
Journal of King Saud University – Science (2012) 24, 367–377
King Saud University

Journal of King Saud University –

Science
www.ksu.edu.sa

www.sciencedirect.com
ORIGINAL ARTICLE
Generalization of the integral transform method to

nonlinear heat-conduction problems in multilayered

spherical media
Medhat M. Helal *
Department of Engineering Mathematics and Physics, Faculty of Engineering, Zagazig University, Zagazig, Egypt
Civil Engineering Department, College of Engineering and Islamic Architecture, Umm Al-Qura University, Makkah, Saudi Arabia
Received 20 November 2011; accepted 12 January 2012

Available online 20 January 2012
*

E

10

El

Pe

do
KEYWORDS

Heat conduction problems;

Composite media;

Spherical coordinate;

Integral transform method
Tel.: +966503662189.

-mail address: mmhelal@au

18-3647 ª 2012 King Saud

sevier B.V. All rights reserve

er review under responsibilit

i:10.1016/j.jksus.2012.01.002

Production and h
cegypt.ed

Universit

d.

y of King

osting by E
Abstract A method of solving heat conduction problems in multilayered spherical media is pre-

sented; it is based on producing an alternative formulation in which the inner layer of the composite

sphere is lumped and the transient temperature distribution in the outer layer is obtained, in this,

the nonlinear boundary conditions are treated as a source. The temperature distribution of the

alternative formulation is then solved analytically. Different parametric studies are worked out

and plotted to compare the two formulations for different values of Biot number and different ther-

mal characteristic ratio with those obtained from a numerical solution developed using an explicit

finite difference method, and to find the limiting criterion where breakdown of the approximation

occurs.
ª 2012 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

The conduction of heat in solids has numerous applications
in various branches of science and engineering (Holaman,

1984; Ozisik, 1993; Carslaw and Jaeger, 1959; Liukov, 1968;
u

y. Production and hosting by

Saud University.

lsevier
Mikhailov and Ozisik, 1984; Siegel and Howell, 1980;
Monteiro et al., 2009). Solving the problem of transient heat
diffusion in two-layer composite is mathematically difficult

(Mulhholland and Cobble, 1972; Salt, 1983; Frankel et al.,
1987). Because of its difficulty, these problems are mostly trea-
ted numerically with some exception where analytic solutions

are presented. In the field of linear heat transfer, the transient
heat diffusion equation is linearized by considering the thermal
properties to be independent of temperature, furthermore, the
boundary conditions are also assumed to be linear. This class

of linear transient heat diffusion has been treated in detail
(Holaman, 1984; Ozisik, 1993; Carslaw and Jaeger, 1959;
Liukov, 1968; Mikhailov and Ozisik, 1984; Siegel and Howell,

1980) with exact, approximate, and purely numerical methods.
However, when the thermophysical properties and/or the vol-
umetric heat source become temperature dependent, the field

equation becomes nonlinear. In addition, if the temperature
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Nomenclature

C specific heat

h1 heat transfer coefficient
k thermal conductivity
N normalization integral
r radius

Rin inner radius
Rout outer radius
T temperature

t time
Tr reference temperature
T1 temperature at external environment

Greek symbols

# dimensionless temperature
#1 dimensionless temperature at external

environment

#r dimensionless reference temperature
X nonlinear term
a thermal diffusivity

b Biot number
v dimensionless
d Dirac-delta function

e surface emissivity

/ integral transform of temperature
c thermal diffusivity ratio
j thermal conductivity ratio
k eigenvalue

q density
r Stefan–Boltzmann constant
s dimensionless time

n ratio between inner radius and outer radius
w eigenfunction

Subscripts
0 property estimate at initial temperature

1 external environment
i 1,2
in inner surface

j 1,2,3, . . .
n 1,2,3, . . .
out outer surface

r reference
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level becomes high, radiation and/or change of phase may oc-
cur, and, as a result, the boundary conditions become nonlin-
ear (Davies, 1988). The problems of heat diffusion with

nonlinear boundary conditions appear in combustion systems
(Carslaw and Jaeger, 1959; Liukov, 1968), wherein the pre-
ignition heating, the particle entering a furnace and traveling

toward a flame front receives heat uniformly by thermal radi-
ation from the furnace walls and losses heat uniformly by con-
vection to the surrounding gases.

