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A B S T R A C T

This study addresses the critical problem of understanding Maxwell fluids’ thermal and flow behavior in the
occurrence of magnetohydrodynamics (MHD), radiation, and heat generation over a stretching cylinder, which is
of significant importance in various industrial applications such as polymer processing and heat exchangers. The
novelty of this work lies in its detailed exploration of the curvature parameter (αe) and its influence on the flow
dynamics, extending beyond the scope of previous literature. The governing equations, incorporating the impacts
of MHD, radiation, and heat generation, are derived and subsequently simplified using similarity transformations
to convert them into ordinary differential equations. These equations are then solved numerically via the bvp4c
solver in MATLAB. The results are presented through tables and graphical representations to deliver clear in-
sights into the behavior of key non-dimensional parameters. Quantitative findings reveal that the temperature
profile of the fluid increases with higher heat generation and radiation, with specific enhancements observed on
both flat plates (curvature parameter αe = 0) and cylindrical surfaces (αe = 1). Our results are consistent with
existing studies, validating the robustness of our numerical approach.

1. Introduction

Studying fluid dynamics in the presence of complex physical phe-
nomena is crucial for advancing various engineering applications. In this
context, the flow of Maxwell fluid over a cylinder provides significant
perceptions into the behavior of viscoelastic fluids under different
conditions. This manuscript explores the intricate interplay of several
factors, including radiation heat generation, magnetohydrodynamics
(MHD), and porous media, in the flow dynamics of Maxwell fluids.
Radiation heat generation contributes to the thermal field, influencing
the fluid’s temperature distribution and overall heat transfer charac-
teristics. Concurrently, MHD effects, driven by the interaction of the
fluid with an external magnetic field, introduce additional complexities
in the fluid’s behavior, impacting both the velocity and temperature
fields. The inclusion of a porous medium further adds to the complexity
by altering the flow resistance and heat transfer characteristics.

In the field of fluid dynamics and heat transfer, extensive research
has been conducted to understand the behavior of Maxwell and hybrid
nanofluids under various conditions. Maxwell’s foundational work in
(1881) introduced a rate-type model that effectively predicts

viscoelastic and stress-relaxation behaviors in materials, laying the
groundwork for subsequent studies. Crane’s (1975) exploration of
boundary layer flow near stretched cylinders and Grubka and Bobba’s
(1985) investigation into energy transfer on stretching surfaces with
variable temperatures further contributed to the understanding of flu-
id–solid interactions and heat exchange dynamics. Building on this,
Wang’s (1988) study on viscous liquid flow around extended hollow
cylinders and Reddy Gorla and Sidawi’s (1994) research on natural
convection on vertical stretching surfaces expanded the knowledge of
boundary layer flows and slip effects. Ishak’s (2010) work on energy
boundary layer flow in micropolar fluids and Mukhopadhyay’s (2012)
exploration of heat transfer in time-dependent Maxwell fluid flows
introduced the significant effects of radiation and heat sources in fluid
dynamics.

The early 2010 s saw a surge in research focusing on more complex
fluid systems. Yang et al. (2013) delved into the energy conductivity of
Maxwell fluids in two-phase media, while Ramzan et al. (2016) and
Markin et al. (2017) explored convective flows and stagnation point heat
transfer, respectively. Irfan et al. (2018) advanced the field by
employing the Homotopy Analysis Method to solve flow problems
involving Maxwell fluids with heat sinks. In 2019, Ahmed et al.
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examined heterogeneous-homogeneous reactions and non-Fourier heat
flux theory in Oldroyd-B fluids, highlighting the profound influence of
chemical reactions on complex fluid systems.

