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A B S T R A C T   

Vallis system is a model describing nonlinear interactions of the atmosphere and temperature fluctuations with a 
strong influence in the equatorial part of the Pacific Ocean. As the model approaches the fractional order from 
the integer order, numerical simulations for different situations arise. To see the behavior of the simulations, 
several cases involving integer analysis with different non-integer values of the Vallis systems were applied. In 
this work, a fractional mathematical model is constructed using the Caputo derivative. The local asymptotic 
stability of the equilibrium points of the fractional-order model is obtained from the fundamental production 
number. The chaotic behavior of this system is studied using the Caputo derivative and Lyapunov stability 
theory. Hopf bifurcation is used to vary the oscillation of the system in steady and unsteady states. In order to 
perform these numerical simulations, we apply Grünwald–Letnikov tactics with Binomial coefficients to obtain 
the effects on the non-integer fractional degree and discrete time vallis system and plot the phase diagrams and 
phase portraits with the help of MATLAB and MAPLE packages.   

1. Introduction 

Difference equations, which emerged as discretization and numerical 
solutions of differential equations, are one of the rich branches of 
mathematics. However, it is known that mathematical models will 
exhibit complex behaviors have events such as bifurcation and chaotic 
dynamics. Historically, mathematical models have been used to solve 
many problems. Mathematical models are used in many places such as 
difference equations, graph theory, matrices. In the literature, it appears 
that difference equations are used to model a system related to time. The 
chaotic behavior that emerges from mathematical models is studied by 
analyzing the system (Deepika et al., 2023). Chaotic dynamics is a 
nonlinear deterministic system with a wide variety of dynamic behavior 
that is sensitive to initial conditions and has orbitals limited to phase 
fields. The study of the behavior of a nonlinear fractional system is of 
great interest to many scientists and engineers (Bagley et al., 1991; Das 
et al., 2017). It becomes more attractive when found in nonlinear 
fractional-order systems, especially in the chaos phenomenon. Edward 
N. Lorenz, an American mathematician, discovered the first chaotic 
attractor. A characteristic of chaos is its sensitivity to initial conditions. 
Lyapunov methods are a powerful system for analyzing the dynamics of 
nonlinear fractional-order systems and are used to easily obtain stability 
analysis (Naik et al., 2023). A new definition, the Caputo fractional 

derivative, is proposed to avoid the singular point in the calculation of 
the fractional order derivative (Wang et al., 2014). In the last years, 
bifurcation theory has been developing by adding new ideas on certain 
topics of mathematical science (Wang et al., 2018; Rajagopal et al., 
2019; Zafar et al., 2020;Talbi et al., 2020;George et al., 2022;Khan et al., 
2022;Wang et al., 2022; Vaishwar et al., 2022;Akhtar et al., 2021; 
Veeresha, 2022). 

Vallis in 1986 is the description of temperature fluctuations in the 
western and eastern parts of the equatorial ocean that have a strong 
impact on the world’s global climate (Merdan, 2013). The Vallis system 
is a modification of the Lorenz system with p = 0 (Garay et al., 2015). 
This system proved the existence of chaos and it was shown that the El- 
Nino event is related to the chaotic behavior of the Vallis system. 
Alkahtani (Alkahtani et al., 2016) studied the Caputo derivatives and the 
Vallis model and drew the phase portraits of the proportional fractional 
Vallis system with this derivative. At each critical point in the bifurca
tion point, all eigenvalues of the Jacobian matrix are calculated. The 
fractional-order Vallis system has not been investigated much. Recently 
(Zafar et al., 2020;Singh et al., 2018; Deshpande et al., 2019; Das et al., 
2023). Binomial coefficients on the fractional-order Vallis system and 
three equilibrium points were obtained using the fractional-order 
Grünwald-Letnikov method. The results of asymptotic stability of all 
three equilibrium points are similarity as those calculated in Merdan 
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(Merdan, 2013). 
In this paper, the existence of equilibria of the fractional order Vallis 

system is computed. The fractional order of the discrete-time Vallis 
system was obtained by using the Caputo method in the model. By 
applying the Jury criterion to this discrete-time system, the local sta
bility of the equilibria is established. By applying Hopf bifurcation on 
the Vallis system, it is seen that it is unstable for its right neighborhood 
on the equilibrium points. Phase portraits and phase diagrams of the 
Vallis system are drawn with the help of the fractional-order Grünwald- 
Letnikov technique related to binomial coefficients. 

