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In this paper, we provide an algorithm for verifying the validity of identities of the form
P

A# n
�cAkxAk2 ¼ 0,

where xA ¼Pi2Axi and n
� ¼ 1; � � � ;nf g in inner-product spaces. Such algorithm is used to verify the valid-

ity, in inner-product spaces, for a number of identities. These include a generalization of the paral-
lelepiped law. We also show that such identities hold only in inner-product spaces. Thus, the
algorithm can be used to deduce characterizations of inner-product spaces.
� 2021 The Author. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction Investigating norm identities that are satisfied only by norms
Throughout this paper, let I be an index set, and xi : i 2 If } be a
subset of elements of a vector space H. For A# I denote by xA the

sum of vectors xi; i 2 A. i.e. xA ¼Pi2Axi. The notation n
�
is used to

denote the set 1;2; � � � ;nf g. For a finite set A, we use Aj j to denote
the cardinality of A, and the standard notation for binomial coeffi-
cients, n

k

� � ¼ n!= k! n� kð Þ!ð Þ is used.
The algorithm given in Theorem 2.3 is meant to test the

validity of identities of the form
P

A# n
�cAkxAk2 ¼ 0 in inner-

product spaces by converting the verification of such an identity
to verifying numerical equalities. The algorithm is illustrated in
Section 3 by using it to derive several identities. Notable among
these results is a generalization of the parallelepiped law, which
is deduced, in Corollary 3.5, from a more general result. In
Section 4, we prove that all the identities that can be verified
by this algorithm only hold in inner-product spaces. Thus, the
algorithm can be used to derive characterizations of norms
defined by an inner product. This is the application chosen for
discussion in the paper.
induced by inner products dates back to the late 19th century
(see Amir, 1986, Introduction). Fréchet, 1935 showed that a
normed space is an inner product space if and only if

kxþyþzk2�kxþyk2�kxþzk2�kyþzk2þkxk2þkyk2þkzk2 ¼0

ð1Þ
Jordan and von Neumann, 1935 showed that the norm is

induced by an inner product if and only if the parallelogram law

kxþ yk2 þ kx� yk2 ¼ 2kxk2 þ 2kyk2 ð2Þ
holds for all x; y. For a proof of Jordan and von Neumann’s result

see Istrăt�escu (1987), Theorem 4.3.6. The study of characteriza-
tions of inner-product spaces continue to be an active field (see
e.g. Adamek 2020; Chelidze 2004; Dadipour and Moslehian 2010;
Mendoza and Pakhrou, 2003). The author hopes that the algorithm
presented here will lead to new characterization like the ones
given in Corollary 4.5.

This paper is self-contained, the only results needed are the Jor-
dan and von Neumann characterization mentioned above and a
Lemma due to Fréchet on finite difference (see e.g. Amir 1986 Lem-
mas 1.1, 1.2 or Reznick, 1978, Lemma 1). We give a proof of this
lemma below

Lemma 1.1:. Forn � 1;

let Fn ¼ f : R ! R : f is locally integrable and
Pn

k¼0
n
k

� ��

�1ð Þn�kf r þ ksð Þ ¼ 08 r; sð Þ 2 R2
�
. The following statements hold:
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1) For n � 1 every function in Fn is infinitely differentiable.

2) If n > 1 and f 2 Fn then f
0 2 Fn�1:

3) For n � 1 every function in Fn is a polynomial of degree less
than n:
Proof:. 1) Assume n � 1 and that f 2 Fn. Thus, 0 ¼Pn
k¼0

n
k

� �
�1ð Þn�kf r þ ksð Þ for all r; sð Þ 2 R2. Moving the k ¼ 0 term to the left

side of the equality and multiplying by �1ð Þnþ1, we obtain

f rð Þ ¼
Xn
k¼1

n

k

� �
�1ð Þ1þkf r þ ksð Þ

Take / a C1-function on R with support in �1;1½ � such thatR
R
/ ¼ 1. By multiplying the above equality by / sð Þ and integrating

with respect to s, we obtain f rð Þ ¼Pn
k¼1

n
k

� �
�1ð Þ1þkwk rð Þ where

wk rð Þ ¼ R
R
f r þ ksð Þ/ sð Þds. Substituting x ¼ r þ ks, s ¼ x�r

k yields, for
a > r þ k

wk rð Þ ¼
Z
R

f xð Þ/ x� r
k

� 	 dx
k

¼
Z

�a;a½ �
f xð Þ/ x� r

k

� 	 dx
k

Repeated differentiation under the integral sign, which is justi-
fiable by the dominated convergence theorem, and the mean value
theorem, we have that wk is infinitely differentiable with

dm

drm
wk rð Þ ¼

Z
R

f xð Þ dm

drm
/

x� r
k

� 	dx
k

for m � 0.