The 2020 s introduced new dimensions to the investigation of
Maxwell and hybrid nanofluids, particularly in the context of magne-
tohydrodynamics. Ahmed et al. (2020) investigated the MHD flow of
Maxwell nanofluids, exploring radiation and convective energy trans-
port, while Zhao (2020) focused on axisymmetric convection flow in
geometrically complex scenarios. Loganathan et al. (2021) incorporated
the Cattaneo-Christov model into the study of Maxwell fluids, furthering
the understanding of multi-physical interactions in fluid systems. Khan
et al. (2021) and Sajid et al. (2022) explored the Cattaneo-Christov
theory’s application to Maxwell fluid flow. Recent advances by Biswas
et al. (2022, 2024) and Mandal et al. (2022, 2023) have highlighted the
significant role of magnetic fields and enclosure geometries in influ-
encing thermal performance and system irreversibility in hybrid nano-
fluidic systems. Manna et al. (2024) conducted a constraint-based
investigation of energy transport and irreversibility in magnetic ther-
mal systems.

1.1. Specific contributions and advancements and potential practical
applications and industrial relevance

The practical implications of these findings are significant, particu-
larly in industries where non-Newtonian fluids are used and precise
thermal control is critical. For instance, in polymer processing, under-
standing the effects of radiation and heat generation on Maxwell fluid
behavior can enhance control over extrusion processes, improving
product quality and reducing energy consumption. Moreover, the in-
sights from this research can inform the design of more efficient heat
exchangers and cooling systems that use non-Newtonian fluids,
contributing to better performance and energy efficiency in various in-
dustrial applications. These contributions not only advance academic
understanding but also have direct implications for improving industrial
processes, demonstrating the practical significance of the study.

1.2. Novelty of this study

The extensive body of literature on Maxwell fluid dynamics has
provided significant insights into boundary layer flows, energy transfer
on stretching surfaces, and the effects of radiation and magnetohydro-
dynamics (MHD) across various geometries; however, a critical research
gap remains unaddressed: none of the existing studies have investigated
the collective effects of MHD, radiation, porosity, and heat generation
on the flow of Maxwell fluids around cylindrical geometries. This
research aims to fill that gap by thoroughly investigating these com-
bined possessions on Maxwell fluid flow over a permeable stretching
cylinder. A comprehensive comparison with existing literature validates
the accuracy of our findings and highlights the consistency of our
methodology. Furthermore, our study examines the effects of these pa-
rameters on both flat plates and cylindrical geometries, offering a ho-
listic perspective on how they shape flow dynamics in different contexts.

2. Mathematical modelling

Consider a 2D steady flow of the MHD Maxwell fluid across a
stretching cylinder of diameter ‘2h’ implanted in a permeable medium.
The MHD is useful perpendicular to the cylinder axis. The cylinder has
the velocity ud z/ L along the z direction; here, udmeans the velocity, and
L means the specific length. Energy and concentration of the Maxwell
fluid are constant at the cylinder’s surface T = T∞ and C = C∞. Let (z, r)

Nomenclature

Ambient fluid Concentration C∞
Ambient fluid temperature T∞
Concentration of the fluid C
Concentration on the wall Cw
Curvature parameter αe
Deborah number βp
Density of the fluid ρ
Dimensional Porosity parameter K
Dimensional heat generation Qb
Dimensionless concentration ϕ
Dimensionless heat generation Qp
Dimensionless radiation RP
Dimensionless stream function s
Directions z, r
Electrical Conductivity σ
Kinematic Viscosity γ
Local Nusselt number Nux
Local Reynolds number Rex
MHD parameter Mp

Mass diffusion DB
Maxwell fluid parameter λ4
Mean absorption coefficient k*
non-dimensional temperature θ
Prandtl number Pr
Reference length L
Schmidt number Sc
Sherwood number Shx
Similarity variable η1
Skin friction coefficient Cf
Specific heat Cp
Stefan blowing parameter Sbm
Stefan-Boltzmann constant σ*
Strength of magnetic field B0
Surface heat flux qw
Temperature of the fluid T
Temperature on the wall Tw
Thermal conductivity k
Thermal diffusivity α
Thermal viscosity μ
Velocities of the fluid u*, v*

Fig. 1. Schematic diagram for horizontal diagram
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be cylindrical polar coordinates. So that the axis is parallel to the cyl-
inder’s axis and the r-axis is constrained along the radial direction.
Viscous dissipation is neglected because, in typical engineering sce-
narios with moderate velocities and common fluids like air or water, the
heat generated by viscous forces is minimal compared to conduction and
convection. These assumptions simplify the governing equations while
still accurately representing the essential physics of the system. From
Irfan et al. [9], Fig 1.