2. Methodology 

2.1. Vallis system 

In 1986, Vallis was awarded three nonlinear systems for the identi
fication of temperature fluctuations in the western and eastern parts of 
the equatorial ocean, which have a strong impact on the global climate 
of the earth (Vallis, 1988; Magnitskii et al., 2007). 

dx
dt

= μy − ax,

dy
dt

= xz − y,

dz
dt

= 1 − xy − z.

(1) 

Here x the speed of water at the apparent surface of the ocean, y =
Tw − Te

2 , z = Tw+Te
2 is and Tw and Te are the temperature in the western and 

eastern parts of the sea, μ, a are non-negative constants. This study fo
cuses on the discrete Vallis system and the components of the basic 
three-component model are defined separately as x(t), y(t), z(t) (Vallis, 
1986). 

2.1.1. The existence of equilibria of the Vallis system 
Van den Driessche and Watmough (Driessche, 2002) define it to 

obtain the threshold parameter known as the basic reproduction num
ber, denoted by R0. In this threshold parameter, when R0 < 1 the 
equilibrium point is locally asymptotic stable and when R0 > 1 the 
equilibrium point is unstable. 

Equilibrium point of model (1) 

dx
dt

= μy − ax = 0,

dy
dt

= xz − y = 0,

dz
dt

= 1 − xy − z = 0.

(2) 

Then the equilibrium points E0(0,0, 1),E1

(
−

̅̅̅̅̅̅
μ− a

a

√
, − a

μ

̅̅̅̅̅̅̅
μ− a

a ,
√

a
μ

)
and 

E2

( ̅̅̅̅̅̅
μ− a

a

√
, a

μ

̅̅̅̅̅̅̅
μ− a

a ,
√

a
μ

)
are obtained. Here, using the jacobian matrix, we 

can write the number R0 using the equilibrium point E0(0, 0, 1) in (1) as 
follows: 

X′ = F(x) − V(x),

Hence, 

F(x) =

⎛

⎝
0

x(t)z(t)
0

⎞

⎠,V(x) =

⎛

⎝
ax − μy

y
z + xy − 1

⎞

⎠.

the jacobian matrix of the matrices F(x) and V(x) at the equilibrium 
point E0(0, 0, 1) is, 

F =

[ ∂Fi

∂xj
(x0)

]

=

⎛

⎝
0 0 0
1 0 0
0 0 0

⎞

⎠

V =

[ ∂ϑi

∂xj
(x0)

]

=

⎛

⎝
a − μ 0
0 1 0
0 0 1

⎞

⎠

for 

R0 = ρ
(
FV − 1) =

⎛

⎜
⎜
⎜
⎝

1
a

μ
a

0

0 1 0

0 − 1 1

⎞

⎟
⎟
⎟
⎠
.

and from here is the spectral radius of a matrix FV− 1, which gives 
R0 =

μ
a. 

Lemma 1. R0 > 1 if and only if E1,2(x*, y*, z*) the model (1) has an 
equilibrium point. 

Proved. If the model (1) has an equilibrium point, it should provide 
the following equations: 
⎧
⎨

⎩

μy* − ax* = 0,
x*z* − y* = 0,

1 − x*y* − z* = 0,
(3) 

it is calculated that for (3) there is a unique solution that satisfies: 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x* = ±
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
R0 − 1

√
,

y* = ±
1
R0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
R0 − 1,

√

z* =
1
R0
,

(4) 

Obviously, if and only if R0 > 1 and x* > 0, y* > 0, z* > 0. ■. 

2.1.2. Fractional order of the discrete time Vallis system 
Fractional differential equations are used to find better inferences 

from the models made with integer differential equations. Mathematical 
models created with fractional order ordinary differential equations give 
better results than integer order ordinary differential equations. More
over, accurate models emerge as a result of comparing discrete-time 
models with continuous-time models. The most commonly used frac
tional derivatives in the literature are Riemann-Liouville and Caputo 
fractional derivatives. Although there are many studies on discrete-time 
difference equations, there are few studies on fractional difference 
equations. In this study, Caputo fractional derivative is used as fractional 
derivative. 

