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scheme for solving nonlinear systems of q-fractional differential equations. We firstly convert the prob-
lems under investigation into the equivalent systems of weakly singular g-integral equations by some
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cisely, applying RBF collocation scheme will transform the system of g-integral equations into the asso-
ciated system of nonlinear algebraic equations that can be solved by iterative methods such as the

2010 Mathematics Subject Classifications:

(3]3:?(3) Newton-Raphson algorithm. Finally, various numerical test problems including linear and nonlinear

74H20 examples are listed to illustrate the robustness of the proposed global scheme with respect to the at least
two recent methods in the literature.

Keywords: © 2020 Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the

g-Fractional derivative
g-Fractional integral
g-Fractional differential equation
Radial basis functions
Collocation method

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Researchers in the field of mathematical modelling have inves-
tigated models and problems in different branches of science and
engineering through the notion of fractional operators deeply (for
instance, see Kilbas et al. (2006) and the references therein). This
is because of the specific conditions of fractional operators, such
as fractional integrals and derivatives of Riemann-Liouville and
Caputo types. However, validating with experimental data and also
parameter estimation in fractional calculus need to patience and
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hard attempts since, in fractional calculus, the domain of parame-
ters is very wide to integer-order calculus.In addition to the classi-
cal Caputo and Riemann-Liouville types, fractional operators,
several other new definitions such as Caputo and Fabrizio (2015)
and Atangana and Baleanu (2016) fractional derivatives have been
proposed by researchers in recent years for modelling different
kinds of phenomena in engineering and science. However, some
criticisms are presented for these new fractional derivatives and
conclude that because of nonsigularity (in other words, countinu-
ity) of the kernels of such these new tools, their applications for
modelling in real-world are limited (Stynes, 2018). Therefore,
nowadays two classical Caputo and Riemann-Liouville fractional
derivatives are more popular and well-known between researchers
and mathematicians.

In recent years, q-fractional calculus (as a particularl case of
fractional calculus) was very popular among researchers. The def-
initions of g-fractional calculus originated from q-calculus (includ-
ing g-integrals and q-derivatives) in classic calculus research
works such as Jackson (1908) and Agarwal (1969). Caputo type
g-fractional derivative is one of the most important definitions in

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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this regard and has many applications in stochastic computations
(Annaby and Mansour, 2012) and the mechanics of quantum
(Kac and Cheung, 2002). As another typical example in the direc-
tion of applications of g-fractional derivatives, one can point out
to the research work (Abdeljawad and Alzabut, 2018) that investi-
gated the retarded logistic model. About recent studies about g-
fractional differential equations, one can refer to the research arti-
cles that deal with the existence and uniqueness of the solutions
and analytical methods. In Zhang and Guo (2020), the authors
proved the existence and uniqueness of solutions of Catupo type
g-fractional differential equations (with initial conditions) by using
the g-analogy Gronwall inequality. Also, some investigations are
made in the solution’s existence of some classes of boundary value
problems (BVPs) in Almeida and Martins (2014). Stability analysis
of some classes of g-fractional initial value problems (IVPs) was
examined in detail via a Lyapunov approach (Jarad et al., 2013).
Moreover, Tang and Zhang (2019) have some discussions regarding
the analytical method of q-fractional differential equations by
implementing the g-beta functions. Applications of Mittag-Leffler
functions (in its g-analogy) for presenting some sets of solutions
were conveyed in Abdeljawad and Baleanu (2011), Abdeljawad
et al. (2012). After that, Salahshour et al. (2015) have been studied
the rigorous convergence of the method proposed in Abdeljawad
and Baleanu (2011). Variational iteration method (VIM) is also gen-
eralized to solve difference equations of q-fractional types by Wu
and Baleanu (2013).

