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A B S T R A C T   

After examining the Schwarzschild solution, Nobel prize winner Richard Feynman concluded that it contains 
three problems: the constant 1, the negative sign, and the singularity. These three problems do not manifest 
themselves in the case of a weak gravitational field but can lead to misinterpretation of processes near black 
holes and in cosmology. As a working hypothesis, we consider a corrected Schwarzschild solution: the constant 1 
is expressed in terms of the distribution of all masses in the universe, positive sign instead of a negative sign, and 
no singularity. In a weak gravitational field, the new solution leads to the same effects as the usual solution. The 
choice between the two solutions can be made if the accuracy of gravitational experiments in the solar system is 
increased by 1–2 orders of magnitude. The new solution implies that black holes do not have an event horizon. 
Therefore, the new solution can also be tested using future, more accurate observations of black holes. If it is 
confirmed, our ideas about cosmogonic processes can change in the most radical way.   

1. Introduction: Three problems in the Schwarzschild solution 

The Schwarzschild solution for the interval s in the gravitational field 
of a point mass m has the following form in spherical coordinates r, θ, ϕ 
(Schwarzschild, 1916; Landau and Lifshitz, 1975): 

ds2 = (1 −
2Gm
rc2 )c2dt2 −

dr2

(1 − 2Gm
rc2 )

− r2(sin2θ dφ2 + dθ2) (1) 

Here G ≈ 6.67 × 10 − 11 kg − 1m3s − 2 is the gravitational constant; c is 
the speed of light. The coefficient before c2dt2 is the time component g00 
of the metric tensor gik, which determines the time scale near the 
massive body (Landau and Lifshitz, 1975): 

̅̅̅̅̅̅
g00

√
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
2Gm
rc2

√

=
dτ
dt

(2) 

Here dt is a time interval that has passed at a great distance from 
mass m, dτ is a time interval that has passed at distance r from mass m: dτ 
< dt. That is, atomic frequencies decrease in a gravitational field. The 
ratio of frequencies ν 1 and ν 2 of two identical atoms located at points x1 
and x2 is (Weinberg, 1972): 

ν2

ν1
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
g00(x2)

g00(x1)

√

(3) 

What is constant 1 in the time component of the metric tensor g00? 
When deriving solution (1), Schwarzschild (Schwarzschild, 1916) pro-
ceeded from the fact that 1 is the scale for empty space with no gravity. 
Such an assumption was acceptable in 1916, when there was little in-
formation about the structure of the universe. The famous big dispute 
about the nature of nebulae took place 4 years later (Trimble, 1995). 
Only 10 years later, Edwin Hubble (Hubble, 1926) proved that nebulae 
are not clouds of gas, but giant clusters of stars like the Milky Way. 

Gradually it became clear that the space of the universe is filled with 
stars and galaxies. Moreover, the galaxies are moving away from each 
other, and the universe is expanding. If some mass m, which is included 
in the Schwarzschild solution (1), affects the time, then the rest of the 
masses of the universe must also affect the time. Maybe the constant 1 is 
not a constant characterizing empty space, but some contribution from 
distant galaxies? After researching this topic Richard Feynman 
concluded: “Another possibility is that the 1 which appears in the for-
mula of time dilation is a mistake in thought. We have written a formula 
which applies only when the potential differences φ are much smaller 
than 1, so that the constant 1 may somehow represent a normalized 
contribution of faraway nebulae.” Based on this, he proposed a way to 
combine the theory of gravity, Mach’s principle, and quantum me-
chanics in Feynman Lectures on Gravitation (Lecture 5.3 and 5.4) (Feyn-
man et al., 1995). 
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Feynman considered a particle that moves far from gravitating 
masses. If a period and wavelength of the de Broglie wave associated 
with that particle are constant, then the lines of constant phase will be 
parallel. In this case, the particle will move in a straight line. If such a 
particle flies past a star, then the time scales are reduced in the direction 
of the star. In this case, the lines of constant phase will not be parallel, 
and the particle will move with an acceleration directed towards the 
star. If the star causes a shortening of time scales, then the rest of the 
stars and galaxies of the universe also cause a shortening of time scales. 
As a result, Feynman concluded that the space–time scale far from 
gravitating masses is determined by distant galaxies. In this case, the 
motion of the particle by inertia is also determined by distant galaxies. 
Feynman concluded (Feynman et al., 1995): “Mach’s Principle is 
equivalent to the statement that the fundamental units of length and 
time at a point are the result of the influence of nebulae.” 

