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Abstract

The recently published paper “Jacobi elliptic function solutions for the modified
Korteweg—de Vries equation” [J. King Saud Univ. Sci. 25 (2013) 271-274] is analyzed. We show
that these Jacobi elliptic function solutions obtained by the authors do not satisfy the original
modified Korteweg—de Vries equation.

© 2014 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.

Recently, Wang and Xiang (2013) studied the modified
Korteweg—de Vries (mKdV) equation in the form

2
Auy — iy + Wity = 0,

(1)
where Z,p and w are constant parameters. They sought
solutions by taking the traveling waves into account

u(x,t) = u(&), & =oax+kt. (2)

As a result they transform (1) to an ordinary differential
equation (ODE) in the form

¢+ kiu— ?Lf +woluz: =0, (3)
where ¢ is an integral constant. They expressed u as
U=ty + puy + plu, (4)
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where p is a small parameter, and uy,u; and u, are ansatz
functions to be determined.
Substituting (4) into (3), we have

¢+ klug — %(xug +wetugze +p - (kA — poaguy + wolu )
+p* - (K — pougyuy — powguy + weusz;)
o
-p- (Zuauouluz + %u?) —p* - powy (uory + 13)
fpS-,uoculugfp(’-%ugzo (5)

Since (4) is a solution of (3), (5) must hold for all values of
p- Then each coefficient of p must vanish independently. Thus

¢+ klug — %ug + wollup:: = 0, (6)
kuy, — uaugul +woluyze =0, (7)
kduy — pouiuy — powigr + wortupe: = 0, (8)
2uoguy iy + %uf =0, 9)
pos (uguy + uf) =0, uoculug =0, %ug =0. (10)

The solution of (9) and (10) is u» = u; = 0. In this case, the
left hand side of (7) and (8) vanishes. So u = uy, and both of u
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and u, satisfy the same ordinary differential equation, which
means nothing can be obtained from above approach.

It is a pity that Wang and Xiang (2013) obtained uy, u; and
u, through solving only three equations, namely (6)—(8) and
neglected the rest of the equations. Then they claimed “The
Jacobi elliptic function solutions, the trigonometric solutions
and hyperbolic solutions are obtained”. It is not difficult to
find that these solutions, namely (22)—(24) in their paper, are
not admitted by the original mKdV equation.

In particular, the solution (24) in their paper, namely,

u(x, 1) = a, tanh & + pg,sech’¢ + p*b, tanh ¢
+ p*bstanh®¢ (11)

can also be checked by the tanh method (see, for example,
Malfliet (2004)) easily. In fact, by replacing sech’¢ with
1 — tanh?¢&, the solution (11) is transformed into the following

u(x, 1) = pgy + (ar + p*b) Y — pgy Y* + p*bs ¥, (12)

where Y = tanh ¢ is an introduced variable.
The tanh method proposes the following solution admitted
by (3)

n=N
u:ao—i—alY—i—~~-—|—aNYN:Z:anY”7 (13)
n=0

where N is a positive integer to be determined. Balancing the
highest order linear term u;: in (3) with the highest order non-
linear term > gives N +2 = 3N, so N = |, which means the
proposed solution will be

u=ay+a Y. (14)

However, the solution (12) indicates N =3. This is a
contradiction.

Finally, we notice that ¢ =0 in the results of Wang and
Xiang (2013). And in this case, (3) can be changed to an
ODE of degree four in the form

ué = hy + hati* + hau, (15)

where /i, is an arbitrary constant, and s, and A4 are certain
constants. Many exact solutions of (15) have been presented
and have played an important role in recently published
papers, for example, Shang (2010); Alofi and Abdelkawy
(2012); Ebaid and Aly (2012); Li et al. (2012); Ma et al.
(2012); and Malik et al. (2012b,a). And its general solutions
can be found in some literature, for example, Whittaker and
Watson (1996) and Liu et al. (2014). Consequently, we can
obtain general solutions of (3) in the case of ¢ =0 directly.
Due to limited space, here we omit its discussion.

Remark. It is worth to mention that if we regard the results
obtained by Wang and Xiang (2013) as approximate solutions
(in contrast to exact solutions), we can find that the derivations
and results are correct. However, in this sense, these authors
should express them in a proper way, and relevant calculated
precisions for these solutions should be discussed as well, for
example, see Holmes (2013).

In summary, solutions obtained by these authors do not
satisfy the original mKdV equation. We have to point out that
similar concerns are discussed in some other published papers
as well (see, for examples, Kudryashov (2009) and Kudryashov
and Shilnikov (2012)). We believe that our work will help peo-
ple have a good understanding of the results obtained by Wang
and Xiang (2013).
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