2.1. Continuity equation in dimensional form

(ru*)r +(rv*)z = 0 (1)

2.2. Momentum equation in dimensional form

u *v*r + v*v*z + λ4
[
v*2v*zz + u*2v*rr + 2v*u*v*zr

]
= υ

[
v*rr +

vr
r

]

−
σB2o

ρ
[
λ4u*v*r + v*

]
−

υv*
K

(2)

2.3. Energy equation in dimensional form

u*Tr + v*Tz = αe

[

Trr +
Tr
r

]

+
16σ*T3

∞Trr
3(ρcp)k* +Qb(T − T∞) (3)

3. 2.4 concentration equation in dimensional form

u*Cr + v*Cz = DB

[

Crr +
Cr

r

]

(4)

3.1. Boundary conditions with the effect of Stefan parameter

u* = u*w , v
* =

− DBCr

1 − Cw
, T = Tw, C = Cw at r = h (5)

u*→0, T→T∞, C→C∞, at r→∞ (6)

3.2. Similarity variables and non-dimensional quantities

ϕ(η1) = C− C∞
Cw − C∞

represents the dimensionless concentration, this
parameter normalizes the concentration profile, making it independent

of the specific concentrations involved.v* =
zu*d
L ś (η1),u* = − h

r

̅̅̅̅̅
νu*d
L

√

s(η1)
The specific forms of u* and v* in your equations are tied to the

similarity solutions used to reduce the complexity of the problem.
θ(η1) = T− T∞

Tw − T∞
denotes the temperature, where is the temperature at a

point, T∞ means the ambient temperature, and Tw is the temperature at
the boundary.

η1 =

̅̅̅̅̅̅
u*d
Lυ

√ (

r2 − h2
2h

)

is a similarity variable that combines spatial co-

ordinates and flow properties, simplifying the governing equations by
reducing the number of independent variables.

Pr = υ
α indicates the relative thickness of the velocity boundary layer

to the thermal boundary layer.

α =

(
Lν
udh2

)1
2

represent a ratio involving characteristic lengths, ve-

locities, and fluid properties, typically seen in scaling analyses.

Mp =
σB20L
ρu*d

signifies the ratio of magnetic force to inertial force in

magnetohydrodynamic (MHD) flows.
ϕp =

νL
Ku*d

represents the influence of a permeable medium on the flow,

where K denotes the permeability of the medium.

βp =
λ4u*d
L represents the Maxwell fluid, which personifies the visco-

elastic behavior of the fluid.
Sbm = Cw − C∞

1− Cw relates to phase change processes, such as melting or
solidification, where the concentration gradient drives the phase
change.

Sc = v
DB
is the ratio of momentum diffusivity (kinematic viscosity ν)

to mass diffusivity (DB).

Rp =
16σ*T3∞
3kk* is radiation parameter quantifies the relative contribu-

tion of radiation to the overall heat transfer process.

3.3. Dimensionless momentum equation

From (2) to (6), take the following form.

(1+ 2η1α)ś ʹ́ + 2α sʹ́ − ś 2 + s sʹ́ + 2βpsś sʹ́ − βps2 ś ʹ́

−
αβp

(1+ 2η1α)s
2sʹ́ − Mp[ś − βpssʹ́ ] − ϕpś = 0

(7)

Table 1
Comparing the skin friction coefficient across various studies using different
values for Mp while αe = 0 = βp.