To verify this conclusion, we need to find the total amount of the 
contribution from all the masses in the universe, that is sum 

∑n=N
n=1 2 Gmn

rn c2 

(mn is the mass, rn is the distance to it, N is the number of all masses in 
the universe). If we are on the right track, then this sum will be equal to 1 
within the measurement error. Feynman did the calculations and, 
considering the error, obtained (Feynman et al., 1995): 

∑n=N

n=1
2

Gmn

rn c2 = 1 (4) 

It would seem, that the task of unifying the theory of gravity and 
Mach’s principle has been solved. But then Feynman notes that the sum 
in Eq. (4) has a positive sign, but the small addition 2Gm/rc2 in Eq. (2) 
has a negative sign. If we assume that 1 is the contribution to the scale 
created by all the stars and galaxies, then this contribution must have the 
same sign as a small addition to it. However, this is not the case for Eq. 
(2): the signs of these quantities are different. Here is how Feynman 
commented such a contradiction (Feynman et al., 1995): “Except for the 
disastrous appearance of a (+) sign instead of a (− ) sign, the result is 
identical to the “correct” arc length. We have succeeded in getting the 
correct sizes by juggling purely cosmological numbers.” 

Using modern astrophysical data, we can also obtain Eq. (4) and 
evaluate its accuracy. According to modern estimates, the age of the 
Universe is about TU ≈ 13.8 × 109 years (Valcin et al., 2020). Consid-
ering that the speed of the most distant galaxies almost reaches the speed 
of light, the radius of our universe RU can be estimated by multiplying 
the age of the universe by the speed of light: 

RU ≈ cTU ≈ 1.3 × 1026m (5) 

The average density of the universe is close to the critical density ρc: 

ρc =
3H2

8π G
(6) 

Here H is the Hubble constant, which, according to modern data, is: 
H ≈ 70 km/s/Mpc (Chen et al., 2018; Freedman, 2021; and Pesce et al., 
2020). 

Substituting this value into Eq. (6), we get: 

ρc = 9.2 × 10− 27kg/m3 (7) 

Knowing the Radius of the universe RU Eq. (5) and its density ρC Eq. 
(7), we can estimate the mass of the universe MU: MU ≈ 7.8 × 1052 kg. As 
a result, we find that the contribution of all the matter of the Universe to 
the time scale near the Earth is approximately equal to: 

2G
MU

c2RU
≈ 0.89 (8) 

We should make three remarks about Eq. (8). First, all the astro-
physical quantities that we used for the calculation have a high error. 
Second, it is assumed in Eq. (8) that the entire mass of the Universe MU is 
located at distance RU, which, of course, is not true. If we assume that the 
mass of the universe is uniformly distributed, then the numerical value 

in Eq. (8) should be multiplied by 1.5. Thirdly, the value of the Hubble 
constant is calculated from the assumption that the value of the redshift 
in the spectrum of some galaxy is caused only by the Doppler effect. 
However, the light from any galaxy comes to us from the past, when the 
density of the universe was higher and, therefore, the gravitational po-
tential was lower. According to numerous experiments, it is known that 
the measured frequency of light will be lower if this light comes from a 
region of lower gravitational potential (Pound and Rebka, 1960; Chou 
et al., 2010). Therefore, it is possible that some of the observed redshift 
in the spectra of galaxies is caused by growth of the gravitational po-
tential of the Universe due to its expansion (Yanchilina and Yanchilin, 
2022). 

Nevertheless, despite these remarks, we can conclude that the 
contribution of all matter in the Universe to the time scale near the Earth 
is close to 1. In this regard, the conclusion suggests itself that the dis-
tribution of all matter in the Universe completely determines the flow of 
time inside the Universe, including in near-Earth space. However, at the 
same time, the contribution made by the mass m in the Schwarzschild 
solution, Eq. (1) has the opposite sign than the contribution made by the 
rest of the mass. 