Thus, f is infinitely differentiable.
2) By assumption, we havePn

k¼0
n
k

� �
�1ð Þn�kf r þ ksð Þ ¼ 0 for all r; sð Þ 2 R2.

Differentiating both sides with respect to s yields

0 ¼
Xn
k¼1

n

k

� �
�1ð Þn�kkf 0 r þ ksð Þ ¼ n

Xn
k¼1

n� 1
k� 1

� �
�1ð Þn�kf 0 r þ ksð Þ

Summing over l ¼ k� 1 and dividing by n, the last expression
becomesXn
l¼0

n� 1
l

� �
�1ð Þn�1�lf 0 r þ lþ 1ð Þsð Þ ¼ 0

Given r1; s 2 R , substituting r ¼ r1 � s in the last identity, we
obtainXn
l¼0

n� 1
l

� �
�1ð Þn�1�lf 0 r1 þ lsð Þ

Since r1; s are arbitrary, then f
0 2 Fn�1.

3) By induction on n � 1. For n ¼ 1; the identity defining F1 is
�f rð Þ þ f r þ sð Þ ¼ 0 for all r; s which clearly implies that f is a con-
stant, i.e., a polynomial of degree less than 1. Suppose n > 1, the

result is true for n� 1; and that f 2 Fn. Using 2) we have f
0
is a poly-

nomial of degree less than n� 1; so by integration, f is a polyno-
mial of degree less than n:&

2. A test for a class of norm identities in inner product Spaces.

In this section, a test that can be used to verify the validity of
certain identities in inner product spaces is provided. Recall the
familiar identity for inner product norms

kxþ yk2 ¼ kxk2 þ kyk2 þ 2Re x; yh i ð3Þ
Or equivalently

2Re x; yh i ¼ kxþ yk2 � kxk2 � kyk2 ð4Þ

2

Theorem 2.1:. Let H be an inner product space, and x1; x2; � � � ; xn be
elements in H. The equality
kx1 þ x2 þ � � � þ xnk2 ¼
X

Aj j¼2;A# n�
kxAk2 � n� 2ð Þ

Xn

i¼1
kxik2 ð5Þ

holds for all positive integer n � 2.

Proof:. By induction on n. For n ¼ 2 the equality is simply

kx1 þ x2k2 ¼ kx1 þ x2k2. Suppose the equality holds for n then, from
(3)
kx1 þ x2 þ � � � þ xnþ1k2 ¼ kx1 þ x2 þ � � � þ xnk2 þ kxnþ1k2

þ 2Re x1 þ � � � þ xn; xnþ1h i ð6Þ
But

2Re x1 þ � � � þ xn; xnþ1h i ¼
Xn

i¼1
2Re xi; xnþ1h i

¼
Xn
i¼1

jxi þ xnþ1j jj2 � jxij jj2 � jxnþ1j jj2
� 	

ð7Þ

¼
X

Aj j¼2; A#nþ1;nþ12A
jxAj jj2 �

Xn
i¼1

jxij jj2 � n jxnþ1j jj2

By induction hypothesis, we have

jx1 þ x2 þ � � � þ xnj jj2 ¼
X

Aj j¼2;A# n
�
jxAj jj2 � n� 2ð Þ

Xn
i¼1

jxij jj2 ð8Þ

Substituting (7) and (8) in (6), we obtain

jx1 þ x2 þ � � � þ xnþ1j jj2 ¼
X

Aj j¼2;A# n
�
jxAj jj2 � n� 2ð Þ

Xn
i¼1

jxij jj2
0
@

1
A

þ jxnþ1j jj2

þ
X

Aj j¼2; A#nþ1;nþ12A
jxAj jj2 �

Xn
i¼1

jxij jj2 � n jxnþ1j jj2
0
@

1
A

¼
X

Aj j¼2; A#nþ1

jxAj jj2 � n� 1ð Þ
Xnþ1

i¼1

jxij jj2

Thus, the relation (5) is true for nþ 1. By induction, (5) is true
for all n 2 N,n�2

