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Abstract The homotopy analysis method has been used to derive a highly accurate analytic solu-

tion for simultaneous natural convection and mass transfer from an isothermal vertical plate. Veloc-

ity, temperature, and concentration profiles are presented for a fixed Prandtl number of 0.71 and for

Schmidt numbers of 0.5, 5, and 10 and for the buoyancy ratio of 0 (pure mass transfer), 0.5 (simul-

taneous heat and mass transfer), and 1 (pure heat transfer). The present results corroborate well

with the numerical results reported in other research literature on the problem. The auxiliary

parameter in the homotopy analysis method is derived by using the averaged residual error concept

which significantly reduces the computational time. The use of optimal auxiliary parameter pro-

vides a superior control on the convergence and accuracy of the analytic solution.
ª 2010 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

The problem of simultaneous heat and mass transfer from an
isothermal vertical flat plate is of fundamental importance to
the thermal science community. The pioneering contributions
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to the problem were made by Gebhart and Pera (1971),
Mollendorf and Gebhart (1974), Taunton et al. (1970), and

Bottemanne (1972a,b). Because of simultaneous heat and mass
transfer, the transport process is driven by the interaction of
velocity, concentration and thermal boundary layers. The veloc-

ity, concentration, and temperature profiles depend on whether
the buoyancy forces due to temperature difference and concen-
tration difference aid (aiding flow) or oppose each other (oppos-
ing flow). Bottemanne (1972a,b) consideredmass transfer due to

the injection of water vapor from the plate into the surrounding
fluid. He found that for the aiding flow, the heat andmass trans-
fer processes can be treated independent of each other and the

results combined to predict the case when the two processes oc-
cur simultaneously. This work was examined by Schenk et al.
(1976) who noted that Bottemanne’s conclusion was valid be-

cause the Prandtl number Pr= 0.71 and Schmidt number
Sc= 0.94 used by him were nearly the same. The numerical
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computations of Schenk et al. (1976) led to the conclusion that

forPr = 0.7 and 0.6 < Sc< 0.9, themutual interaction of heat
and mass transfer processes was indeed minimal and the two
processes can be treated separately and the two results added.
This approach gives results that are in error by about 2%, when

compared with the result from the simultaneous analysis. The
numerical method used by Schenk et al. (1976) involved an iter-
ative procedure to solve the coupled similarity equations for the

stream function, temperature, and concentration.
In the present work, we revisit the problem considered by

Bottemanne (1972b) and provide a highly accurate analytical

solution of the problem using the homotopy analysis method
(HAM). In recent years, the homotopy analysis method
(HAM) (Liao, 1999, 2003, 2009; Liao and Tan, 2007), has been

successfully applied to many nonlinear problems in science and
engineering (Molabahrami and Khani, 2009; Khani et al.,
2009a,b,c; Khani and Aziz, 2009; Darvishi and Khani, 2009;
Aziz and Khani, 2009). Unlike the perturbation techniques,

HAM is independent of any small physical parameters. More
importantly, unlike the perturbation and non-perturbation
methods, HAM provides a simple way to ensure the conver-

gence of series solution so that one can always get accurate en-
ough approximations even for the strongly nonlinear
problems. Furthermore, HAM provides the freedom to choose

the so- called auxiliary linear operator so that one can approx-
imate a nonlinear problem more effectively by means of better
base functions, as demonstrated by Liao and Tan (2007). The
degree of freedom is so large that even the second-order non-

linear two-dimensional Gelfand equation can be solved by
means of a 4th-order auxiliary linear operator within the
framework of the HAM as shown in Liao and Tan (2007).

Especially, by means of the HAM, a few new solutions of some
nonlinear problems (Liao, 2005, 2006) have been achieved
which otherwise were not solvable by other analytic methods.