This is very strange. The more you think about this, the weirder it 
looks. Indeed, each mass is a source of a gravitational field. Each mass 
contributes to changing the rate of time and affects the frequency of 
atomic radiation. For example, the Earth affects the rate of an atomic 
clock located on the Earth. The Sun also influences the rate of atomic 
clocks on the Earth. The Milky Way, the Virgo Supercluster of Galaxies, 
the Laniakea Supercluster, which includes the Virgo Supercluster, also 
affect the rate of atomic clocks on the Earth. It is easy to estimate that the 
contribution to the time scale on the Earth’s surface made by the Sun 
(mS ≈ 2 × 1030 kg, r ≈ 1.5 × 1011 m) is almost 15 times greater than the 
contribution made by the Earth (mE ≈ 6 × 1024 kg, r ≈ 6.4 × 106 m). The 
contribution made by the Milky Way (mMW ≈ 4 × 1012 mS, r ≈ 40 kps 
(Laura et al., 2019)) exceeds the contribution of the Earth by about 2 
thousand times. The contribution made by the Virgo supercluster (mV ≈

1015 mS, r ≈ 16.5 Mps (Einasto et al., 2007)) exceeds the contribution of 
the Milky Way by about 7 times. The Laniakea Supercluster (mL ≈ 1017 

mS, r ≈ 80 Mps (Tully et al., 2014)), which includes the Virgo super-
cluster, contributes to the time scale near Earth about 140 times more 
than the Milky Way. 

It is not difficult to guess that more distant galaxies contribute even 
more to the time scale near the Earth. We have the right to expect that 
the influence of all these masses on the time scale (or length) should 
have the same sign. Why is there a minus sign before mass m in Eq. (2)? 
It is because of this minus sign that a singularity arises in the 
Schwarzschild solution. It is worth noting that Feynman, like many 
other well-known scientists (references in Section 3), had a negative 
attitude towards the singularity, considering it to be a shortcoming of 
the Schwarzschild solution (Feynman et al., 1995). 

Summing up, we list all three problems in the Schwarzschild 
solution. 

Problem 1. Constant 1 cannot be constant because it contains a 
contribution to the time scale from distant galaxies, and this contribu-
tion changes due to the expansion of the universe. 

Problem 2. If constant 1 contains a contribution to the time scale 
from distant masses, then we can expect that mass m in the Schwarzs-
child solution (1) will have the same sign as constant 1. However, it is 
not the case. 

Problem 3. The singularity in the Schwarzschild solution appears 
because mass m and constant 1 have opposite signs. If the signs of these 
quantities were the same, then the singularities would disappear from 
the Schwarzschild solution. 

So, Feynman proposed method to combine the theory of gravity, 
Mach’s principle, and quantum mechanics. But this way led us to a dead 
end. However, Feynman retained the hope of unifying Mach’s principle 
and the theory of gravity, since, initiating this topic, he wrote (Feynman 
et al., 1995): “The following discussion is purely qualitative and is meant 
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only to stimulate wiser thoughts on this subject.” Finishing this topic, he 
still hoped that the constant 1 in g00 of Eqs. (1) or (2) “is a meaningful 
number, not to be simply taken as 1.” 

To solve the problem posed by Feynman and introduce Mach’s 
principle into the theory of gravity, in the next section we will consider 
as a working hypothesis an adjusted Schwarzschild solution in which: 
constant 1 is expressed in terms of the distribution of all the masses, 
mass m has a positive sign and therefore there is no singularity in the 
solution. 

2. Solution of three problems in the Schwarzschild solution 

Let us consider in the most general terms how the component of the 
metric tensor g00 is calculated in the field of point mass m at distance r 
from it. First, it is assumed that in empty space g00 = 1. Therefore, the 
solution is sought in the form (Landau and Lifshitz, 1975): 

g00 = 1+O(r) (9) 

Here O(r) is some small function: |O(r)| ≪ 1. Secondly, to find this 
function, the approximation of Newton’s law of universal gravitation is 
used, according to which (Landau and Lifshitz, 1975): 

ON(r) = − 2
Gm
rc2 (10) 

We denoted the small function O(r) as ON(r) because it was obtained 
by the Newtonian gravity approximation method. Considering Eqs. (9) 
and (10) we obtain the Schwarzschild solution for the time component 
of the metric tensor g00 (Landau and Lifshitz, 1975): 

g00 = 1+ON(r) = 1 − 2
Gm
rc2 (11) 

High precision experiments to verify Eqs. (11) and (1) with an ac-
curacy of the order of hundredths and thousandths of a percent were 
carried out, as a rule, in the Solar System. However, this accuracy is not 
enough to exclude the possibility of the appearance in Eqs. (10) and (1) 
terms of the second order of smallness like O2

N(r) (Will, 2018). Therefore, 
if we add to the value of g00 in Eq. (11) some function of small order 
O2

N(r), then such a new equation will also satisfy all experiments carried 
out in the Solar System. 

