.0 km. The locations of shallow
CPD (6.0–8.0 km) coincide with GA related to expansive Santonian
intrusions of AA. The delineated geothermal zones within the GA
indicate shallow CPD (<8.0 km), and high GG (>74 �C/km) and HF
(>155 mW/m2) values. Other areas within the study area charac-
terised by medium-deep CPD (8.0–16.0 km), are dominated by
medium–low GG (<74 �C/km) and HF (<155 mW/m2) values. It
can be concluded that this research involving magnetic data serves
as reconnaissance investigation for geothermal energy resources in
the MBT. Notwithstanding the successful delineation of geother-
mal anomalies within GA, further study involving the integration
of deep boreholes, seismic, magneto-telluric, electromagnetic and
geochemical data, should be carried out to further evaluate and
sufficiently model the geothermal reservoir of GA and adjoining
AA.
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