Mp Ahmed et al. [1] Ahmed et al. [2] Outcomes of this study

0.5 1.224745 1.224742 1.224745
1.0 1.414213 1.414213 1.414214
1.5 − — 1.581136 1.581139
2.0 − — 1.732045 1.732051
5.0 2.449474 2.446251 2.449490

Table 2
Comparison of Nusselt number for various Pr values.

Pr RK45Ref [24] The outcome of this work

0.72 0.463145 0.463144
1 0.581978 0.581977
3 1.165253 1.165252
10 2.308025 2.308024
100 7.765899 7.765900

Table 3
Results of Cf, Nux, Shx for various values of parameters.

Mp αe Sbp βp ϕp Rp f’’(0)

0     1.70000 1.100396 1.002545
0.5     1.851437 1.048885 0.985034
2     2.242775 0.920616 0.945668
4     2.673555 0.793845 0.910683
 0    1.804788 0.943040 0.949326
 0.3    1.941746 0.599271 1.056166
 0.5    2.028778 0.468244 1.126356
 1    2.235357 0.365284 1.297585
  0   1.862967 0.977521 1.045743
  0.5   1.821397 0.337413 0.809416
  1   1.801882 0.206791 0.673391
  2   1.785161 0.764412 0.518718
   0  1.827097 0.842770 0.989704
   0.2  1.851434 0.821432 0.985035
   0.3  1.863505 0.810711 0.982755
   0.4  1.875506 0.799956 0.980512
    0 1.851434 0.352602 0.985035
    0.5 1.851434 0.618035 0.985035
    1 1.851434 0.821432 0.985035
    2 1.851435 1.069522 0.985035
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Fig. 2. Impact of Mp on velocity, temperature and concentration profiles.
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3.4. Dimensionless energy equation

[
(1+ Rp)(1+ 2η1α)

]
θʹ́ +2(1+ Rp)α θʹ+Prs θʹ+Pr Qpθ = 0 (8)

3.5. Dimensionless concentration equation

(1+ 2η1α)ϕʹ́ +2αϕʹ+ Sc sϕʹ = 0 (9)

3.6. Dimensionless boundary condition

s(0) =
Sbm
Sc

(1+ 2η1α)ϕʹ(0), ś (0) = 1, θ(0) = 1, ϕ(0) = 1

ś (∞) = 0, θ(∞) = 0, ϕ(∞) = 0
(10)

3.7. Skin friction coefficient

Cf =
τw

ρu*2d
= Re

− 1
2
x sʹ́ (0) (11)

3.8. Nusselt number

Nux =
zqw

k(Tw − T∞)
, qw = − k

∂T
∂r

⃒
⃒
⃒
⃒r = h , NuxRe

− 1
2
x = − θʹ(0) (12)

3.9. Sherwood number

Shx =
zjx

DB(Cw − C∞)
, jx = − DB

∂C
∂r

⃒
⃒
⃒
⃒r = h , ShxRe

− 1
2
x = − ϕʹ(0) (13)

4. Solution method

TheMATLAB function ‘bvp4c‘ is designed for solving boundary value
problems for ODEs. It is particularly useful when the boundary condi-
tions are specified at more than one point. ‘bvp4c‘ uses a collocation
method to approximate the solution, making it suitable for both linear
and nonlinear problems. Converting a nonlinear PDE into a linear form
simplifies the problem, as linear equations are generally easier to solve
analytically or numerically. Linearization often allows the use of
established solution methods, ensures stability in numerical approaches,
and makes the behavior of the system more predictable, hence the
preference for linear forms in many practical scenarios.

s = O1, ś = Oʹ
1 = O2, sʹ́ = Oʹ

2 = O3, ś ʹ́ = Oʹ
3,

ϕ = O6,ϕʹ = Oʹ
6 = O7,ϕʹ́ = Oʹ

7

θ = O4, θʹ = Oʹ
4 = O5, θʹ́ = Oʹ

5,

The simplified governing equations can be expressed as

Fig. 3. Impact of porosity parameter on velocity, temperature and concentra-
tion profile.