2. Formulation of the problem

The physical model and the coordinate system are shown in
Fig. 1 where heat and water vapour are transferred simulta-
neously from the vertical flat plate to the environment. The
T0
C0

T
C

g

y

x

v

u

Figure 1 Physical model and coordinate system.
directions of the velocity components u and v are also indi-

cated. The boundary layer equations for this model can be
written as (Bottemanne, 1972a; Schenk et al., 1976)

@u

@x
þ @v
@y
¼ 0; ð1Þ

u
@u

@x
þ v

@u

@y
¼ g

q1 � q
q

þ v
@2u

@y2
; ð2Þ

u
@h
@x
þ v

@h
@y
¼ a

@2h
@y2

; ð3Þ

u
@X
@x
þ v

@X
@y
¼ D

@2X
@y2

: ð4Þ

where q is the local density, q1 is the density of the fluid out-
side the boundary layers, h is the local temperature difference,
a is the thermal diffusivity of the fluid, X is the local mass frac-

tion difference, and D is the mass diffusivity. The proper
boundary conditions are:

x > 0 y ¼ 0 u ¼ v ¼ 0 h ¼ h0 X ¼ X0;

x > 0 y ¼ 1 u ¼ 0 h ¼ 0 X ¼ 0;

x ¼ 0 y > 0 u ¼ 0 h ¼ 0 X ¼ 0:

8><
>: ð5Þ

The classical method of solving the system of Eqs. (1)–(5) may
be found in most heat and mass transfer textbooks. The same

set of equations were considered by Bottemanne (1972a,b). To
start the procedure, we have to introduce an expression for the
density q as a function of the temperature h and the concentra-

tion X. This expression is taken from Bottemanne (1972b),
who derived it from the assumption that the ideal gas law
applies to the air vapour mixture about the vertical wall. If

we also introduce the well known stream function substitutions
of von Mises and thereupon the similarity transformation of
Pohlhausen, we finally obtain (Bottemanne, 1972b):

d3f

dg3
� 2

df

dg

� �2

þ 3f
d2f

dg2
þ dtþ ð1� dÞx ¼ 0; ð6Þ

d2t
dg2
þ 3Prf

dt
dg
¼ 0; ð7Þ

d2x
dg2
þ 3Scf

dx
dg
¼ 0; ð8Þ

with boundary conditions

fð0Þ ¼ 0 f0ð0Þ ¼ 0 tð0Þ ¼ 1 xð0Þ ¼ 1; ð9Þ
f0ðþ1Þ ¼ 0 tðþ1Þ ¼ 0 xðþ1Þ ¼ 0: ð10Þ

In this formulation f, t, and x represent the reduced stream
function, temperature and concentration respectively; the inde-
pendent variable g = cyx�1/4, where the constant c depends on

the buoyancy forces. The Prandtl and Schmidt numbers have
their usual definitions: Pr = t/a and Sc= t/D. The parameter
d represents essentially the ratio of the thermal buoyancy to

the total body force; so is (1 � d) the ratio of concentration
buoyancy to the total effect. For aiding (upward) buoyancy
forces d is necessarily 0 < d < 1. In the next section, we solve
the system of non-linear ordinary differential Eqs. (6)–(10)

analytically using HAM.

3. HAM solution

In view of the boundary conditions (9) and (10), f(g), t(g), and
x(g) can be expressed by the set of base functions of the form
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fgj expð�ngÞjj P 0; n P 0g ð11Þ

in the form of the following series

fðgÞ ¼ a00;0 þ
X1
n¼0

X1
k¼0

akn;kg
k expð�ngÞ; ð12Þ

tðgÞ ¼
X1
n¼0

X1
k¼0

bkn;kg
k expð�ngÞ; ð13Þ

xðgÞ ¼
X1
n¼0

X1
k¼0

ckn;kg
k expð�ngÞ ð14Þ

in which akn;k, b
k
n;k, and ckn;k are the coefficients. Invoking the so-

called rule of solution expressions for f(g), t(g), x(g) and Eqs.