Definition. Caputo, the fractional integral of the function t > 0 at 

the level of β ∈ R+, Iβf(t) =
∫ t

0
(t− s)β− 1

Γ(β) f(s)ds and f(t), t > 0, the fractional 
derivative of a ∈ n defines Dαf(t) = In− αDnf(t),α > 0, where the operator 
Dα is called the α-order Caputo operator (Caputo, 1967). 

From the Caputo definition, the initial conditions of the function f(t)
with α→n are made more convenient than the Riemann–Lioville deriv
ative. The fractional-order form of the system (1) is constructed as 
follows. 

Dαx = μy − ax,
Dαy = xz − y,
Dαz = 1 − xy − z,

(5) 

Where Dα
t represents the caputo fractional derivative. if t > 0, α 

provides α ∈ (0, 1]. Let xn = x(n), yn = y(n), zn = z(n) for any n ≥ 0. 
Using El-Sayed and Salman’s (El-Sayed et al., 2013) discretization 
method, let’s discretize the model (5) as follows: 
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xn+1 = xn +
hα

Γ(1 + α) [μyn − axn],

yn+1 = yn +
hα

Γ(1 + α) [xnzn − yn],

zn+1 = zn +
hα

Γ(1 + α) [1 − xnyn − zn],

(6) 

Where the parameter h > 0 is the number of steps and the initial 
conditions are x0 > 0,y0 > 0, z0 > 0.

2.2. Stability of the Vallis system 

In this section, the stability conditions of the equilibrium points of 
the model (6) will be calculated. Let us consider an n-dimensional 
nonlinear discrete-time system of equations: 

xi(t+ 1) = fi(μ, x(t)). (7) 

Here, i = 1,2, 3,⋯, n μ = μ1, μ2,⋯, μm are t − independent parame
ters andx(t) = x1, x2,⋯, xn are variables. 

Let the characteristic polynomial of (7) at some steady state x0 has 
the form 

F(λ) = a0λn + a1λn− 1 +⋯+ an− 1λ+ an = 0, a0 = 1, ai(μ), i = 0,⋯, n  

Δi(μ, x)

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

⎛

⎜
⎜
⎜
⎜
⎝

1 a1 a2 ⋯ ai− 1
0 1 a1 ⋯ ai− 2
0 0 1 ⋯ ai− 3
⋮ ⋮ ⋮ ⋯ ⋮
0 0 0 ⋯ 1

⎞

⎟
⎟
⎟
⎟
⎠

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

±

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

⎛

⎜
⎜
⎜
⎜
⎝

an− i+1 an− i+2 ⋯ an− 1 an
an− i+2 an− i+3 ⋯ an 0
an− i+3 an− i+4 ⋯ 0 0

⋮ ⋮ ⋮ ⋯ ⋮
an 0 0 ⋯ 0

⎞

⎟
⎟
⎟
⎟
⎠

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

(8) 

i = 1, ..., n is. Let’s determine the stability of the equilibrium state by 
following the theorem (Li et al., 2011). 

Theorem 1. (7) for the equilibrium state x0 of the system, let μ0 be the 
parameter value (Galor, 2007; Abdelaziz et al., 2020),  

a) If all the eigenvalues λi of the n × n Jacobian matrix J(μ0, x0) of (7) lie 
in the open unit disk, i.e.|λi| < 1 for all i, then x0 is asymptotically 
stable.  

b) If the matrix J(μ0, x0) has at least one eigenvalue λ0 outside the open 
unit disk, i.e. |λi | > 1, then x0 is unstable.  

Theorem 2. (Schur-Cohn criterion). All roots of the characteristic 
polynomial F are contained within the unit open disk if and only if (Li et al., 
2011):  

a) F(1) > 0 and ( − 1)nF( − 1) > 0,
b) Δ±

1 > 0,Δ±
3 > 0,⋯,Δ±

n− 3 > 0,Δ±
n− 1 > 0(when n is even) or 

Δ±
2 > 0,Δ±

4 > 0,⋯,Δ±
n− 3 > 0,Δ±

n− 1 > 0(when n is odd) or. 