Despite extensive studies of q-fractional differential equations
(qFDEs) by means of analytical methods, some very few research
works were carried out to treat these types of equations numerically.
Among the numerical approaches that are suggested and proposed
to solve the Catupo type qFDEs, one can point out to Zhang and
Tang (2019) as the first suggested local finite difference method
(FDM). After that, as the second FDM in Lyu and Vong (2019), the
authors proposed a second order convergent method with a full con-
vergence analysis discussions in details. It should be noted, in Zhang
and Tang (2019) just error of approximation is considered and con-
vergence analysis was missed. As far as we know, fractional differen-
tial equations (FDEs) and specially qFDEs contain global fractional
operators and solving them with local numerical techniques, such
as FDM, will reduce the accuracy for computing the solutions. There-
fore, researchers should provide some efficient global methods for
calculating the solution with a high order of accuracy. This motivates
us to investigate a very popular global numerical scheme in this
regard. In this research work, we have considered a robust global
numerical approach, radial basis function (RBF) collocation tech-
nique, for solving the following Caputo type qFDEs:

Problem (i) General form: The o-order (0 < « < 1) g-Caputo
fractional order system

CD(D;yl(t) :fi(taylv e 7yn)>
together with the initial conditions of the form

(ieR i=1,...mj=01,.[a]-1). (2)

t0<f<l,

Dy(to) = by,

q

Problem (ii) Special case of previous problem: The IVP of «-
order (0 < o < 1) Caputo type q-fractional equation

Dyy() =f(t.y(®), to<t<1, 3)

together with initial conditions

Diy(to) = b;

| (bieR j=0,1,...

o] = 1), (4)

where £t € T4,0 < g < 1 and f is continuous. In this research work,
we will study the approximate solutions of test problems (i) and
(ii) by RBF collocation approach. This type of global schemes are
very popular and well-known among the researchers in computa-
tional mathematics and have been applied for solving an extensive
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set of problems, see for instance Wei et al. (2018) and Wang and
Wang (2016) and the references therein. Under some mild condi-
tions, RBF collocation techniques have an exponential rate of accu-
racy. Taking into account that their precision is high and by
applying a short number of localization points, they achieve to spec-
tral accuracy as fast as possible. Since the application of these meth-
ods has had no results for solving Caputo type system of nonlinear
gFDEs, this motivates us to investigate such these numerical
approaches for solving them. This remnant of this research work
formed as follows. Some primary notions and definitions of q-
calculus and fractional derivatives are provided in Section 2. Sec-
tions 3 is devoted to the transformation of the basic Problems (i)
and (ii) to the equivalent nonlinear weakly singular integral equa-
tions in the g-analogy form. Section 4 contains the implementation
of RBF collocation approach for solving the equivalent nonlinear
integral equations in the g-analogy form. Section 5 is designed to
examine the proposed numerical approach for extensive test prob-
lems. In this Section, the accuracy of the proposed numerical tech-
nique is investigated in details experimentally by making some
comparisons with respect to two recent local FDM schemes and
superior numerical results show the robustness of our suggested
global technique. Conclusions about the proposed method and also
the plans for our future research works are given in Section 6.

2. Preliminary remarks

2.1. Essential results about q-calculus, fractional g-derivatives and g-
integrals

Definition 1. (Zhang and Tang, 2019) The g-analogy of (t — x) is
defined by

. t—qix
@) _ e
(t—-x)" = t/l_[izot_ e

()

Definition 2. (Jackson, 1908) Let g(t) be a real valued function on
g-geometry set A and | q |< 1. The g-integral of g(t) on interval
(a,b) is defined by

b b a
[ swdit = [“sdie~ [ syt abea 6)
where
[ st = (10 xargiar). xea @)
n=0

Special cases include

1 1
td,t = ——,
/0 q 1+q,
1
1
Pdt =——,
A T l4q+q

1
n q_l

Definition 3. (Jackson, 1908) Let g(t) be a real valued function on
g-geometry set A and | q |< 1. The q-derivative of g(t) is defined by

g(qt) — g(1)

, t#0, )
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and

Dyg(t) - im0 £C)

n—oo

| q|< 1.