(9), (10) the initial guesses f0(g), t0(g), x0(g) and linear opera-
tors L1, L2, and L3 are

f0ðgÞ ¼ ð1þ gÞ expð�gÞ � 1; ð15Þ
t0ðgÞ ¼ expð�gÞ; ð16Þ
x0ðgÞ ¼ expð�gÞ; ð17Þ

L1ðfÞ ¼
@3f

@g3
� @f

@g
; ð18Þ

L2ðtÞ ¼
@2t
@g2
� t; ð19Þ

L3ðxÞ ¼
@2x
@g2
� x: ð20Þ

The operators L1, L2, and L3 have the following properties:

L1ðc1 þ c2 expð�gÞ þ c3 expðgÞÞ ¼ 0; ð21Þ
L2ðc4 expð�gÞ þ c5 expðgÞÞ ¼ 0; ð22Þ
L3ðc6 expð�gÞ þ c7 expðgÞÞ ¼ 0: ð23Þ

in which ci, i= 1, 2, . . . , 7 are arbitrary constants.
Let q 2 [0,1] denotes an embedding parameter and �h1, �h2,

and �h3 are non-zero auxiliary parameters. Then we construct

the following zeroth-order deformation equations

ð1� qÞL1½f̂ðg; qÞ � f0ðgÞ� ¼ q�h1N 1½f̂ðg; qÞ; t̂ðg; qÞ; x̂ðg; qÞ�;
ð24Þ

ð1� qÞL2½t̂ðg; qÞ � t0ðgÞ� ¼ q�h2N 2½f̂ðg; qÞ; t̂ðg; qÞ; x̂ðg; qÞ�;
ð25Þ

ð1� qÞL3½x̂ðg; qÞ � x0ðgÞ� ¼ q�h3N 3½f̂ðg; qÞ; t̂ðg; qÞ; x̂ðg; qÞ�;
ð26Þ

subject to the conditions

f̂ð0; qÞ ¼ 0; f̂0ð0; qÞ ¼ 0; f̂0ðþ1; qÞ ¼ 0; ð27Þ

t̂ð0; qÞ ¼ 1; t̂ðþ1; qÞ ¼ 0; x̂ð0; qÞ ¼ 1; x̂ðþ1; qÞ ¼ 0

ð28Þ

where the non-linear operators are defined as:

N 1 ¼
@3 f̂ðg; qÞ
@g3

� 2
@f̂ðg; qÞ
@g

 !2

þ 3f̂ðg; qÞ @
2 f̂ðg; qÞ
@g2

þ dt̂ðg; qÞ

þ ð1� dÞx̂ðg; qÞ;

N 2 ¼
@2t̂ðg; qÞ
@g2

þ 3Prf̂ðg; qÞ @t̂ðg; qÞ
@g

;

N 3 ¼
@2x̂ðg; qÞ
@g2

þ 3Scf̂ðg; qÞ @x̂ðg; qÞ
@g

:

Clearly, when q= 0 the zero-order deformation Eqs. (24)–(26)
give rise to

f̂ðg; 0Þ ¼ f0ðgÞ; t̂ðg; 0Þ ¼ t0ðgÞ; x̂ðg; 0Þ ¼ x0ðgÞ:

When q= 1, they become

f̂ðg; 1Þ ¼ fðgÞ; t̂ðg; 1Þ ¼ tðgÞ; x̂ðg; 1Þ ¼ xðgÞ:

Expanding f̂ðg; qÞ; t̂ðg; qÞ and x̂ðg; qÞ in the Maclaurin series
with respect to the embedding parameter q, we obtain

f̂ðg; qÞ ¼ f0ðgÞ þ
X1
k¼1

fkðgÞqk; ð29Þ

t̂ðg; qÞ ¼ t0ðgÞ þ
X1
k¼1

tkðgÞqk; ð30Þ

x̂ðg; qÞ ¼ x0ðgÞ þ
X1
k¼1

xkðgÞqk; ð31Þ

where

fkðgÞ ¼
1

k!

@k

@qk
f̂ðg; 0Þ; tkðgÞ ¼

1

k!

@k

@qk
t̂ðg; 0Þ;

xkðgÞ ¼
1

k!