By using Theorem 2.1 to substitute for kxAk2 where Aj j > 2, the
equal expressionX
Bj j¼2;B#A

jxBj jj2 � Aj j � 2ð Þ
X
i2A

jxij jj2

any identity of the form
P
A# n

�
cA jxAj jj2 ¼ 0 can be converted to an

identity of the formX
B# n

�
;16 Bj j62

aB jxBj jj2 ¼ 0

Thus, testing the validity of the identity
P
A# n

�
cA jxAj jj2 ¼ 0 is trans-

formed into testing the validity of the equivalent identityP
B# n

�
;16 Bj j62

aB jxBj jj2 ¼ 0. The verification of the latter identity can

be reduced to verifying that all its coefficients are zero as shown
by the following Lemma.
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Lemma 2.2:. Let H be an inner product space of dimension at least

two. The identity
P

B# n
�
;1� Bj j�2aBkxBk2 ¼ 0 holds for all x1; � � � ; xn 2 H

if and only if aB ¼ 0 for all B# n
�
with 1 6 Bj j 6 2.
Proof:. (() Clearly if aB ¼ 0 for all B# n
�
with 1 � Bj j � 2; thenP

B# n
�
;1� Bj j�2aBkxBk2 ¼ 0 for all x1; � � � ; xn 2 H

()) Suppose that
P

B# n
�
;16 Bj j62

aBk xB k2 ¼ 0 for all x1; � � � ; xn 2 H.

Pick u;v 2 H orthogonal unit vectors. For 0 � h � 2p let
uh ¼ coshuþ sinhv . For 1 6 i–j 6 n, let xi ¼ u; xj ¼ uh and xk ¼ 0

for k 2 n
�
leftfi; jg.

Since kuþ uhk2 ¼ 2þ 2cosh we have

0 ¼
X

B# n� ;1� Bj j�2
aBkxBk2

¼
X

kR i;jf ga i;kf g þ
X

kR i;jf ga j;kf g þ a i;jf g 2þ 2coshð Þ þ a if g þ a jf g

Choose h1; h2 2 0;2p½ � with cosh1–cosh2, subtract the above
equality at h ¼ h2 from the same equality at h ¼ h1 to obtain

a i;jf g ¼ 0. Since i–j were arbitrary elements of n
�
, we obtain that

aB ¼ 0 for all B# n
�
with Bj j ¼ 2. Using this and our assumption of

the validity of the identity, we obtain 0 ¼PB# n
�
;1� Bj j�2aBkxBk2 ¼Pn

j¼1a jf gkxjk2. Finally, for each 1 � i � n, take xi to be a unit vector
and xj ¼ 0 for j–i in the last identity to get

0 ¼
X

B# n� ;1� Bj j�2
aBkxBk2 ¼

Xn

i¼1
a jf gkxjk2 ¼ a if g

Since 1 � i � n was arbitrary, then aB ¼ 0 for all B# n
�

with
Bj j ¼ 1. j

The following Theorem uses Theorem 2.1 and a modified ver-
sion of Lemma 2.2 to test validity of identities of the formP
A# n

�
cAk xA k2 ¼ 0. The modification allows us to avoid the need to

compute aB for * with Bj j ¼ 1 which simplifies the application of
the validity test.

Theorem 2.3:. Let H be an inner product space of dimension at least

two. Given an expression
P

A# n
�cAkxAk2, let

P
B# n

�
;1� Bj j�2aBkxBk2 be

the result of replacing kxAk2 where Aj j > 2 by

X
Bj j¼2;B#A

kxBk2 � Aj j � 2ð Þ
X

i2Akxik
2

The identity
P

B# n
�cBkxBk2 ¼ 0 holds if and only if

1) aB ¼ 0 for all B# n
�
with Bj j ¼ 2 , and

2) For each unit vector u 2 H, and for each 1 � i � n, if xi ¼ u
and xj ¼ 0 for j–i then for this choice of xk’ s we haveP
A# n

�
cAk xA k2 ¼ 0.
Proof:. ())If the identity
P

B# n
�cBkxBk2 ¼ 0 holds thenP

B# n
�
;1� Bj j�2aBkxBk2 ¼ 0 is also an identity, so by Lemma 2.2 , we have

aB ¼ 0 for all B# n
�

with 1 � Bj j � 2 . i.e. 1) holds. SinceP
B# n

�cBkxBk2 ¼ 0 holds for any choice of values of the xk’s, 2) also
holds.