What is the physical meaning of constant 1 in Eq. (11)? If the Solar 
System were in an orbit located closer to the center of the Milky Way, 
then all atomic frequencies on the Earth’s surface would be shifted to the 
red end of the spectrum. That is, the time component of the metric tensor 
on the Earth’s surface would be less, Eq. (11). However, scientists could 
also take this component of the metric tensor as constant 1. Therefore, 
we can conclude that constant 1 is not a fundamental constant, but some 
variable that characterizes the time scale, which we take for constant 1 
only for reasons of convenience. 

Consider an extended area of empty space A inside a giant void. Let 
the gravitating mass m be in its central part. Let us assume that inside 
region A, at a sufficiently large distance from mass m, the atomic fre-
quencies are constant with high accuracy. TA is a duration of 1 s at a 
sufficiently large distance from mass m, Tr is a duration of 1 s at distance 
r from mass m. Considering (3), we get: 

g00(r)
g00(A)

=
T2

A

T2
r

⇒ (12)  

g00(r)
g00(A)

=
1

1 +
T2

r − T2
A

T2
A

(13) 

Following tradition, we assume that at a sufficiently large distance 
from mass m: g00(r) → g00(A) = 1. Using the Newtonian gravity 
approximation in Eqs. (9) and (10), we get: 

T2
r − T2

A

T2
A

= 2
Gm
rc2 (14) 

Considering Eq. (13) and Eq. (14) as a working hypothesis, we pro-
pose the following equation for the time component of the metric tensor: 

gM
00 =

[

1 +
2Gm
rc2

]− 1

or (15)  

gM
00 = [1 − ON(r)] − 1 (16) 

We introduced the notation gM
00, emphasizing that such a “corrected” 

time component is introduced to unite the theory of gravity and Mach’s 
principle. Considering Eq. (10), we get: 

gM
00 =

[

1 +
2Gm
rc2

] − 1

(17) 

Considering equation, we can “correct” the Schwarzschild solution 
(1): 

ds2
M =

[

1 +
2Gm
rc2

] − 1

c2dt2 −

[

1 +
2Gm
rc2

]

dr2 − r2(sin2θ dφ2 + dθ2) (18) 

From Eqs. (11) and (16) we find the ratio of the usual g00 and new gM
00 

time components: 

g00

gM
00
= 1 − O2

N(r) < 1 ⇒ (19)  

1 > gM
00 > g00 (20) 

It follows from Eq. (19): 

gM
00 − g00 = gM

00O2
N(r) < O2

N(r) (21) 

So, the difference between the time components is less than O2
N(r). 

For example, in the Solar System: |ON(r)| < 4.4 × 10− 6 andgM
00 − g00 < 2 

× 10− 11. To determine which of the two values (gM
00 or g00) is correct, it is 

necessary to carry out measurements in the Solar System with an error 
lower than 5 × 10− 6. To do this, it is necessary to increase the accuracy 
of modern experiments by 1–2 orders of magnitude. 

So, we have obtained a new, “corrected” Schwarzschild solution, in 
which the addition to 1, introduced by mass m, has the same positive 
sign as 1. Now we can represent the constant 1 as a contribution from all 
matter in the universe, as suggested by Feynman in Eq. (4). Therefore, 
we can also represent gM

00 as the contribution from all the matter in the 
universe: 

gM
00 =

[
∑n=N

n=1
2

Gmn

rn c2

] − 1

(22) 

In the region located far from all the masses, the following equality 
holds with good accuracy: gM

00= 1. In the region near mass m1 Eq. (22) 
can be represented as: 

gM
00 =

[
∑n=N

n=2
2

Gmn

rn c2 + 2
Gm 1

r 1c2

] − 1

(23) 

Feynman wrote about gravitation (Feynman et al., 1995): “The sec-
ond amazing thing about gravitation is how weak it is.” It is clear from 
Eq. (23) why gravity is weak. This is a consequence of the fact that the 
change in time scale introduced by mass m1 (the second term in square 
brackets) is very small compared to the time scale created by the rest of 
the masses in the universe (the first term in square brackets). 

According to Eq. (2), in empty space g00 = 1. According to Eq. (23) it 
is not the case. If all gravitating masses included in Eq. (23) are removed 
to infinite distances, then: 

gM
00 = 0− 1 (24) 
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That is, the time component of the metric tensor will be indefinite. 
Consequently, in empty space, the metric also becomes indefinite, in full 
accordance with Mach’s principle (Pauli, 1958). From the new point of 
view, space and time exist thanks to stars and galaxies. Stars and gal-
axies with their huge mass create a space–time metric and determine the 
time scale at every point in space, including those near the Earth. By 
changing the sign in the Schwarzschild solution, Eq. (1), we solved the 
problem posed by Feynman and introduced Mach’s principle into the 
theory of gravity. 