@k

@qk
x̂ðg; 0Þ: ð32Þ

Assuming that above series converges at q = 1, we have

fðgÞ ¼ f0ðgÞ þ
X1
k¼1

fkðgÞ; ð33Þ

tðgÞ ¼ t0ðgÞ þ
X1
k¼1

tkðgÞ; ð34Þ

xðgÞ ¼ x0ðgÞ þ
X1
k¼1

xkðgÞ: ð35Þ

Differentiating the zero-order deformation Eqs. (24)–(28) m
times with respect to q, then setting q = 0, and finally dividing

by m!, we have the high-order deformation equations (m P 1)

L1½fm � vmfm�1� ¼ �h1Rm; ð36Þ
L2½tm � vmtm�1� ¼ �h2Sm; ð37Þ
L3½xm � vmxm�1� ¼ �h3Km; ð38Þ

with the boundary conditions:

fmð0Þ ¼ f0mð0Þ ¼ f0mðþ1Þ ¼ 0; ð39Þ
tmð0Þ ¼ tmðþ1Þ ¼ 0; ð40Þ
xmð0Þ ¼ xmðþ1Þ ¼ 0; ð41Þ

where

vm ¼
0; m ¼ 1;

1; m > 1;

�

and

Rm ¼ f000m�1 � 2
Xm�1
i¼0

f0if
0
m�1�iþ 3

Xm�1
i¼0

fif
00
m�1�iþ dtm�1 þ ð1� dÞxm�1;

Sm ¼ t00m�1 þ 3Pr
Xm�1
i¼0

fit
0
m�1�i;

Km ¼ x00m�1 þ 3Sc
Xm�1
i¼0

fix
0
m�1�i:
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Figure 2 The curve of the f000ð0Þ versus �h at Pr = 0.71, Sc = 0.1,

and d = 0.5 for the 13th-order approximation when

�h1 = �h2 = �h3 = �h.
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Figure 3 The curve of the t00ð0Þ versus �h at Pr = 0.71, Sc = 0.1,

and d = 0.5 for the 13th-order approximation when

�h1 = �h2 = �h3 = �h.
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Then the solutions for Eqs. (36)–(38) can be expressed by

fmðgÞ ¼ vmfm�1 þ �h1L�11 ½Rm� þ d1 þ d2 expð�gÞ þ d3 expðgÞ;
tmðgÞ ¼ vmtm�1 þ �h2L�12 ½Sm� þ d4 expð�gÞ þ d5 expðgÞ;
xmðgÞ ¼ vmxm�1 þ �h3L�13 ½Km� þ d6 expð�gÞ þ d7 expðgÞ;

where di are constants to be determined by boundary condi-

tions (39)–(41), L�11 ;L
�1
2 and L�13 denote the inverse linear

operators of L1; L2, and L3 so that the problem is closed.
For example, solving the 1st-order deformation equation, we

have

f1ðgÞ¼
35�h1
108
þe�g ��h1

27
��h1g

2

� �
þe�2g �31�h1

108
�11�h1g

18
��h1g2

6

� �
;

t1ðgÞ¼ e�g 7�h2Pr

3
��h2g

2
�3�h2Prg

2

� �
þe�2g �7�h2Pr

3
��h2Prg

� �
;

x1ðgÞ¼ e�g 7�h3Sc

3
��h3g

2
�3�h3Scg

2

� �
þ e�2g �7�h3Sc

3
��h3Scg

� �
:

With the aid of mathematical software, such as MATHEM-

ATICA or MAPLE, it is easy to derive the higher order
solutions.