Theorem 3. (Jury criterion). All the roots of f(λ) are if and only if in the 
following cases in the open volume disk (Li et al., 2011): 

bn > 0, cn > 0,⋯,wn > 0,

Here, 

bn = 1 − a2
0, bn− 1 = an− 1 − a1a0,⋯,

bj = aj − an− ja0,⋯, b1 = a1 − an− 1a0, b0 = 0,

cn = bn − b1
b1

bn
, cn− 1 = bn− 1 − b2

b1

bn
,⋯, c1 = c0 = 0,

⋮

wn = tn − tn− 1
tn− 1

tn
,wn− 1 = wn− 2 = ⋯ = 0.

in addition, the following Lemma is also mentioned. 
Accordingly, for the model (6), to obtain the Jacobian matrix around 

any point (x*, y*, z*) is done as follows: 

J(x*,y*,z*)=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1+
hα

Γ(1+α)(− a)
hα

Γ(1+α)(μ) 0

hα

Γ(1+α)z
* 1+

hα

Γ(1+α)(− 1)
hα

Γ(1+α)x
*

hα

Γ(1+α)(− y*)
hα

Γ(1+α)(− x*) 1+
hα

Γ(1+α)(− 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(9) 

Using Theorems 1–3 and Lemma together, the following results are 
obtained 

Lemma 2. 

J(E0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 +
hα

Γ(1 + α) (− a)
hα

Γ(1 + α) (μ) 0

hα

Γ(1 + α) 1 −
hα

Γ(1 + α) 0

0 0 1 −
hα

Γ(1 + α)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Then the eigenvalues of J(E0) become 

λ1 = 1 − hα

Γ(1+α), λ2 = 1 − hα

2Γ(1+α) (1 − a) −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
hα

Γ(1+α)

)2
[(1− a)2+4μ ]

√

2 and λ3 =

1 − hα

2Γ(1+α) (1 − a) +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
hα

Γ(1+α)

)2
[(1− a)2+4μ ]

√

2 . 

Lemma 3. If R0 ≤ 1 and E0 have the following properties.  

i. E0 is called a sinking point and if h < min 
{ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2Γ(1 + α),α
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4Γ(1+α)
1+a+ ̅̅̅ψ√

α
√ }

,

ii. E0 is called a source point and if h > max 
{ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2Γ(1 + α),α
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4Γ(1+α)
1+a− ̅̅̅ψ√

α
√ }

,

iii. E0 is saddle min 
{ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2Γ(1 + α),α
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4Γ(1+α)
1+a+ ̅̅̅ψ√

α
√ }

<

max
{ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2Γ(1 + α),α
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4Γ(1+α)
1+a− ̅̅̅ψ√

α
√ }

,

iv. E0 is non-hyperbolic if h =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2Γ(1 + α),α

√
or h =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4Γ(1+α)
1+a+ ̅̅̅ψ√

α
√

or h =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4Γ(1+α)
1+a− ̅̅̅ψ√

α
√

, where ψ = (a − 1)2
+ 4μ. 

Proof If R0 ≤ 1, then the model (6) is seen to have E0. The Jacobian 
matrix in E0 is. 

Lemma 4. (i)-(iv) results are obtained by applying stability conditions 
using Luo. To discuss the local stability of the equilibrium point E1(x*, y*, z*),

we need to calculate the jacobian matrices E1 and E2 as follows. 

J(E1,E2)=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1+
hα

Γ(1+α)(− a)
hα

Γ(1+α)(μ) 0

hα

Γ(1+α)

(
a
μ

)

1−
hα

Γ(1+α)
hα

Γ(1+α)

(

−

̅̅̅̅̅̅̅̅̅̅
μ− a

a

√ )

hα

Γ(1+α)

(
a
μ

̅̅̅̅̅̅̅̅̅̅
μ− a

a

√ )
hα

Γ(1+α)

( ̅̅̅̅̅̅̅̅̅̅
μ− a

a

√ )

1−
hα

Γ(1+α)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Where 

φ =

̅̅̅̅̅̅̅̅̅̅̅
μ − a

a

√

Let’s consider it as follows: 
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Fig. 1. Bifurcation of the discrete-time Vallis model a = 3, μ = 0.01, α = 0.1 (Rajagopal et al., 2020).  
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Fig. 2. Phase portraits of the fractional Vallis system for different values and time interval [0,100] with μ = 170, h = 0.01 (Zafar et al., 2020).  
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b1 = 2 + a,
b2 = a + 1 + φ2

b3 = 2φ2a,
(10) 

Let’s write the characteristic equation of J(E1,E2)

P(λ) = λ3 + a1λ2 + a2λ+ a3 = 0 (11) 

Where 

a1 = − 3 + b1H,

a2 = 3 − 2b1H + b2H2,

a3 = − 1 + b1H − b2H2 + b3H3,

(12) 

and H = hα

Γ(1+α). 
According to theorem 2, the roots of the equation (11) are with 

respect to the unit disk if and only if 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 + a1 + a2 + a3 > 0,
1 − a1 + a2 − a3 > 0,

1 − a2 + a1a2 − a2
3 > 0,

a2 − 3 < 0,

(13)  

Theorem 4.4. E1 and E2 equilibrium points are locally asymptotically 
stable if R0 ≥ 1 and 0 < H < min {ξ1,ξ2,ξ3}. 