This work presents an analysis of transient heat diffusion in
the two-region composite medium which simplifies the mathe-
matical analysis of the problem and produces a governing

equation with some auxiliary conditions. However, these prob-
lems were presented in (Abdel-Hamid and Frankel, 1991;
Helal, 2003; Abd-El-Malek and Helal, 2006). The paper ex-
tends this work for solving nonlinear heat problems in spheri-

cal domains. In this work, one layer is lumped by assuming a
uniform temperature all over at any given instance and treat-
ing the nonlinear term in the boundary condition as a source

to obtain the associated linear homogeneous problem. How-
ever, the temperature is allowed to vary with time.

The validity of the proposed formulation is examined by

comparing the temperature distribution in the first layer ob-
tained from the approximation with the temperature distribu-
tion in the same layer obtained from the exact analytic
solution. In order to quantify or find the limiting criterion

where stop working of the approximation occurs, the two for-
mulations are compared for different values of Biot number
and different thermal characteristics ratio.

The advantage of using the integral transform techniques is
that it provides a systematic and straight-forward approach to
the solution of a certain class of heat equations (Monteiro et al.,

2009; Cotta and Mikhailov, 1993; Cotta, 1994; Serfaty and
Cotta, 1990; Naveira et al., 2007). The method is particularly
suitable for the solution of both homogeneous and nonhomo-
geneous boundary value problems of heat conduction. The pro-
posed method (Abdel-Hamid and Frankel, 1991; Helal, 2003;

Abd-El-Malek and Helal, 2006) will be extended to solve the
heat diffusion problem in a composite spherical finite region
subject to nonlinear boundary conditions due to radiation

exchange at the interface according to the fourth power law.
The proposed method provides a straightforward methodology
for heat equation problems subject to nonlinear boundary con-

ditions and gives an algorithm that is more efficient and simpler
than the other classical schemes, so the proposed method be-
comes applicable to solve a wider variety of nonlinear problems

over the other methods. However, it is more transparent and
requires less effort to arrive at the final results.

The utilities of the given method are summarized in the fol-
lowing sentence; this method presents an analysis of transient

heat diffusion in the two-region composite medium which sim-
plifies the mathematical analysis of the problem and produces
a governing equation with some auxiliary conditions. The pro-

posed method reduces the two-layer problem to a one-region
problem with a new set of boundary conditions which compen-
sates the effect of the outer layer. Solving the problem of tran-

sient heat diffusion subject to nonlinear boundary conditions
due to radiation exchange at the interface according to the
fourth power law. Treating the nonlinear term in the boundary
condition as a source is employed to obtain the associated

homogeneous problem. Then the problem can be solved by
any conventional method.
2. Mathematical formulation

A two-layer sphere contains an inner region 0 6 r 6 Rin and
an outer region Rin 6 r 6 Rout which are in perfect thermal
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Figure 1 The exchanges of convection and radiation between a small area of solid sphere with the enclosure.
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contact, k1 and k2 are the thermal conductivities. The outer
surface transfers heat to a convecting medium maintained
at T1 and having a heat transfer coefficient h1. Heat transfer
from

the surface takes place by radiation to the enclosure. Fig. 1
illustrates a small area of solid sphere with emissivity e and
exchanges energy by radiation with the enclosure at temper-

ature Tr. The transient heat conduction equation in the ith
layer of the composite may be written as (Ozisik, 1993):

@2Tiðr; tÞ
@r2

þ 2

r

@Tiðr; tÞ
@r

¼ 1

ai

@Tiðr; tÞ
@t

; ri�1 6 r 6 ri; i

¼ 1; 2; r0 ¼ 0; r1 ¼ Rin; r2

¼ Rout; t > 0 ð2:1Þ

subject to the following boundary conditions:

T1ðr; tÞ ¼ finite; r ¼ 0; t > 0 ð2:2Þ
T1ðr; tÞ ¼ T2ðr; tÞ; r ¼ Rin; t > 0 ð2:3Þ

k1
@T1ðr; tÞ

@r
¼ k2

@T2ðr; tÞ
@r

; r ¼ Rin; t > 0 ð2:4Þ

k2
@T2ðr; tÞ

@r
þ h1ðT2ðr; tÞ � T1Þ ¼ �re T4

2ðr; tÞ � T4
r

� �
; ð2:5Þ

r ¼ Rout; t > 0

and the initial conditions:

Tiðr; tÞ ¼ T0; ri�1 6 r 6 ri; i ¼ 1; 2; t ¼ 0 ð2:6Þ

and the initial conditions:

Tiðr; tÞ ¼ T0; ri�1 6 r 6 ri; i ¼ 1; 2; t ¼ 0 ð2:6Þ

where

ai ¼
ki

qiCi

i ¼ 1; 2:
is the thermal diffusivity including specific heat Ci and density
qi of the ith layer and r is the Stefan–Boltzmann constant

{r = 5.6697 · 10�8 W/(m2 K4)}
3. Nondimensionalization

For convenience, we recast the above system of the governing
equations and auxiliary conditions into a dimensionless form.
Redefining the variables as follows

v ¼ r

Rout

; s ¼ a2t

R2
out

; #iðv; sÞ ¼
Tiðr; tÞ
T0

; n ¼ Rin

Rout

; ji ¼
ki
k2

ci ¼
ai

a2

; bout ¼
h1Rout

k2
; X ¼ reRoutT

3
0

k2
; #r ¼

Tr

T0

; #1 ¼
T1
T0

fðv; s; #2Þ ¼ bout#1 � X #4
2ðv; sÞ � #

4
r

� �
Introducing these new (dimensionless) variables into the

governing equations and the auxiliary to obtain the problem
in the more concise form:

@2#i v; sð Þ
@v2

þ 2

v
@#iðv; sÞ
@v

¼ 1

ci

@#iðv; sÞ
@s

; vi�1 6 v

6 vi; i ¼ 1; 2; v0 ¼ 0; v1

¼ n; v2 ¼ 1; s > 0 ð3:1Þ

subject to the following boundary conditions:

#1ðv; sÞ ¼ finite; v ¼ 0; s > 0 ð3:2Þ
#1ðv; sÞ ¼ #2ðv; sÞ; v ¼ n; s > 0 ð3:3Þ

j1

@#1ðv; sÞ
@v

¼ @#2ðv; sÞ
@v

; v ¼ n; s > 0 ð3:4Þ

@#2ðv; sÞ
@v

þ bout#2ðv; sÞ ¼ fðv; s; #2Þ; v ¼ 1; s > 0 ð3:5Þ

and the initial conditions:

#iðv; sÞ ¼ 1; vi�1 6 v 6 vi; i ¼ 1; 2; s ¼ 0 ð3:6Þ
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4. The alternative method

The first approach, a new formulation based on the work in
(Abdel-Hamid and Frankel, 1991; Helal, 2003) is presented.

The problem was formulated by lumping the inner layer and
treating it as thin film. The inner layer of the composite sphere
is lumped by assuming a uniform temperature throughout. The

temperature, however, is allowed to vary with time. This
assumption reduces the two-layer problem to a one-region
problem with a new set of boundary conditions which compen-
sates the effects of the second layer. Theses boundary condi-

tions will be derived if we assume a radially averaged value
of the temperature such that the quantity of heat due to the
averaged temperature is equal to the quantity of heat into

the inner sphere at any given instance. The equation of the
temperature throughout the inner sphere is