4. Results and discussion

At the mth-order approximation, we have the analytic solu-

tions of (6)–(8), namely

fðgÞ �
Xm�1
k¼0

fkðgÞ; tðgÞ �
Xm�1
k¼0

tkðgÞ; xðgÞ �
Xm�1
k¼0

xkðgÞ:

As pointed out by Liao (2009), the convergence and the rate of
approximation for the HAM solution strongly depends upon

�h. In order to obtain the admissible value of �h for the present
problem, we set �h1 = �h2 = �h3 = �h and the �h-curves are plotted
for 13th-order of approximations. This helps us to determine

the valid region of �h, which corresponds to the line segment al-
most parallel to the horizontal axis. Figs. 2–4 show the valid
region of �h for f000ð0Þ; t00ð0Þ, and x00ð0Þ, respectively. The

parameters chosen for establishing the region of convergence
were Pr= 0.71, Sc= 0.1, and d = 0.5. In fact, the interval
for the admissible values of �h shrinks as the parameters in-
crease. In theory, at the mth-order of approximation, one

can define the exact square residual errors

Di;m ¼
Z þ1

0

N i

Xm
j¼0

fj;
Xm
j¼0

tj;
Xm
j¼0

xj

" # !2

dg; i ¼ 1; 2; 3:

ð42Þ

Note that Di,m contains at most three unknown convergence-

control parameters �h1, �h2, and �h3, even at very high order of
approximation. Obviously, the more quickly Di,m decreases
to zero, the faster the corresponding homotopy-series solution
converges. So, at the given order of approximation m, the cor-

responding optimal values of the convergence-control param-
eters �h1, �h2, and �h3 are given by the minimum of Di,m,
corresponding to a set of three nonlinear algebraic equations

@Di;m

@�h1
¼ 0;

@Di;m

@�h2
¼ 0;

@Di;m

@�h3
¼ 0: ð43Þ

Unfortunately, the exact square residual error Di,m defined by

(42) consumes too much CPU time to calculate even if the or-
der of approximation is not very high, and thus is often useless
in practice. To overcome this disadvantage, Liao (2010) intro-
duced a more efficient definition of the residual error to replace
(42). Thus, to greatly decrease the CPU time, we use here the

so-called averaged residual error defined by

Ei;m ¼
1

K

XK
s¼0

N i

Xm
j¼0

fjðsDgÞ;
Xm
j¼0

tjðsDgÞ;
Xm
j¼0

xjðsDgÞ
" # !2

;

i ¼ 1; 2; 3: ð44Þ
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Figure 4 The curve of the x00ð0Þ versus �h at Pr = 0.71, Sc = 0.1, and d = 0.5 for the 13th-order approximation when �h1 = �h2 = �h3 = �h.
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where Dg = 10/K and K= 20 for this problem. The averaged
residual error Ei,m defined by (44) can give good enough
approximation of the optimal convergence-control parame-

ters. However, the CPU time to get the averaged residual error
Ei,m is much less than that to calculate the exact residual error
Di,m in case of m> 6. We reports the optimal values of �h1, �h2,
and �h3 for different values of Sc and d at 13th-order approxi-

mation in Tables 1 and 2.
Fig. 5 shows the distribution of the vertical component of

the velocity as a function of the similarity variable for Schmidt

number Sc= 0.5, 5, and 10 with Pr= 0.71 and d = 0.5. In
each case, the peak velocity occurs at g = 1. However, the
magnitude of the peak velocity decreases as the Schmidt num-

ber Sc increases. This behavior is consistent with the velocity
profiles presented in Fig. 1 of Schenk et al. (1976). The temper-
ature profiles corresponding to the velocity profiles in Fig. 5
Table 2 Optimal values of �h1, �h2, and �h3 for different values of

d at 13th-order approximation.

Pr = 0.71 Sc= 0.1

d �h1 �h2 �h3

0 �1.12 �1.02 �1.05
0.5 �0.84 �1.10 �0.87
1 �0.83 �0.81 �0.84

Table 1 Optimal values of �h1, �h2, and �h3 for different values of

Sc at 13th-order approximation.