(�)Assume 1) and 2) hold, and u be any unit vector in H, for
each 1 � i � n, let xi ¼ u and xj ¼ 0 for j–i then from 2Þ
3

0 ¼
X

B# n�
cBkxBk2 ¼

X
B# n� ;1� Bj j�2

aBkxBk2 ¼
X

B# n� ;1¼ Bj jaBkxBk2 ¼ a if g

where we have used 1) in the second equality. Since 1 � i � n

was arbitrary, we have aB ¼ 0 for all B# n
�

with 1 ¼ Bj j. This

together with 1) gives us that aB ¼ 0 for all B# n
�
;1 � Bj j � 2. ThusP

B# n
�cBkxBk2 ¼PB# n

�
;1� Bj j�2aBkxBk2 ¼ 0 is an identity. j

3. Some deduced identities

In this section, we provide some example applications of Theo-
rem 2.3. For future reference we have listed the identities as Lem-
mas rather than examples.

Lemma 3.1:. Let H be an inner product space. The identity
n� 2
k�2

� �
kx1 þ � � � þ xnk2 ¼

X
Aj j¼k;A# n�

kxAk2 �
n� 2
k�1

� �Xn

i¼1
kxik2

ð9Þ
holds for all n > k � 2 and all x1; � � � ; xn 2 H.

Proof:. We start by converting the identity in (9) to one with zero on
one of the sides to get
n� 2
k� 2

� �
kx1 þ � � � þ xnk2 �

X
Aj j¼k;A# n�

kxAk2 þ
n� 2
k� 1

� �Xn

i¼1
kxik2 ¼ 0

ð10Þ

Using Theorem 2.1 to replace kxAk2 for each A# n
�
with Aj j ¼ k

by the equivalent expression
P

Bj j¼2;B#AkxBk2 � k� 2ð ÞPi2Akxik2

and replace kx1 þ � � � þ xnk2 by
P

Bj j¼2;B# n
�kxBk2 � n� 2ð ÞPn

i¼1kxik2
converts the left hand side of (10) to

n� 2
k� 2

� � X
Bj j¼2;B# n�

kxBk2 � n� 2ð Þ
Xn

i¼1
kxik2

� 	

�
X

Aj j¼k;A# n�

X
Bj j¼2;B#A

kxBk2 � k� 2ð Þ
X

i2Akxik
2

� 	
þ n� 2

k� 1

� �Xn

i¼1
kxik2

ð11Þ

By writing (11) in the form
P

B#n;1� Bj j�2aBkxBk2, we get for a set B
of size 2,

aB ¼ n� 2
k� 2

� �
�
X

Aj j¼k;B#A#n
1

The number of k-subset A#n containing B is equal to the num-

ber of (k� 2Þ-subsets C of n=B so is n� 2
k� 2

� �
. Thus for B#n of car-

dinality 2,

aB ¼ n� 2
k� 2

� �
� n� 2

k� 2

� �
¼ 0

giving us that condition (1) of Theorem 2.3. To verify condition
(2), let u to be a unit vector, for each 1 � i � n, let xi ¼ u and xj ¼ 0
for i–j 2 n, then substituting this choice of xi’s in the left hand side
of (10) (our original identity), the equation in (10) becomes

n� 2
k� 2

� �
� n� 1

k� 1

� �
þ n� 2

k� 1

� �
¼ 0

The middle term in the above equation was computed by noting

that kxAk2 ¼ 1 if i 2 Aand 0 otherwise, and that the number of k-
subsets A#n containing if g is equal to the number of (k� 1Þ-
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subsets of n
�
\{i} which is n� 1

k� 1

� �
. By a well-known recurrence

relation for the binomial coefficients (note k � 2) condition (2) also
holds. &

Lemma 3.2:. Let H be an inner product space of dimension at least 2.
For n � 3 and x1; � � � ; xn in H, we have