Definition 4. (Atici and Eloe, 2007) For 0 <| q |< 1, the g-gamma
function is defined By

B Hﬁo(l _ qi+1)

_ 1— 1—01’ 9
o g 9 ©)

[g(2)

where 0 e C\ {-n:neN*},0<|q| <1, and K;,K;—o0.

Definition 5. (Atici and Eloe, 2007) Let o > O, the «-order frac-
tional g-integral of the Riemann-Liouville type is (Ipg)(x) = g(x)
and

00 = po [ - 00" g (10)

Definition 6. (Abdeljawad and Baleanu, 2011) The o-order version
of Caputo g-fractional derivative of a function g(x) : (a,00)—R is
defined by

(Ia8)(x), <0
(‘Diag)0) =3 (11)
(Ia "Dg8)(x), o>0.
2.2. Radial basis functions collocation method
Given data at nodes to,t;,...,t, in d dimension, the basic form
for RBF interpolating is
n
S(6)=>_#¢(llt — ),
j=0
where || - || denotes the Euclidean norm, /; are the set of unknown

coefficients to be determined. For scalar function values g; = g(t;),
the coefficients 4; are obtained by solving the following system of
equations

4n &n

where the interpolation matrix A satisfies a; = ¢(||t; — £j]).

Some common types of RBF: Commonly used types of RBFs
include the following forms in which r = ||t — t;|| and € is the shape
parameter.

o P ()= \/T(er? Multiquadrics(MQ).

e ¢.(r) = e’ Gaussian.

e (1) =13 Cubic.

e ¢(r) = r’Lnr Thin plate splines (TPS).

In this paper we focus on the popular choice of multiquadrics.

Instantly, we briefly introduce the RBFs collocation method.
Consider the following boundary value problem when Q c R¢:

Lu=f inQ (12)

u=g onoQ (13)

where L is a linear differential operator. We distinguish in our nota-
tion center X ={x;,...,xy} and the collocation points
E = {a4,...,0an}. Then we have the approximate solution of (12)-
(13) in the form:
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N
a(x) = > Jo(lIx - xil), (14)
i1
where /;,i=1,2,...,N, are unknown coefficients that determined
by collocation, ¢ is a RBF, |.|| is the Euclidean norm and x; is the cen-
ter of the RBF.

Now, let E divided into two subsets. One subset contains N; cen-
ters, E;, where Eq.(12) is enforced and the other subset contains N
centers, E,, where boundary conditions are enforced. So the collo-
cation matrix has the following form:

M,
M =
)
in which, M = Lo(lloc = X;11) .y, % € Ex, % € X, and

Mp = Lo(||ot = X[} ,—y,» % € E2,%; € X. The unknown coefficients 7
are determined by solving the linear system M. = F, where F is a
vector included f(o;), % € E1, and g(o;), o € Es.

3. Discussion on equivalent problem

In this section, we deal with the equivalent form of the g-
fractional models (1)-(2) and (3)-(4). For convenience, we need a
Lemma for providing the proof of the main Theorem.

Lemma 1. Let o> 0. If there exists y<oa—[o]+1 such that
f € C,[0,b], then If € €10, b).

Proof. See Annaby and Mansour (2012).

Theorem 1. Let o > 0 and G; be an open setin C fori=1,...,n. Let
fi(t,y1,...,¥,) be a function defined for t € (0,1], and y; in the domain
Gi, such that fi(t,y1,...,¥n) € G0, 1],y <a—fa]+1. If
y; € €0, 1]then y; (i=1,....n) satisfy (1)-(2) for all t €10,1] if
only if y;(t) satisfies the g-integral system

[]-1 by

= i
]; Fq(j+l)t

yi(t)

+%/ (¢t = 99)" " fi(5,Y1(5), . ¥a(5))dgs (1)

0

fori=1,...,nand dll t € [0,1].