Oʹ
3 =

⎡

⎢
⎢
⎣

− 2αO3 + O2
2 − O1 O3 − 2βpO1O2O3 +

αβp
(1+2η1α)O

2
1O3 +Mp[O2 − βpO1O3] + ϕpO2

(
(1+ 2η1α) − βpO2

1
)

⎤

⎥
⎥
⎦ (14)
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Oʹ
5 =

(
− 2(1+ Rp)αO5 − PrO1 O5 − Pr QpO4

)

[[
(1+ Rp)(1+ 2η1α)

] ] (15)

Oʹ
7 =

( − 2αO7 − ScO1O7)

[(1+ 2η1α)] (16)

5. Validation

A significant correlation was identified when the data were verified
by comparison with publicly accessible information, as demonstrated in
Table. 1. Table 2 displays the numerical data for the Nux for distinct Pr
values when chemical reaction and Brownian motions are zero in pre-
vious work of [24], our current work got good agreement. Table. 3 re-
veals that the skin friction profile increases with higher values of the
MHD parameter, curvature parameter, and porosity parameter, while it

Fig. 4. Impact of radiation parameter on temperature profile, here solid line is for flat plates, curvature parameter αe = 0 and the dashed line is for cylindrical
surfaces αe = 1.

Fig. 5. Impact of heat generation parameter on temperature profile, here solid line is for flat plates, curvature parameter αe = 0 and the dashed line is for cylindrical
surfaces αe = 1.
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shows a slight increase with the radiation parameter. The Nusselt
number profile decreases with increasing values of the MHD parameter,
curvature parameter, and porosity parameter, but increases with the
radiation parameter. In contrast, the Sherwood number profile de-
creases as the MHD parameter and porosity parameter increase, while it
increases with the curvature parameter and remains almost unchanged
with variations in the radiation parameter.

6. Results and discussions

Fig. 2 demonstrates the influence of the (Mp) magnetohydrodynamic
parameter on the velocity, temperature, and concentration outlines. As
the Mp increases, the profile demonstrates a declining trend. This
behavior can be attributed to the presence of a magnetic field, which
exerts a Lorentz force that opposes the flow of the fluid, thereby
reducing the fluid’s velocity. The magnetic field effectively acts as a
resistive force, slowing down the movement of charged particles in the
fluid, leading to a reduction in the velocity outline. Conversely, the
temperature outline exhibits an increasing trend with the rise in theMp.
The magnetic field’s influence on the charged particles within the fluid
causes an increase in Joule heating, which is the dissipation of electrical
energy into heat.

Fig. 3 depicts the impact of the porosity parameter (ϕp) on the ve-
locity, temperature, and concentration outlines. As the ϕp increases, the
profile shows a declining trend. This behavior is due to the increased
resistance to fluid flow in a permeable medium. The porous structure

hinders the movement of the fluid, creating more frictional resistance,
which slows down the velocity of the flow through the medium. The
higher the ϕp, the more pronounced this effect becomes, leading to a
significant reduction in velocity. In contrast, the temperature outline
rises with a surge in the ϕp. The reduced fluid velocity means that the
fluid has more time to absorb and retain heat as it moves through the
porous medium. Similarly, the concentration outline also increases with
higher values of the porosity parameter. The slower fluid movement
allows for more time for mass diffusion processes to occur within the
medium. The porous structure can also facilitate greater mixing and
diffusion of species, contributing to a surge in the concentration outline.
As the fluid flow slows, the diffusion of particles becomes more effective,
leading to a higher concentration of species within the fluid. This
highlights the intricate relationship between fluid dynamics, heat
transfer, and mass transfer in porous media systems.