X
I# n�

�1ð Þ Ij jkxIk2 ¼ 0 ð12Þ

Proof:. Splitting the sum in (12) into a sum over Ij j � 2 and a second

sum over Ij j ¼ 1, then using Theorem 2.1, to substitute for kxIk2 in the
first sum, the LHS of (12) becomes

X
I# n� ; Ij j�2

�1ð Þ Ij j X
Bj j¼2;B# I

kxBk2 � Ij j � 2ð Þ
X

i2Ikxik
2

� 	
þ
X

I# n� ; Ij j¼1
�1ð ÞkxIk2 ð13Þ

Let us write (13) in the form

RB# n� ;1� Bj j�2aBkxBk2

For a set Bwith Bj j ¼ 2, we have aB ¼PI�B �1ð Þ Ij j. As the number

of sets I# n
�
of cardinality k containing B equals the number of

ways of choosing the k� 2 elements of I\B from the n� 2 elements
of n\B, this sum is

aB ¼
Xn

k¼2
�1ð Þk n� 2

k� 2

� �
¼
Xn�2

l¼0
�1ð Þl n� 2

l

� �
¼ 1� 1ð Þn�2 ¼ 0

So, condition 1) of Theorem 2.3 is satisfied. To verify condition
(2), let u be a unit vector, for each 1 � i � n let xi ¼ u and xj ¼ 0
for j–i. By substituting this choice in (12), as the number of sets
I#n containing i and of cardinality k is n�1

k�1

� �
, we have

X
I# n�

�1ð Þ Ij jkxIk2 ¼
X

I# n� ;i2I �1ð Þ Ij j1 ¼
Xn

k¼1
�1ð Þk n� 1

k� 1

� �

¼ � 1� 1ð Þn�1 ¼ 0

Thus condition (2) holds.&

Remark 3.3:. For 1 � i � n, let �i 2 1;�1f g and J ¼ k : �k ¼ 1f g then

k�1xi1 þ �2xi2 þ � � � þ �nxink2 ¼ kxJ � xIk2

¼ 2kxJk2 þ 2kxIk2 � kxJ þ xIk2

¼ 2kxJk2 þ 2kxIk2 � kxIk2:
This gives us a test for identities of the formX

I¼ i1 ;i2 ;���;ikf g# n�
aI

X
�1 ;���;�k2 1;�1f g

k�1xi1 þ �2xi2 þ � � � þ �kxikk2 ¼ 0

(where the inner sum is over all possible choices of signs
�1; � � � ; �k) Indeed, the above identity can be transformed to the
form

0 ¼
X

I# n�
aI
X

J# I
kxJ � xIk2

¼
X

I# n�
aI
X

J# I
2kxJk2 þ 2kxIk2 � kxIk2
� 	

which has the form that can be verified using Theorem 2.3.
The test for verifying such identities is given in Theorem 3.4.

Corollary 3.5 uses this test to prove the parallelepiped law. NamelyXn

k¼1

X
1�i1<i2<���<ik�n

�1ð Þk2n�k
X

�1 ;���;�k2 1;�1f g
k�1xi1 þ�2xi2 þ���þ�kxikk2¼0

ð14Þ

4

Theorem 3.4:. Let H be an inner-product space of dimension at least
2. For each n � 2, a1; � � � ; an fixed real numbers, and J #P nð Þ. If
aI ¼

Q
i2Iai for I#nthen

0 ¼
X

I2J aI
X

J# I
kxJ � xIk2 ¼ 0 ð15Þ

holds for all x1; � � � ; xn in H if and only if for each i 2 n
�
,

0 ¼
X

I2J and i2If g
2 Ij jaI

Proof:. As in Remark 3.3, we have

0 ¼
X

I2J aI
X

J# I
kxJ � xIk2

¼
X

I2J aI
X

J# I
2kxJk2 þ 2kxIk2 � kxIk2
� 	

ð16Þ

For I fixed and J1 # I; the square norm kxJ1k2 occurs (with a fac-
tor of 2) twice in the inner sum on the RHS of (16) (once when

J ¼ J1 and the other when J ¼ IfJ1) while the �kxIk2 occurs 2 Ij j times
in the inner sum (once for each J# I) Thus, the RHS of (16) isX