Proof. Let y;(t) satisfy (1)-(2), then °Djy;(t) € C,[0, 1]. Hence,

[e]-1 b: :
% cny,. =V, — —
I (Dgyi(6) = yi(t) = > ,G+1) £

j=0

0<t<). (16)

On the other hand,

I3Dgyi(0)) = Ifi(t. ¥4, .. ¥n)

7L N _ (a—1)
a FQ(a) /0 (= as) f(svyl (s)s - - 7yn(s))dqs (17)

for all ¢ € [0, 1]. With combining (16) and (17) the necessity condi-
tion is proved. Now we prove the sufficiency condition. Let y;(t) sat-
isfies (15) for all t €[0,1], then from Lemma 1, y;(t) € Cg‘ﬂ [0,1].
Consequently, acting on the two sides of (15) by the operator CDZ
we have

cn I 4 = bi' i
Dyl() qu’i(t)_ p rq(]j'_l)tj]
= DZIZfl(tvyl (6),-- - Ya(0) :fi(tv.yl (6),-- -, Ya(0)), (18)
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forall t € [0,1]. For t € (0,1] and j € {0, 1,...
Dyyi(0") = limDgy; e¢!)

= b; +}Ln031;7jfi(fqi73/1 (tq),. ...

,[o] — 1}, we get

Ya(tq))

1
=b; +lim————
Ve Tyl —J)

t¢ .
x / (£ — @) IF(5,91(5). . Y(5))dgs
0

‘l o0
:b,~+11m7. r
ey 2
@ 7,q)
(9;9),

where the limit on the most rigth hand side of (19) vanishes
because Offi(tsyl (t)7 ce ~yn(t)) € c”/'[ov ”

Therefore, every solution of The q-Caputo fractional order sys-
tem (1)-(2) is also a solution of the g-Volterra integral system
(15) and vice versa.

Similarly, one can show that the initial value problem of
o_order Caputo type g-fractional Egs. (3)-(4) is equivalent with
the following g-integral equation:

rfl(tq] yl(tql) 7yn(tql))7 (]9)

[o]—1 1

ZFNH ' W/o““15><“’”f<s-,y<s>>dqs. (20)

So, every solution of g-fractional initial value problem (3)-(4) is
also a solution of the g-Volterra integral Eq.(20)vice versa.

4. Outline of the approximation method
In this section, an algorithm for the approximate solution of the

two g-fractional models (1)-(2) and (3)-(4) will be derived. We
assume that 0 =ty < t; < ... <ty =1 be a nonuniform mesh on

[0,1] with t; = ¢V € T, fori=0,1,...,N.
problem (i): (see Egs. (1), (2)) In this case by using Definition 2
and Eq. (15), fori=1,...,n, we get
@1 g _
(=) ———t
.VI( ) - Fq(] + 1)

fx(tq yl (tq )* e =.VH(tqk))dqs'

th k+1

q

21)
Collocating Eq. (21) at the nodes t; yeilds
b i, 1=, « (k1) (@D
Z TG+ 1) 6+ T, (@) ;th (t—tg"™"")
f,(tzq’&yl (tig"), -, yn(tig")) ds. (22)
We suppose that M; be a positive integer, y; = y;(t;) and
N
YN = Jipp,(t), (23)

p=0
where @, (t) and Zi(p =0,1,...,N;i=1,...,n) are the radial basis

functions and unknown RBF coefficients, respectlvely. Since yN(t)
is the approximation of y,(t), we can write

AGIES

(1 - q) u k k+1
+ > gkt - U (6gt YY) YN (0g)) ds.

(24)
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So, we have a nonlinear algebraic system with nN + n equations
and nN + n unknowns Z;,(p =0,1,... ,N;i=1,..., n). The algebraic
system (24) can be solved by any su1table dlrect or iterative
method. In this paper, we will use fsolve command, which its
default is the NewtonRaphson iterative algorithm, in MATLAB
software.

problem (ii): (see Egs. (3), (4)) In this case, we consider two fol-
lowing states:

(@) f(t,y(t)) = >, ;" with constant y; and ;.