3. Gravitational radius and event horizon 

According to the usual the Schwarzschild solution, Eq. (1), an event 
horizon can exist near a massive and compact object. The event horizon 
appears if the radius of a massive object is less than the gravitational 
radius, which is: 2Gm/c2. Upon reaching the gravitational radius, the 
coordinate speed of light tends to zero, and the gravitational redshift 
tends to infinity (Misner et al., 1973). A massive object with a radius less 
than the gravitational one is called a black hole. Thus, according to Eq. 
(1), even light cannot escape from a black hole. From the new point of 
view, this is not the case. Let us calculate the value of the coordinate 
speed of light and the value of the gravitational redshift using Eq. (18). 

The propagation of light is determined by the following equation: ds 
= 0. Suppose light is moving towards mass m. In this case, the 3rd term 
on the right side of Eq. (18) will be equal to zero because dϕ = 0 and dθ 
= 0. As a result, we get: 

ds2
M = 0 =

[

1 +
2Gm
rc2

] − 1

c2dt2 −

[

1 +
2Gm
rc2

]

dr2 (25) 

Accordingly, the coordinate speed of light is: 

dr
dt

= c
[

1 +
2Gm
rc2

] − 1

(26) 

It follows from Eq. (26) that the coordinate speed of light is not equal 
to zero either near the gravitational radius or inside it. 

According to general relativity, the frequency of atomic radiation 
decreases near a massive body. If ν 0 is the radiation frequency of an 
atom outside the gravitational field, then the measured radiation fre-
quency of this atomν, located in the gravitational field, will be lower 
(Weinberg, 1972): 

ν = ν0
̅̅̅̅̅̅
g00

√ (27) 

Therefore, the magnitude of the gravitational redshift z is: 

z =
ν0

ν − 1 =

̅̅̅̅̅̅̅

g− 1
00

√

− 1 (28) 

According to the Schwarzschild solution, Eq. (1), the time compo-
nent of the metric tensor g00 tends to zero and the gravitational redshift z 
tends to infinity near the gravitational radius. Inside the gravitational 
radius, the gravitational redshift becomes imaginary. 

It is worth noting that many well-known scientists had a negative 
attitude towards the singularity in the Schwarzschild solution (the term 
black hole appeared later). Albert Einstein purposely wrote an article in 
which he tried to prove that the Schwarzschild singularity cannot exist 
(Einstein, 1939). Richard Feynman was negative about the fact that 
inside the gravitational radius the time component of the metric tensor 
becomes negative (Feynman et al., 1995). General relativity expert K. 
Möller concluded that the Schwarzschild solution loses its physical 
meaning in strong gravitational fields and is therefore incorrect (Möller, 
1979). Nobel prize winner Steven Weinberg believed that the 
Schwarzschild singularity has nothing to do with the real world 
(Weinberg, 1972). When Chandrasekhar, relying on Schwarzschild’s 
solution, concluded that a sufficiently massive star must collapse to a 
point, Sir Arthur Eddington argued that there must be a law of nature 
that would not allow such an absurd behavior of the star (Thorne, 1994). 

According to Eq. (17) the gravitational redshift zM is: 

zM =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
2Gm
rc2

√

− 1 (29) 

It follows from Eq. (29) that the gravitational redshift near the 
gravitational radius does not tend to infinity and is less than 1: zM =
̅̅̅
2

√
− 1 ≈0.4. Within the gravitational radius, the gravitational redshift 

also remains a finite value. We conclude from the new perspective that 
black holes do not have an event horizon. Therefore, light and even 
matter can overcome the attraction of a black hole and fly out of it. 

Supermassive black holes are found at the centers of many galaxies. 
From some black holes, giant ejections of matter are visible, which 
sometimes move at relativistic speeds. According to the Schwarzschild 
solution (1), a single black hole cannot eject its own matter into the 
surrounding space. Therefore, it is assumed that a black hole becomes 
active only because of matter accreting onto it from outside. In general 
terms, the scheme of “work” of a black hole looks like this. Matter from 
outside falls into the black hole. The black hole absorbs most of this 
matter, the rest is ejected into the surrounding space. From this point of 
view, on average, much more matter should fall into black holes than is 
ejected from them. However, this is not a case. In the 1960s, astrono-
mers discovered that black holes eject much more matter than falls on 
them. Here is what astronomer Fred Hoyle wrote about this (Hoyle, 
1965): 

“In the next chapter I shall be discussing many cases where gas comes 
out of the centers of galaxies, so there is confirmation that processes 
leading to the expulsion of material do occur. There can hardly any 
quarrel with this statement. Where the controversy comes in is in 
deciding whether gas must first fall into the middle from outside before 
it gets expelled. Common sense would tell us that this must be the case. 
However, infall has not so far been observed, whereas there is lots of 
evidence of expulsion, as we shall see later. Moreover, it is difficult to 
understand how material could have so little angular momentum as to 
permit it to fall into the very center.” 