J
4kxJk2

X
I2J :I�Jf gaI �

X
I2J aI2

Ij jkxIk2

So, the equality in (16) becomes

0 ¼
X

J# n�
4
X

I2J :I�Jf gaI
� 	

kxJk2 �
X

I# n�
aI2

Ij jkxIk2 ð17Þ

Using Theorem 2.1 to substitute for kxJk2 and kxIk2 in (17), we
get that for each B a subset of n of cardinality 2,

aB ¼
X

B# J# n�
4
X

I2J :I�Jf gaI �
X

I2J :I�Bf gaI2
Ij j

The first sum isX
B# J# I2J4aI ¼

X
B# I2J4aI

X
B# J# I

1

As the sets J satisfying B# J# I are in bijective correspondence

with the subsets of I the number of the former is 2 Ij j ¼ 2 Ij j�2 , thus

aB ¼
X

B# I2J2
Ij j�24aI �

X
B# I2J aI2

Ij j ¼ 0

So, condition (1) of Theorem 2.3 is satisfied. Therefore (16)
holds if and only if condition (1) of Theorem 2.3 holds. Hence, it
suffices to show that in this case condition (2) of Theorem 2.3 is
equivalent to the condition in Theorem 3.4. Let u be a unit vector.
For 1 � i � n let xi ¼ u and xj ¼ 0 for j–i . With this choice of values
for the xk,s

For J# I that kxJ � xIk2 ¼ 0 if i R I, and if i 2 I, we have

kxJ � xIk2 ¼ kxik2if i 2 J

k�xik2 if i R J

(

in either case kxJ � xIk2 ¼ kxik2 ¼ 1. ThusX
I2J aI

X
J# I

kxJ � xIk2 ¼
X

I2J : i2If g

X
J# I

1 ¼
X

I2J : i2If g2
Ij jaI

proving the desired equivalence. /

Corollary 3.5:. Let H be an inner-product space of dimension at least
2. For each n � 2, x1; � � � ; xn in H and real numbers a1; � � � ; an, if there
are i–j such that ai ¼ aj ¼ �1=2 then

0 ¼
Xn

k¼1

X
1�i1<i2<���<ik�n

ai1ai2 � � � aik

�
X

�1 ;���;�k2 1;�1f g
k�1xi1 þ �2xi2 þ � � � þ �kxkk2 ð18Þ
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Proof:. As in Remark 3.3, the equation in (18) can be rewritten as
0 ¼

X
I2P n�ð ÞaI

X
J# I

kxJ � xIk2
where, as in Theorem 3.4, aI ¼

Q
i2Iai. This is just (15) with

J ¼ P n
�� 	

. Thus, by Theorem 3.4, the identity holds if and only if

for each i 2 n
�

,
P

i2I# n
�2 Ij jaI ¼ 0. For each k 2 n

�
, let ck ¼ 2ak, then

the validity test for our identity can be rewritten as follows:
for each 1 � i � n,

X
i2I# n�

cI ¼ ci
X

I# n� leftfigcI ¼ 0

For a nonempty index set J, by an easy induction on the cardi-
nality of J, we get thatX

I# J
cI ¼

Y
l2J

1þ clð Þ

Thus, the condition of Theorem 3.4 becomes, for eachi 2 n
�

2ai
Y

i–j2J 1þ 2aj
� � ¼ 0

Which always hold if there are two distinct indices i–j so that
ai ¼ aj ¼ � 1

2&

Note that factoring out 2n from (14), it becomes a special case of
Corollary 3.4 where a1 ¼ a2 ¼ � � � ¼ an ¼ �1=2.

4. Sufficient conditions for an inner product

In the previous sections we examined identities that follow
from the norm being derived from an inner product. In this section,
we show that any such identity (any identity of the formP

A# n
�cAkxAk2 ¼ 0) implies that the norm is derived from an inner

product. The proof is divided into two lemmas.

Lemma 4.1:. Let H be a normed spaced.
1) If some identity of the form
P

B# n
�cBkxBk2 ¼ 0 holds in H

with the cB–0 for some B– h then an identity of the formP
B#A

aBx2B ¼ 0 with aA–0 and A–hholds in H.