Theorem 2. Let f(t,y(t)) = S°1, w;t" with constant y; and ;. Then
the solution of problem (3)-(4) is

[o]—1 bj )
j
o= Z TG1)"
_q 3 1 qr+k+1 n
+W;q (Hk 0W> Z,uz tq")"” (25)

Proof. We know that problem (3)-(4) is equivalent to Eq. (20), on
the other hand, from Definition 2, we get

t 00
/0 (t—=9)" " f (s,(5))dgs = (1 —q) ) _tq'(t —tq""") Zu tq")’
r=0
(26)
Using Definition 1 implies that
[o]-1 b]- _
t t
to( l _ 0 . qr+k+l n )
Zq ( i om)Eﬂi(tqr)% (27)
r= i=

Let M, and M3 be two positive integers, so, in this case y(t) can
be easily estimated with the following

fo]-1 b, ‘
YO D r it
ttx ] _ HM3 r+k+1 n o 5 98
Zq kom > it (28)
i=1

(b) f(t,y(t)) = g(t) + h(t)F(y(t)) where h(t) =~ 0.

In this case, by substituting (5) and (7) in Eq. (20), we obtain
[a]-1 b: tz(l - q) 0 1-— qr+k+1
t) = ¢ r —
y( ) J:ZO Fq(] ¥ 1) + l—*q(a) rzoq :0‘1 — qrteti
x (g(tq") + h(tq")F(y(tq"))). (29)
After collocate Eq. (29) at N + 1 points t;, fori=0,1,...,N, we
have
[a] -1 ] j 0 1— qr+l<+1
r o0
Z l"q(] + 1) + Zq (Mo 1 _gre+i qrot
x (g(tiq") + h(tiq"F (y( iq )))~ (30)
Now, let M, and M3 be positive integers, y; = y(t;) and
N
= _4p(t), (31)
=0

where ¢;(t) and %;(j = 0,1,...,N) are the radial basis functions and
unknown RBF coefficients, respectively. So, we obtain the following
system of nonlinear algebric equation
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0.9 i T T g
08 - & exact solution -
O numerical solution - ‘-
0.7 - - _
-
- - ’
0.6 - ‘ -
-
-
0.5 P4 -
e Pid
> . -’
0.4~ & ‘ —
0.3 i - u
02 & - |
01 & . -
@
OO @& - | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t
Fig. 1. Numerical solution and exact solution for Example 1 N = 20,q = 3/5,0 = 1/2).
Table 1
Numerical solution and absolute value error for Example 1 (N =20,q =3/5,00=1/2).
t y(t) yN(t) Absolute error Method in Zhang and Tang (2019)
0 0 0 0 0
(3/5)'9 0.000000389570411 0.000000389570411 1.58819e — 22 4.44849¢ — 08
(3/5)'7 0.000001803566719 0.000001803566719 8.47033e — 22 2.29471e — 08
(3/5)'5 0.000008349845921 0.000008349845921 3.38813e — 21 1.20204e — 07
(3/5)'3 0.000038656694080 0.000038656694080 1.35525e — 20 5.72027e — 08
(3/5'1 0.000178966176295 0.000178966176295 1.35525e - 20 3.23198e — 08
(3/5)° 0.000828547112477 0.000828547112477 3.25261e - 19 1.90138e — 08
(3/5)7 0.003835866261468 0.003835866261468 1.30104e — 18 1.13302e - 08
(3/5)° 0.017758640099387 0.017758640099387 6.93889¢ — 18 6.78151e — 09
(3/5)° 0.082215926386051 0.082215926386051 2.77556e — 17 4.06534e — 09
(3/5) 0.380629288824312 0.380629288824311 1.11022e - 16 1.22486e — 07
1 0.818983831497407 0.818983831497406 3.33067e — 16 5.42886e — 08
28 T 1
-‘ exact solution ,L
26
. ’
O numerical solution e
2.4 e -
'
’
’
s
22+ - . _
L
2 - < |
’
= -
; -’ <
1.8~ e ’ |
e
. ’
16 [~ e _
. -
e 1
12 P --"7 4
M' T L ! ! ! ! I !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t
Fig. 2. Numerical solution and exact solution for Example 2 N=10,q=1/2,0 =1/2).
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Table 2