Pr = 0.71 d = 0.5

Sc �h1 �h2 �h3

0.5 �1.23 �1.21 �1.22
5 �0.95 �1.10 �1.13
10 �0.72 �0.92 �0.93

0 1 2 3 4 5 6 7

0.00

0.05

Figure 5 Influence of Sc on f0ðgÞ at Pr= 0.71 and d = 0.5 at the

optimal values of �h1, �h2, and �h3.
are illustrated in Fig. 6. These profiles show that as the

Schmidt number Sc increases, the local temperature in the
thermal boundary layer increases. The same pattern can be
gleaned from the temperature distributions in Fig. 1 of Schenk

et al. (1976). The concentration profiles corresponding to the
velocity profiles of Fig. 5 and temperature profiles of Fig. 6
are provided in Fig. 7. Both the thickness of the concentration

boundary layer and the local concentration decrease sharply as
the Schmidt number increases. The thinning of the concentra-
tion boundary layer with the increase in Sc can also be ob-
served distinctly in the results presented in Schenk et al. (1976).
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Figure 7 Influence of Sc on x(g) at Pr = 0.71 and d = 0.5 at the

optimal values of �h1, �h2, and �h3.
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Figure 8 Influence of d on f0ðgÞ at Pr= 0.71 and Sc = 0.1 at the

optimal values of �h1, �h2, and �h3.
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Figure 9 Influence of d on t(g) at Pr = 0.71 and Sc = 0.1 at the

optimal values of �h1, �h2, and �h3.
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Figure 6 Influence of Sc on t(g) at Pr = 0.71 and d = 0.5 at the

optimal values of �h1, �h2, and �h3.
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We now turn to the results which demonstrate the effect of
varying the parameter d. The parameter d represents the ratio
of thermal buoyancy force and the total body force (algebraic

sum of gravity, thermal and concentration buoyancy forces).
Thus d = 0 corresponds to zero thermal buoyancy force which
means the process is pure mass transfer driven. Similarly,

d = 1 implies a pure heat transfer process. The effect of d on
the velocity distribution in the hydrodynamic boundary is
shown in Fig. 8 for Pr = 0.71 and Sc = 0.1. The highest peak
velocity occurs for d = 0, i.e., for the pure mass transfer
process. The lowest peak velocity occurs for d = 1, i.e., for

the pure heat transfer process. The hydrodynamic boundary
is thickest for pure mass transfer and thinnest for pure heat
transfer with the thickness for simultaneous heat and mass
transfer falling in the middle. The pattern exhibited by the

present results matches with the results reported in Schenk
et al. (1976). The temperature profiles corresponding to the
velocity profiles of Fig. 8 are given in Fig. 9. The highest tem-

peratures occur in the pure heat transfer case (d = 1). The low-
est temperature are predicted for the pure mass transfer
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Figure 10 Influence of d on x(g) at Pr = 0.71 and Sc = 0.1 at

the optimal values of �h1, �h2, and �h3.
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situation. The concentration profiles shown in Fig. 10 for the
three values of delta show that the species concentration is
highest for the pure heat transfer case and lowest for the pure

mass transfer case. The concentration curve for the case of
simultaneous heat and mass transfer falls in the middle. The
temperature and concentration results presented here corrobo-
rate with the results cited in Schenk et al. (1976).

Since the focus of this paper is to demonstrate the useful-
ness and accuracy of the homotopy analysis method, no at-
tempt has been made to discuss the physical interpretations

of the results. In any case, the physical interpretations are well
documented in the previous research papers on the problem
(Bottemanne, 1972a,b, 1976) and well known to the thermal

science research community.

5. Conclusions

The homotopy analysis method has been successfully imple-
mented to develop an analytic solution for simultaneous natu-
ral convection and mass transfer from an isothermal vertical

plate. The effects of Schmidt number and the buoyancy ratio
on the velocity, concentration, and temperature profiles in
the respective boundary layers are illustrated with graphs.

When compared with the other results reported in the litera-
ture, the present results are found to be highly accurate and
consistent with the other results pertaining to the same prob-

lem. The use of concept of averaged residual recently intro-
duced by Liao (2010) greatly improves the rate of the
convergence of the analytic solution by allowing the determi-

nation of the optimal auxiliary parameter.
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