2) If an identity of the form
P

B#AaBkxBk2 ¼ 0 with aA–0 and
A–h holds in H. Then an identity of the formP
B(A

�1ð Þ Aj j� Bj jx2B ¼ 0 also holds in H for some A–h.
Proof:.

1) Pick A a maximal element in the collection

B# n
�
: cB–0and B–

n
h} with respect to inclusion. Let xi ¼ 0

for i R A and let xi be arbitrary for i 2 A. Using this choice of
values our identity becomes

0 ¼
X

B# n�
cBkxA\Bk2 ¼

X
B#A

kxBk2
X

D\A¼B
cD

� 	
Since A is maximal D \ A ¼ A ,i.e. D � A, and cD–0 implies that

D ¼ A so the coefficient of x2A is cA–0 and by our choice of A,
A–£. Thus, the identity we obtained above has desired type.

2) Let N be the minimum element of the nonempty set

Aj j : A–£ ^ there is an identity
X
B#A

aB jxBj jj2 ¼ 0 with aA–0 holding in H
( )
5

Pick a set A with cardinality N, and an identityP
B#A

aBx2B ¼ 0 with aA–0 holding in.

By our choice of A, if Cj j < Aj j is nonempty and an identity of the
form

P
B#C

aBx2B ¼ holds in H then aC ¼ 0 .

We prove that, with the above choice of A, aB ¼ �1ð Þ Aj j� Bj jaA for
every £–B#A. The proof is by downward induction on Bj j. For
Bj j ¼ Aj j this is clear since B ¼ A. Suppose the claim is true for
k < Bj j � Aj j and k � 1. Let B0 be a subset of A of cardinality k.
Choose xi ¼ 0 for i R B0 and let xi be arbitrary for i 2 B0. Substituting
in our identity, we obtain,

0 ¼
X

B#A
aBkxB\B0k2¼

X
C#B0

kxCk2
X

B\B0¼C;B#A
aB

� 	
Since 1 � B0j j < Aj j we have by (*) that the coefficient of kxB0k2

in the above expression is zero, so
P

B\B0¼B0 ;B#A
aB ¼ 0. Therefore, by

the induction hypothesis,

aB0 ¼ �
X

A�B) B0

aB ¼ �
X

�B) B0

�1ð Þ Aj j� Bj jaA

For each m > k the number of m-subsets B#A that contain B0 is
Aj j�k
m�k

� �
so

aB0 ¼ �aA
XAj j

m¼kþ1

Aj j � k

m� k

� �
�1ð Þ Aj j�m

¼ �aA
XAj j

m¼k

Aj j � k

m� k

� �
�1ð Þ Aj j�m � �1ð Þ Aj j�k

 !

¼ �aA 1� 1ð Þ Aj j�k � �1ð Þ Aj j�k
� 	

¼ �1ð Þ Aj j�kaA

Establishing the result for subsets of cardinality k. Thus for

our choice of A the above identity is aA
P

£–B(A
�1ð Þ Aj j� Bj jx2B ¼

P
B(A

�1ð Þ Aj j� Bj jx2B ¼ 0, and we obtain the desired conclusion by

dividing by aA–0. &

Lemma4.2:. Let H be a normed space. If for some A–h the identityX
B(A

�1ð Þ Aj j� Bj j jxBj jj2 ¼ 0

holds in H, then H is an inner product space.

Proof:. WLOG assume that A ¼ n
�

for some 3 � n 2 N. If n ¼ 3our
hypothesis (after renaming variables) coincides with the identity (1)
from which we obtain identity (2) by replacing z by �y. The existence
of inner product then follows from the Jordan and von Neumann
result.

If n > 3, Let x; y 2 H and t 2 R be arbitrary. The substitution
x1 ! xand xk ! ty for2 � k � n
in the identity in the statement of the lemma, yields

Xn�1

j¼0

n� 1
j

� �
�1ð Þn�jkxþ jtyk2 ¼ 0 ð18Þ

Indeed, for 1 2 B and Bj j ¼ jþ 1, the above substitution trans-

forms �1ð Þ Aj j� Bj jkxBk2 into �1ð Þn�j�1kxþ jtyk2:
Thus,

X
12B#A

�1ð Þ Aj j� Bj jkxBk2 ¼
Xn�1

j¼0

�1ð Þn�j�1 n� 1
j

� �
kxþ jtyk2 ð19Þ

For 1 R B, we have xB ¼ Bj jty. Thus, since there are n�1
j

� 	
j-

subsets of A that don’t contain 1
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X
1RB(A