More than half a century has passed since Hoyle wrote this, but the 
problem remains unresolved: ejections from black holes are observed in 
a wide variety and in huge quantities, but the fall of matter into black 
holes either does not occur, or these processes are so weak that they are 
difficult to observe (Massaro et al., 2015). 

From the new point of view, even a lone black hole can be active and 
eject its matter into the surrounding space. If this is indeed the case, then 
our ideas about the direction of astrophysical processes may change 
radically. 

4. Conclusion 

One of the main reasons that prompted Einstein to construct general 
relativity was the desire to introduce Mach’s principle into physics 
(Einstein, 1913a,b, 1914a,b,c). When Einstein created general relativity, 
he hoped that this theory would satisfy Mach’s principle (Einstein, 
1916). Unfortunately, when general relativity was constructed, it turned 
out that it did not satisfy Mach’s principle (Pauli, 1958). Mach’s prin-
ciple and its experimental verification are discussed in the article 
(Yanchilin, 2018). Feynman, having studied the Schwarzschild solution, 
concluded that this solution can be joined with Mach’s principle. 

The Schwarzschild solution, Eq. (1) contains the time component of 
the metric tensor g00, which determines the speed of an atomic clock 
near a massive body m Eq. (2). What is 1, which is included in g00 Eqs. 
(1) or (2)? It is generally accepted that 1 characterizes the scale of empty 
space with no gravity. But our space is not empty: it is filled with stars 
and galaxies, which make a significant contribution to the space metric. 
Therefore, Richard Feynman suggested that the constant 1 in Eqs. (1) or 
(2) is the normalized contribution to the time scale (length) from distant 
galaxies. This assumption looks quite plausible, and, moreover, allows 
us to combine the theory of gravity and Mach’s principle. If it is the case, 
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then the contribution to the scale from mass m must have the same sign 
as 1. However, the constant 1 has a positive sign (+) and the contribu-
tion from mass m has a negative sign (− ). 

We know from astrophysical observations that the contribution from 
all the galaxies into the time scale is close to 1 Eq. (4). That is, at least a 
significant part of the constant 1 is the contribution of distant galaxies. 
This contribution of distant galaxies has the same positive sign as 1. But 
why in Eqs. (1) or (2) does this contribution from the galaxies, which is 
included in the constant 1, have the opposite sign than the contribution 
from mass m? All galaxies consist of the same ordinary masses. If we 
assume that the nature of all the masses is the same, then the contri-
bution (total or partial) of distant galaxies to 1 must have the same sign 
as the small correction to it, introduced by mass m. However, this is not 
the case in the Schwarzschild solution. 

In our opinion, it looks strange and unnatural. In addition, the 
Schwarzschild solution is obtained by transition to the limit to Newton’s 
Law of Universal Gravitation, which is an approximate one. Therefore, 
we proposed to change the sign in the Schwarzschild solution, Eq. (1) 
and obtained the new solution Eq. (18). In weak gravitational fields, the 
new equation, within the accuracy of modern gravitational experiments, 
leads to the same effects as Eq. (1). To make a choice between these two 
equations, it is necessary to increase the accuracy of measurements by 
about 1–2 orders of magnitude. In strong gravitational fields, an 
important consequence follows from the new equation: the absence of 
an event horizon for black holes. If this is true, then even a lone black 
hole can be active and eject its matter into the surrounding space. In this 
case, our ideas about the direction of astrophysical processes can change 
radically. 

Finally, the most important thing is that in the new solution, the 
contribution from mass m has the same positive sign as the constant 1, so 
1 can be represented as the contribution from all the masses that fill the 
universe. The new solution fully satisfies Mach’s principle: in space with 
test bodies and no gravitating masses, the metric becomes indetermi-
nate. Thus, by changing the sign in the Schwarzschild solution, we 
solved the problem posed by Feynman and introduced Mach’s principle 
into the theory of gravitation. 
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