ξ1 =
1

3b2

[

k1 −
4
(
3b1b3 − b2

2

)

k1
+ 2b2

]

,

ξ2 =
1

6b3

[

k2 −
4
(
3b1b3 − b2

2

)

k2
+ 4b2

]

,

ξ3 =
2b1

b2
,

k1 =
(
− 36b1b2b3 + 108b2

3 + 8b3
2 + 12b3

̅̅̅̅̅̅
3Δ

√ )1/3
,

k2 =
(

36b1b2b3 − 108b2
3 − 8b3

2 + 12b3
̅̅̅̅̅̅
3Δ

√ )1/3
,

and. 
Δ = 4b3

1b3 − b2
1b2

2 − 18b1b2b3 + 27b2
3 + 4b3

2. Otherwise E1 is unstable. 
Proof if we substitute (12) for (13), 

b3H3 > 0, (14a)  

− b3H3 + 2b2H2 − 4b1H + 8 > 0, (14b)  

− b2
3H6 + 2b2b3H5 −

(
k2

2 + b1b3
)
H4 +(b1b2 − b3)H3 > 0, (14c)  

b2H2 − 2b1H < 0, (14d) 

According to the Jury criterion, the model is asymptotically stable 
when (6), (14a)-(14d) are arranged. It can be concluded that for positive 
parameters a, μ,R0 > 0, b1 > 0, b2 > 0, b3 > 0 is positive. Thus, if R0 > 1,

Fig. 3. Phase trajectories of the system (3) α = 0.99, μ = 124.1(Zafar et al., 2020).  
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(14a) is held. From (14b)-(14d) inequalities, let us consider the 
following equations: 

− b3H3 + 2b2H2 − 4b1H + 8 = 0 (15a)  

− b2
3H6 + 2b2b3H5 −

(
b2

2 + b1b3
)
H4 +(b1b2 − b3)H3 = 0 (15b)  

b2H2 − 2b1H = 0 (15c) 

Equation (15a) has a real root and a double conjugate complex root 
with the negative coefficient of H = ξ1 and H3. Therefore, when H ∈ ξ(0,
ξ1), the inequality (14a) is provided. By solving the equation (15b), these 
four real roots and a pair of conjugate complex roots are obtained. The 
four real roots are repeated three roots at H = 0 and the fourth at H =

ξ2. Therefore, the interval of the solution is (0, ξ1) at (14c). When 
equation (15c) is 0 < H < ξ3 by solving, (14d) is violated. Therefore, the 
fact that (14a)-(14d) has at least one solution is obtained from the 
intersection of H, ξ1 − ξ3 i.e. 0 < H < min {ξ1,ξ2,ξ3}, . 

2.3. Hopf bifurcation 

In this section, we will briefly review the discrete Hopf bifurcation 
criterion. First, let’s consider a two-dimensional parameterized system: 

xk+1 = f (xk, yk; μ)
yk+1 = g(xk, yk; μ) (16) 

For a real variable parameter μ ∈ R and an equilibrium point (x*,y*), 
simultaneously x = f(x*, y*; μ) and y = g(x*, y*; μ) is the μ value that 
provides. With the eigenvalues λ1,2(μ) providing λ2(μ) = λ̄1(μ) becomes a 
Jacobian matrix J(μ) in this equilibrium. Also for some small details, 

|λ1(μ*)| = 1 and
∂|λ1(μ) |

∂μ

⃒
⃒
⃒
⃒

μ=μ*
> 0 (17) 

Then the system undergoes a Hopf bifurcation at the bifurcation 
point (x*, y*, μ*). More precisely, for any left neighbor μ* (i.e. 
μ < μ*),(x*, y*) is a constant focus, and for any right neighbor of μ* (i.e. 
μ > μ*) this usually changes to be unstable surrounded by a limit cycle 
(Chen et al., 1999). 