�1ð Þ Aj j� Bj j jxBj jj2 ¼ t2 jyj jj2
Xn�1

j¼0

�1ð Þn�jj2
n� 1

j

� �

Using the identities j n�1
j

� 	
¼ n� 1ð Þ n�2

j�1

� 	
and jðj� 1Þ n�1

j

� 	
¼

n� 1ð Þðn� 2Þ n�3
j�2

� 	
, we get that the last sum is

t2kyk2 n� 1ð Þ
Xn�1

j¼1

�1ð Þn�j n� 2
j� 1

� �
þ n� 1ð Þðn� 2Þ

Xn�1

j¼1

�1ð Þn�j n� 3
j� 2

� � !

¼ � n� 1ð Þt2kyk2 1� 1ð Þn�2 þ n� 1ð Þðn� 2Þt2kyk2 1� 1ð Þn�3 ¼ 0

Thus,

0 ¼ �
X

B#A
�1ð Þ Aj j� Bj jkxBk2 ¼

Xn�1

j¼0

�1ð Þn�j n� 1
j

� �
kxþ jtyk2

Fix x and y. The function g tð Þ ¼ kxþ tyk2 is continuous since if K
is a number such that sj j; tj j � K , then g tð Þ � g sð Þj j is bounded above

by jkxþ tyk2 � kxþ syk2j � 2js� tjkyk kxk þ Kkykð Þ
The sum

Xn�1

j¼0

�1ð Þn�j n� 1
j

� �
g r þ jsð Þ

is just

Xn�1

j¼0

�1ð Þn�j n� 1
j

� �
kxþ r þ jsð Þyk2

¼
Xn�1

j¼0

�1ð Þn�j n� 1
j

� �
kx1 þ jsyk2

where x1 ¼ xþ ry which is zero by (18) so, by Lemma 1.1, g is a
polynomial. Since for k > 2,

lim
t!1

g tð Þ
tk

� lim
t!1

1
tk

kxk þ tkykð Þ2 ¼ lim
t!1

1
tk�2

1
t2
kxk þ kyk

� �2

¼ 0

the degree of g is at most 2. Thus,

g tð Þ ¼ Aþ Bt þ Ct2

we have, A ¼ g 0ð Þ ¼ kxk2 and

C ¼ limt!1
g tð Þ
t2

¼ lim
t!1

k x
t þ yk2 ¼ kyk2:

Thus,

jjxþ tyjj2 ¼ g tð Þ ¼ jjxjj2 þ Bt þ jjyjj2t2

and

kxþ yjj2 þ kx� zjj2 ¼ g 1ð Þ þ g �1ð Þ ¼ 2kxjj2 þ 2kyjj2

Since x; y 2 H were arbitrary, by Jordan and von Neumann
result, the norm is induced by an inner product. &

The following result follows directly from Lemmas 4.1, and
Lemma 4.2.

Theorem 4.3:. Let H be a normed space. If an identity of the formP
B# n

�cBkxBk2 ¼ 0 holds in H with the cB–0 for some B–£, then the

norm is given by an inner product.
6

Corollary 4.5:. Let H be a normed space. The norm on H is given by an
inner product if and only if any of any of the identities in Lemmas 3.1
or 3.2 or Corollary 3.5 hold.
Proof:. If H is an inner-product space, then the identities hold by the
Lemmas in which they occur. If, on the other hand, any of these iden-
tities hold then by Theorem 4.3, H is an inner-product space./
5. Discussion and Conclusion

In this paper an algorithm is given for testing the validity of a
class of norm identities in inner-product spaces. The algorithm
can be utilized in discovering some new identities in inner-
product spaces, as illustrated the generalization of the paral-
lelepiped law. It can also be used in verifying the validity, in
inner-product spaces, of given identities, as illustrated by several
examples. It was also shown that identities verified by the algo-
rithm will hold in a normed space only if the norm is given by
an inner-product. Thus, the algorithm can be used to generate tests
for the existence of an inner-product underlying a given norm as
was illustrated by several tests given in the paper.
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