1

v2

d

dv
v2 @#1 v; sð Þ

@v

� �
¼ 1

c1

@#1ðv; sÞ
@s

; 0 6 v 6 n; s > 0 ð4:1Þ

Multiply both sides of Eq. (4.1) by v2dv and integrating over v,
we obtain

n2 @#1ðv; sÞ
@v

¼ 1

c1

@

@s

Z n

0

v2#1ðv; sÞdv 0 6 v 6 n; s > 0 ð4:2Þ

To reduce the right hand side, we define a radially averaged
value of the temperature denoted by T�1 such that the quantity

of heat due to the averaged temperature is equal to the quan-
tity of heat into the inner sphere at any given instance i.e.:

4

3
pC1q1n

3#�1ðsÞ ¼
Z n

0

4pC1q1v
2#1dv; ð4:3Þ

orZ n

0

v2#1dv ¼
n3

3
#�1ðsÞ: ð4:4Þ

Since we assumed the temperature is uniform at any distance
throughout the inner sphere, i.e.,

#�1ðsÞ ¼ #1ðn; sÞ ¼ #2ð1; sÞ: ð4:5Þ

Substituting Eq. (4.4) into Eq. (4.2) and by using the above
assumption with the aid of conditions (2.3) and (2.4) gives

@#2ðv; sÞ
@v

¼ 1

3
n
j1

c1

@#2ðv; sÞ
@s

; v ¼ n; s > 0: ð4:6Þ

The last equation is the general boundary condition of the out-
er sphere and is considered the alternative condition after the
inner sphere is lumped. The governing field equation of the
lumped layer problem may be written as

@2#2ðv; sÞ
@v2

þ 2

v
@#2ðv; sÞ

@v
¼ @#2ðv; sÞ

@s
; n 6 v 6 1; s > 0; ð4:7Þ

subject to the following boundary conditions:

@#2ðv; sÞ
@v

¼ 1

3
n

j1

c1

@#2ðv; sÞ
@s

; v ¼ n; s > 0; ð4:8Þ

@#2ðv; sÞ
@v

þ bout#2ðv; sÞ ¼ fðv; s; #2Þ; v ¼ 1; s > 0 ð4:9Þ

and the initial conditions:

#2ðv; sÞ ¼ 1; n 6 v 6 1; s ¼ 0 ð4:10Þ
The second approach is introduced here by solving the prob-
lem (4.7)–(4.10) discussed above by treating the nonlinearity
term in the boundary condition (4.9) as a source in the differen-

tial Eq. (4.7). The nonlinear term must appear only at v = 1,
and hence we make use of the Dirac-delta function to represent
the function f(v,s,#2) as a source at v = 1.Also, the time depen-

dent term in the first boundary condition (4.8) causes difficulties
that arise in traditional finite integral transform technique.
Treating this term as a source, the problem can be made easier

to solve. The Dirac-delta function represents the term
1
3
n j1

c1

@#2ðv; sÞ
@s as a source at v = n. The other condition is un-

changed; therefore, we may consider the following equivalent
problem:

@2#2ðv; sÞ
@v2

þ 2

v
@#2ðv; sÞ

@v
þ 1

3
n
j1

c1

@#2ðv; sÞ
@s

dðv� nÞ

þ fðv; s; #2Þdðv� 1Þ

¼ @#2ðv; sÞ
@s

; 0 6 v 6 1; s > 0 ð4:11Þ

subject to the following boundary and initial conditions:

@#2ðv; sÞ
@v

¼ 0; v ¼ n; s > 0: ð4:12Þ

@#2ðv; sÞ
@v

þ bout#2ðv; sÞ ¼ 0; v ¼ 1; s > 0 ð4:13Þ

and the initial conditions:

#2ðv; sÞ ¼ 1; n 6 v 6 1; s ¼ 0 ð4:14Þ

if we use the transformation H(v,s) = v#(v,s), the trans-
formed system becomes:

@2H2ðv; sÞ
@v2

þ 1

3
n
j1

c1

@H2ðv; sÞ
@s

dðv� nÞ þ fðv; s; H2Þdðv� 1Þ

¼ @H2ðv; sÞ
@s

; 0 6 v 6 1; s > 0 ð4:15Þ

subject to

v
@H2ðv; sÞ

@v
�H2ðv; sÞ ¼ 0; v ¼ n; s > 0 ð4:16Þ

@H2ðv; sÞ
@v

þ ðbout � 1ÞH2ðv; sÞ ¼ 0; v ¼ 1; s > 0 ð4:17Þ

H2ðv; sÞ ¼ 1; 0 6 v 6 1; s ¼ 0 ð4:18Þ

5. Problem solution

The finite integral transform method is applied to determine
the temperature distribution H2(v,s). In the finite integral tech-
nique, the integral transform pair needed for the solution of a

given problem is developed by considering representation of an
arbitrary function in terms of the eigenfunctions correspond-
ing to the given eigenvalue problem. Obtaining the required
eigenvalue problem may be accomplished by considering

the homogeneous part of the nonhomogeneous field equation
and then employing separation of variables to obtain the
following eigenvalue problem (Holaman, 1984; Ozisik, 1993;

Carslaw and Jaeger, 1959; Liukov, 1968):

@2wðvÞ
@v2

þ k2
nwðvÞ ¼ 0; ð5:1Þ

subject to:
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v
@wðvÞ
@v

� wðvÞ ¼ 0; v ¼ n ð5:2Þ

@wðvÞ
@v

þ ðbout � 1ÞwðvÞ ¼ 0; v ¼ 1 ð5:3Þ

The eigenfunction corresponding to the nth eigenvalue kn is gi-
ven by:

wnðvÞ ¼
knn cosðknnÞ � sinðknnÞ
knn sinðknnÞ þ cosðknnÞ

cosðknvÞ þ sinðknvÞ ð5:4Þ

kn’s should be the positive roots of the following transcenden-
tal equation

½knn sinðknnÞ þ cosðknnÞ�½�kn sinðknÞ þ ðbout � 1Þ
� cosðknÞ� þ ½knn cosðknnÞ � sinðknnÞ�½kn cosðknÞ
þ ðbout � 1Þ sinðknÞ�
¼ 0 ð5:5Þ

The orthogonality relation associated with the eigenvalue
problem is given byZ 1

n
wnðvÞwmðvÞdv ¼

0; m–n

NðknÞ; m ¼ n

�
ð5:6Þ

where N(kn) is the normalization integral.
The appropriate integral transform pair can now be defined

as
Integral transform:

/nðsÞ ¼
Z 1

n
wnðvÞH1ðv; sÞdv; n ¼ 1; 2; 3; . . . ð5:7Þ

Inversion formula:

H2ðv; sÞ ¼
X1
n¼1

wnðvÞ
NðknÞ

/nðsÞ ð5:8Þ

Operating on Eq. (4.15) with
R 1

n wnðnÞdn, we obtain:

R 1

n wnðvÞ @
2H2ðv;sÞ
@v2 dvþ 1

3
j1
c1

@
@s

R 1

n nwnðvÞH2ðv; sÞdðv� nÞdv

þ
R 1

n wnðvÞfðv; s; H2Þdðv� 1Þdv

¼ @
@s

R 1

n wnðvÞH2ðv; sÞdv

knowing that:

Z 1

n
nwnðvÞH2ðv; sÞdðv� nÞdv ¼ nwnðnÞH2ðn; sÞ ð5:10Þ

andZ 1

n
wnðnÞfðv; s; H2Þdðv� 1Þdn ¼ wnð1Þfð1; s; H2Þ ð5:11Þ

Following the standard transformation procedures (Monte-
iro et al., 2009; Cotta and Mikhailov, 1993; Cotta, 1994;

Serfaty and Cotta, 1990; Naveira et al., 2007) and with the
aid of Eqs. (5.10) and (5.11), Eq. (5.9) reduces to the following
first order nonhomogeneous ordinary differential equation:

d/nðsÞ
ds

þ k2
n/nðsÞ ¼

1

3

j1

c1
nwnðnÞ

dH2ðn; sÞ
ds

þ wnð1Þfð1; s; H2Þ; n ¼ 1; 2; 3; . . . ð5:12Þ
subject to a transformed initial condition given by introducing

the integral transform Eq. (5.9a) into the initial condition
(5.2c), therefore;