2.4. Grünwald-Letnikov algorithm (Binomial coefficients) 

Equation obtained from the Grünwald-Letnikov limitation is used. 
The Grünwald-Letnikov derivative is a generalization of fractional or
ders of the higher-order derivative, the classical motivation of the de
rivative is that, from considering the limit form of the nth-order 
derivative, its similarity to the binomial theorem is seen, and a gener
alization is obtained in a similar way (Diaz et al., 1974). To study the 
behavior of a fractional-order chaotic system, the time approximation 
method GL is used. It has been found that nonlinearity has a great in
fluence on the dynamics of the system. The Grünwald-Letnikov 
approximation is known that the two constraints are equivalent to the 
Grünwald-Letnikov constraint and the Caputo constraint. The mh(m =

1, 2, ...) node is associated for the numerical 

(m − K/h)
Dφ

tm f (t)≈ 1
hφ
∑m

i=0
(− 1)i(

φ
i
)f (tm− i)

(18) 

Here K is “memory length”, calculation of time step tm = mh, h and 

binomial shape of (− 1)i
(

φ
i ) is Cφ

i (i = 0,1,2,⋯). Let’s calculate using the 
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Fig. 4. Phase trajectories of the system (3) α = 0.94, μ = 124.1(Zafar et al., 2020).  

Ş. ŞİŞMAN and M. MERDAN                                                                                                                                                                                                                



Journal of King Saud University - Science 36 (2024) 103013

7

  (a1)        (b1)     (c1) 

  (a2)    (b2)           (c2) 

  (a3)    (b3)            (c3) 

-20 -15 -10 -5 0 5 10 15
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x

y

-20 -15 -10 -5 0 5 10 15
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x

z

-0.8-0.6-0.4-0.200.20.40.60.8
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

y

z

-15 -10 -5 0 5 10 15
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x

y

-15 -10 -5 0 5 10 15
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

x

z

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

y

z

-15 -10 -5 0 5 10 15
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x

y

-15 -10 -5 0 5 10 15
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

x

z

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

y

z

  (a4)        (b4)         (c4) 

-6 -4 -2 0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

x

y

-6 -4 -2 0 2 4 6 8 10 12
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

x

z

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

y

z

Fig. 5. System (5) for μ = 170(a1)-(c1) for α = 1, (a2)-(c2) for α = 0.99, (a3)-(c3) for α = 0.94, (a4)-(c4) for α = 0.90, tspan[0,100] with phase diagram (Zafar 
et al., 2020). 
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following expression (Vinagre et al., 2003): 

Cφ
0 = 1,Cφ

i =

(

1 −
1 + φ

i

)

Cφ
i− 1,

Let’s consider a nonlinear fractional system: 

αDφ
t f (t, γ(t)), (19) 

The initial values with are γ(t0) = γ0. 

Here, αDφ
t γ(t),g(t, γ(t) ), g stands for the derivative of the γ order of the 

function, a and t indicate the limits of the operation. 
In this article, the fractional discrete-time equation using the frac

tional Caputo derivative with 0 < γ < 1 and γ is discussed. 
If the Grünwald-Letnikov approach is applied to the equation (19) 

given above, binomial coefficients are preferred using the concept of 
memory, and a discrete equation is formed which is shortened by the 
length of memory. 
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Fig. 6. System (5) for μ = 124.1(d1)-(f1) for α = 0.99, (d2)-(f2) for α = 0.98, (d3)-(f3) for α = 0.97, (d4)-(f4) for α = 0.96, tspan[0,100] with phase diagram (Zafar 
et al., 2020). 

Ş. ŞİŞMAN and M. MERDAN                                                                                                                                                                                                                



Journal of King Saud University - Science 36 (2024) 103013

9

1
hφ

∑m

i=0
Cφ

i γ(tm− i) = g(t− 1+m, γ(t− 1+m)), (20) 

this relationship (20) can be written as: 
∑m

i=0
Cφ

i γ(tm− i) = g(t− 1+m, γ(t− 1+m))hφ,

γ(tm) +
∑m

i=1
Cφ

i γ(tm− i) = g(t− 1+m, γ(t− 1+m))hφ,

γ(tm) = g(t− 1+m, γ(t− 1+m) )hφ −
∑m

i=1
Cφ

i γ(tm− i),

(21) 