Fig. 4 illustrates the effect of the radiation parameter (Rp) on the
temperature outline, showing an upward trend as the radiation param-
eter increases. This behavior can be explained by the enhanced radiative
heat transfer within the fluid. As the radiation parameter rises, the fluid
absorbs more thermal energy from radiative sources, leading to an surge
in the overall temperature. The heightened radiation contributes to a
thicker thermal boundary layer and greater heat retention, resulting in a
more pronounced rise in the temperature profile.

Fig. 5 demonstrates the impact of the heat generation parameter Qp
on the temperature outline, which shows a swelling trend as the heat
generation parameter rises. This effect occurs because the internal heat

Fig. 6. Impact of radiation parameter Rp = 2 and heat generation parameter Qp = 0.5 on Isotherm contour.

Fig. 7. Impact of Stefen parameter Sbp = 0.4 and Maxwell fluid parameter βp = 0.4 on streamline contour.
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generation within the fluid adds thermal energy, thereby raising the
overall temperature. As the Qp increases, more heat is produced within
the fluid, leading to a thicker thermal boundary layer and an elevated
temperature profile. The additional heat generated enhances the fluid’s
capacity to retain thermal energy, resulting in the observed increase in
temperature. This demonstrates the crucial role of internal heat gener-
ation in shaping the thermal behavior of the fluid.

Fig. 6 shows the impact of Rp = 2 and the heat generation parameter
Qp = 0.5 on the isotherm contours. The isotherm contours exhibit a
significant rise in temperature due to the combined effects of Rp and
internal Qp. The radiation parameter enhances radiative heat transfer
within the fluid, increasing the thermal energy absorbed and retained by
the fluid. Simultaneously, the heat generation parameter contributes
additional thermal energy from within the fluid, further elevating the
temperature.

Fig. 7 illustrates the impact of the Stefan parameter Sbp= 0.4 and the
Maxwell fluid parameter βp = 0.4 on the streamline contours. The
streamline patterns show noticeable changes due to the combined in-
fluence of these parameters. The Stefan parameter, associated with
phase change phenomena, affects the fluid’s flow characteristics by
altering the energy transfer and energy distribution within the system.
Concurrently, the βp, which characterizes the viscoelastic nature of the
fluid, influences the fluid’s deformation and flow behavior. Together,
these parameters create a more complex flow pattern, reflected in the
streamlined contours. The viscoelastic nature of the Maxwell fluid,
combined with the heat transfer effects driven by the Stefan parameter,
leads to a more intricate and modified flow structure within the fluid.

7. Conclusions

The primary aim of this manuscript was to examine the thermal and
flow behavior of Maxwell fluids under the impact of magnetohydrody-
namics, Rp, and Qp over a stretching cylinder. The study specifically
focused on understanding how the curvature parameter impacts these
dynamics, with the results providing significant insights relevant to in-
dustrial applications such as polymer processing and heat exchangers.
The governing equations were derived, shortened using similarity
transformations, and solved numerically using bvp4c solver. The key
findings are summarized here.

• Increasing the magnetic parameter reduces velocity due to the Lor-
entz force, while temperature and concentration profiles rise from
enhanced Joule heating and diffusion.

• Higher porosity decreases velocity due to added resistance, but
temperature and concentration increase, indicating extended heat
retention and diffusion.

• Radiation parameter increases the temperature profile, enhancing
heat transfer and thickening the thermal boundary layer.

• Similarly, higher heat generation elevates temperature due to in-
ternal heat production, thickening the boundary layer.

• Combined effects of radiation and heat generation significantly raise
temperature contours.

• Stefan and Maxwell parameters create a complex flow pattern,
influenced by phase change and viscoelastic effects.

• This study provides insights into the combined impact of these pa-
rameters on Maxwell fluid flow, aiding in process optimization.

8. Future work

Future work could include studying non-Newtonian fluids with
variable properties under MHD, radiation, and heat generation.
Exploring time-dependent boundary conditions, transient heat transfer,
and multi-phase flow dynamics would offer deeper insights. Three-
dimensional analysis and experimental validation would further
improve the accuracy and applicability of the findings for industrial
processes.
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