/nð0Þ ¼
sinðknnÞ2 þ cosðknnÞ2 þ knn sinð1� nÞkn � cosð1� nÞkn

kn½knn sinðknnÞ þ cosðknnÞ�
ð5:13Þ

The value of H4(1,s) can be obtained from the inversion for-

mula (5.9b), so f(1,s,H) can be evaluated, and hence (5.12)
yields:

d/nðsÞ
ds

þ k2
n/nðsÞ ¼

1

3

j1

c1
nwnðnÞ

X1
i¼1

wiðnÞ
NðkiÞ

d/iðsÞ
ds

" #

þ wnð1Þ boutH1 � X
X1
i¼1

wið1Þ
NðkiÞ

/iðsÞ
 !4

�H4
r

2
4

3
5

2
4

3
5;

n ¼ 1; 2; 3; . . . ð5:14Þ

which is a system of nonlinear differential equations whose

solution can be obtained using an appropriate numerical inte-
gration scheme. Runge–Kutta-4th order method for a finite
number (say m) of the differential equations can be performed.

For j= 0,1,2, . . . , we have

Fn /j
1; /

j
2; . . . ; /j

m

� �
¼ d/j

nðsÞ
ds

¼ �k2
n/

j
nðsÞ þ

1

3

j1

c1
nwnðnÞ

X1
i¼1

wiðnÞ
NðkiÞ

d/iðsÞ
ds

" #

þ wnð1Þ bH1 � X
Xm
i¼1

wið1Þ
NðkiÞ

/j
nðsÞ

 !4

�H4
r

2
4

3
5

2
4

3
5; n

¼ 1; 2; . . . ; m

ð5:15Þ

subject to the initial conditions

/0
nð0Þ ¼

sinðknnÞ2 þ cosðknnÞ2 þ knn sinð1� nÞkn � cosð1� nÞkn

kn½knn sinðknnÞ þ cosðknnÞ�
ð5:16Þ

The procedure of the method is as follows:
Consider, for n = 1,2, . . .,m, that

Kj
1;n ¼ DsFn /j

1; /
j
2; . . . ; /j

m

� �
ð5:17Þ

Kj
2;n ¼ DsFn /j

1þ0:5K
j
1;1; /

j
2þ0:5K

j
1;2; . . . ; /j

m þ 0:5Kj
1;m

	 

ð5:18Þ

Kj
3;n ¼ DsFn /j

1þ0:5K
j
2;1; /

j
2þ0:5K

j
2;2; . . . ; /j

m þ 0:5Kj
2;m

	 

ð5:19Þ

Kj
4;n ¼ DsFn /j

1 þ Kj
3;1; /

j
2 þ Kj

3;2; . . . ; /j
m þ Kj

3;m

	 

ð5:20Þ

where Ds is the time step and j = 0,1,2, . . ..
Assume

D/j
n ¼

1

6
Kj

1;n þ 2 Kj
2;n þ Kj

3;n

	 

þ Kj

4;n

h i
; n

¼ 1; 2; . . . ; m ð5:21Þ

Finally, the integral transforms for n = 1,2, . . . ,m can be ob-
tained as

/jþ1
n ¼ /j

n þ D/j
n ð5:22Þ

The calculation is started with j= 0 and the integral trans-

forms /1
1; /

1
2; . . . ; /1

m are evaluated because the initial integral
transforms /0

1; /
0
2; . . . ; /0

m are available by Eq. (5.16), knowing
/1

1; /
1
2; . . . ; /1

m the integral transform /2
1; /

2
2; . . . ; /2

m at the end
of the second time step are evaluated by setting j= 1. The



372 M.M. Helal
procedure is repeated to calculate the integral transform /n at

the subsequent time steps. Once /n(s) is obtained, the temper-
ature distribution can be reconstructed through the use of the
inversion formula.
6. Comparison between original and alternative formulations