This relationship of GL is clear from (21). What is given in this 
relation is related to the total memory. If we substitute the first equation 
(20) in system (2), then 

1
hφ1

∑m

i=0
Cφ1

i x(tm− i) = μy(t− 1+m) − ax(t− 1+m),

If it is written this way, 

Cφ1
0 x(tm)+

∑m

i=1
Cφ1

i x(tm− i) = (μy(t− 1+m) − ax(t− 1+m))hφ1 ,

Since Cφ1
0 = 1, 

x(tm)+
∑m

i=1
Cφ1

i x(tm− i) = (μy(t− 1+m) − ax(t− 1+m))hφ1 ,

If it is written this way, 

x(tm) = (μy(t− 1+m) − ax(t− 1+m))hφ1 −
∑m

i=1
Cφ1

i x(tm− i),

Similarly, if the second and third equations of the system (2) are 
made, 

y(tm) = (− y(t− 1+m) + x(tm)z(t− 1+m))hφ2 −
∑m

i=1
Cφ2

i y(tm− i),

z(tm) = (1 − z(t− 1+m) + x(tm)y(tm))hφ3 −
∑m

i=1
Cφ3

i z(tm− i),

Here, using binomial coefficients with GL, 

x(tm) = (μy(t− 1+m) − ax(t− 1+m))hφ1 −
∑m

i=1
Cφ1

i x(tm− i),

y(tm) = (− y(t− 1+m) + x(tm)z(t− 1+m))hφ2 −
∑m

i=1
Cφ2

i y(tm− i),

z(tm) = (1 − z(t− 1+m) + x(tm)y(tm))hφ3 −
∑m

i=1
Cφ3

i z(tm− i),

is obtained. 

3. Results and discussion 

The Runge–Kutta method (fourth order) has been used for solving 
the system of system (3) and obtains the time series of system variables 
x, y and z. The bifurcation diagram in (μ, x, y, z) space is shown in Fig. 1. 
Here, the maximum Lyapunov exponent corresponding to Fig. 1 is seen 
to be stable for the fixed point μ = 0.001. The phase portrait of system 
(3) with μ = 170 corresponding to different values of α is shown in 
Fig. 2. Figs. 3 and 4 respectively show the numerical simulation results 
for α = 0.99 and α = 0.94 based on the Grünwald- Letnikov approach, 
described in Section 2.4. For α = 0.99, the fractional-order Chen system 
with parameter (x, y, z) = ( − 4.8,0.1, 0.04) is chaotic and for α = 0.94 is 
not. The system (5) is calculated numerically against α ∈ [0.90,1]. Fig. 5 
showed the phase diagram with α = 1,0.99,0.94,0.90, respectively. It 
was found that when α ∈ [0.94,1], system (5) show chaotic behavior. 
When α = 1 and α = 0.99, chaotic attractors are found x y, x z and y z 
phase diagrams are shown in Fig. 5. When α = 0.94, chaotic motion 
disappears and the system is stabilized to a fixed point, as shown by the 
x y, x z and y z phase plots in Fig. 5 (a3)-(c3). It is obvious that the 
trajectory for α = 0.94 is attracted to a fixed point. Numerical results 
obtained from in Fig. 5 indicate the presence of 2- scroll chaotic 
attractor. System (5) is obtained by numerical solution using Grünwald- 
Letnikov approach against α ∈ [0.96,0.99]. It is explicit in Fig. 6 (d1)- 
(f1) that system (5) displays chaotic motion. The periodic motion and a 
fixed point are also plotted in Fig. 6 (e1)-(f4), respectively. 

4. Conclusion 

In this paper, by discretizing the fractional-order Vallis system is 
studied. The equilibrium existence of this system is obtained by the 
number R0. The local asymptotic stability analysis of the three equilib
rium points obtained was analyzed by the Jurry criterion. The model 
undergoes a bifurcation when q increases when the value of μ decreases 
from a certain threshold values. The hopf bifurcation of the Vallis system 
was plotted using the values of a = 3,μ = 0.01,q = 0.1. By giving the 
values of a = 5, μ = 170, h = 0.01, α = 1,α = 0.99, α = 0.94,α = 0.90 to 
this system, the phase portrait was drawn using the Grendwald-Letnikov 
algorithm using the μ = 124.1 values of the diagram. 
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