A comparison between the solutions of the original formula-

tion obtained from a numerical solution developed using an
explicit finite difference method (Ozisik, 1993 pp. 436–498)
and the alternative formulation obtained by solving the outer
sphere after lumping the inner sphere as discussed in the pre-

vious section. To determine the parameters needed for a valid
comparison, all the dimensionless variables which appeared
in both solutions were examined. By inspection of these

parameters, it is easy to conclude that the Biot number of
the outer sphere (bout), thickness ratio (n), thermal conductiv-
ity ratio (ji), the thermal diffusivity (ci) and the nonlinearity

term X are the dimensionless parameters required for a valid
comparison. The effect of each parameter is examined by
allowing one parameter at a time to vary, while keeping the

remaining parameters fixed. The study is conducted for a
wide range of values of each parameter, however, only repre-
(a) Numerical Solution at 1 0.1γ =

(c) Proposed Solution at 1 0.1γ =
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Figure 2 Dimensionless temperature as a function of the radius vari

X = 0, j1 = 10 and n = 0.2).
sentative results are displayed in Figs. 3–11. In all figures, so-
lid lines denote the results from the exact formulation (two-
region composite) and dotted lines represent the results from

the alternative formulation (lumped).
The effect of the thermal diffusivity c1 results in little devi-

ation between the original and alternative formulations as

shown in Figs. 2 and 3 when n, bout, X and j1 are kept at fixed
values. The difference in dimensionless temperature predicted
from the two solution methods is within (0.1–0.5%).

The effect of the thermal conductivity ratio j1 on the tem-
perature distribution from both the original and alternative
formulations is displayed in Figs. 4 and 5. The difference be-
tween the original and alternative formulations decreases as

j2 increases. A maximum difference of about 14% at
j2 = 0.5 decreases to 0.02% at j2 = 10.

Figs. 6 and 7 display the effect of thickness ratio n on the

two formulations. Results show that the difference between
the original and alternative formulations increases as n in-
creases. A maximum difference of about 5% is calculated when

n = 0.6.
Figs. 8 and 9 display the effect of Biot number bin on the

two formulations. The difference between the original and

alternative formulations is also increased as bout increases. A
maximum difference of 4% occurs when bout = 10.
(b) Numerical Solution at 1 10γ =

(d) Proposed Solution at 1 10γ =
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ation for different thermal diffusivity ratio values and for (b = 1,



Figure 3 Effect of thermal diffusivity ratio on the accuracy of the proposed solution (b = 1, X = 0, j1 = 10 and n = 0.2).

(a) Numerical Solution at 1 0.5κ = (b) Numerical Solution at 1 10κ =

(c) Proposed Solution at 1 0.5κ =  (d) Proposed Solution at 1 10κ =
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Figure 4 Dimensionless temperature as a function of the radius variation for different thermal conductivity ratio values and for (b = 1,

X = 0, c1 = 1 and n = 0.2).

Generalization of the integral transform method 373
The effect of stronger nonlinearity X is considered by tak-
ing X = 2 as in Figs. 10 and 11. A difference within (0.1%
to 0.4%) between the two solutions was noticed.

By the aid of the all cases studied, we can find that
an acceptable factor is always achieved for using the lumped
layer approximation. An acceptable approximation occurs

when:
boutn
j1

X < 0:1 ð6:1Þ

It can be shown that the ratio given by Eq. (6.1) reduces to an-

other form as:

h1Rin

k1
X < 0:1 ð6:2Þ



Figure 5 Effect of thermal conductivity ratio on the accuracy of the proposed solution (b = 1, X = 0, c1 = 1 and n = 0.2).

(a) Numerical Solution at 0.2ξ = (b) Numerical Solution at 0.6ξ =

(c) Proposed Solution at 0.2ξ =  (d) Proposed Solution at 0.6ξ =
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Figure 6 Dimensionless temperature as a function of the radius variation for different radius variation ratio values and for (b = 1,

X = 0, c1 = 0.5, and j1 = 10).
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It comes as no surprise that the left side of inequality (6.2) is

the Biot number of the inner sphere determined based on the
characteristics of the inner layer multiplying by the nonlinear
term i.e.,
binX < 0:1 ð6:3Þ
7. Conclusion

New formulation for the transient heat conduction problem
in a two-layer composite sphere subject to a nonlinear bound-

ary condition due to coupled convection–radiation heat ex-
change was considered. The problem was formulated by



Figure 7 Effect of radius variation ratio on the accuracy of the proposed solution (b = 1, X = 0, c1 = 0.5, and j1 = 10).

(a) Numerical Solution at =1β (b) Numerical Solution at =10β

(c) Proposed Solution at = 1β (d) Proposed Solution at = 10β
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Figure 8 Dimensionless temperature as a function of the radius variation for different values of Biot number and for (X = 0, c1 = 0.1,

j1 = 5 and n = 0.2).

Generalization of the integral transform method 375
lumping the inner layer and treating it as thin film. The valid-

ity of the alternative formulation was examined by comparing
the temperature distribution obtained from the alternative
formulation to that obtained from the original formulation.
The obtained results from the proposed approach are consis-

tent with the results that were obtained from the explicit
finite difference method. It was found from the numerical

results that the thermal diffusivity ratio, has little effect on
the approximation. Results show that the difference between
the solutions of original and alternative formulations in-
creases as thickness ratio increases. The difference between

the solutions of original and alternative formulations also



Figure 9 Effect of Biot number on the accuracy of the proposed solution (X = 0, c1 = 0.1, j1 = 5 and n = 0.2).

 (a) Numerical Solution at 0Ω = (b) Numerical Solution at 2Ω =

(c) Proposed Solution at 0Ω = (d) Proposed Solution at 2Ω =
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Figure 10 Dimensionless temperature as a function of the radius variation at the existence of nonlinear term X and for (b = 0.1, c1 = 1,

j1 = 1 and n = 0.2).
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increases as the Biot number increases. The effect of stronger

nonlinearity X is considered by taking X = 2. A difference
within (0.1–0.4%) between the two solutions was noticed. It
was also shown that a reasonable approximation can be

achieved if the Biot number of the inner layer multiplying
by the nonlinear term is less than (0.1).



Figure 11 Effect of the nonlinear term X on the accuracy of the proposed solution (b = 0.1, c1 = 1, j1 = 1 and n = 0.2).
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Monteiro, E.R., Macêdo, E.N., Quaresma, N.N., Cotta, R.M., 2009.

Integral transform solution for hyperbolic heat conduction in a

finite slab. International Communications in Heat and Mass

Transfer 36, 297–303.

Mulhholland, G.P., Cobble, M.H., 1972. Diffusion through composite

media. International Journal Heat Transfer 15, 147–160.

Naveira, C.P., Lachi, M., Cotta, R.M., Padet, J., 2007. Integral

transform solution of transient forced convection in external flow.

International Communications in Heat and Mass Transfer 34, 703–

712.

Ozisik, M.N., 1993. Heat Conduction, second ed. Wiley & Sons, New

York.

Salt, H., 1983. Transient conduction in a two-dimensional composite

slab-i. theoretical development of temperature modes. Interna-

tional Journal Heat Mass Transfer 26, 1611–1616.

Serfaty, R., Cotta, R.M., 1990. Integral transform solutions of

diffusion problems with nonlinear equation coefficients. Interna-

tional Communications in Heat and Mass Transfer 17, 851–864.

Siegel, R., Howell, J.R., 1980. Thermal Radiation Heat Transfer, 2nd

ed. McGraw-Hill, New York.


	Generalization of the integral transform method to  nonlinear heat-conduction problems in multilayered spherical media
	1 Introduction
	2 Mathematical formulation
	3 Nondimensionalization
	4 The alternative method
	5 Problem solution
	6 Comparison between original and alternative formulations
	7 Conclusion
	Acknowledgements
	References