Numerical solution and absolute value error for Example 2 N =10, =1/2,00=1/2).
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Table 4

Numerical solution and absolute error for Example 4 N=10,q=1/2,a =1).

t Y(t) YNt Absolute value error t y1(t) () Absolute error
0 1.000000000000000  1.000000000000000 0 0 0 0.000000000001337 1.33683e — 12
(1/2)° 1.000072627919360 1.000072627919360 0 (1/2)° 0.001953122161687 0.001953122160983 7.03764e — 13
(1/2)® 1.000205787657204  1.000205787657204 0 (1/2) 0.003906227293564  0.003906227290589 2.97537e — 12
(1/2)7 1.000584119464960 1.000584119464960 0 172y 0.007812318350801 0.007812318350060 7.41147e — 13
(1/2)5 1.001663815501096 1.001663815501096 O (1/2)° 0.015623546879650  0.015623546876897  2.75346e — 12
(1/2)° 1.004772031242264 1.004772031242264 2.22045¢ — 16 (1/2)° 0.031238377380371 0.031238377378862 1.50979 — 12
(1/2)* 1.013870979799737  1.000828547112477  2.22045¢ — 16 (1/2)* 0.062407093954124  0.062407093947164  6.95929¢ — 12
(1/2) 1.041346666660917 1.041346666660917 2.22044e — 16 (1/2) 0.124259139836641 0.124259139839404  2.76279 — 12
(1/2)> 1.128902423708945  1.128902423708945 0 (1/2)2 0.244148412653959  0.244148412650705 3.25428e — 12
(1/2)  1.432226668417044 1.432226668417043 4.44089¢ — 16 (1/2) 0.455460666624558 0.455460666640393 1.58348¢ — 11
1 2.605126119625209 2.605126119625208 1.3323e — 15 1 0.702468139652606  0.702468139646127  6.47926e — 12
i WZ* b; ; with N + 1 unknowns 4;(j = 0,1,...,N). We will use fsolve Matlab’s
j i command for solving this system.
= T LU+ & y
t;(] _ q) M, . 1— qr+k+1
+ AN (2 —— ) (8(tiq) inati i
Ty (o) -« k=07 _ greati 5. Examination of the method experimentally
=
N
To show the efficiency and accuracy of the earlier described
+h(tiq")F()_4p;(tiq")). (32) 1ency ) y ot
= method, we present in this section some significant examples.All
of the programs associated with the implementation of the
1.2
-4 exact solution @2
1+ -
O numerical solution P s
0.8 -7 - -
Eos -7 —
04 It - i
0.2~ - J
@
oR - T \ \ \ I ! ! ! \
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t
Fig. 3. Numerical solution and exact solution for Example 3 N =10,q =1/8,0 = 1/3).
Table 3

Numerical solution and absolute value error for Example 3 N=10,q=1/8,a =1/3).

t y(t) yN(b) Absolute value error Method in Tang and Zhang (2019)
0 0.000100000000000 0.000100000000000 0 0
(1/8)° 0.000100000339875 0.000235644848742 1.35645e — 04 7.10653e — 04
1/8)8 0.000100003845252 0.000235645502072 1.35642e — 04 1.59919e — 03
(1/8)
(1/8)7 0.000100043504059 0.000235650833029 1.35607e — 04 3.59173e - 03
(1/8)° 0.000100492192244 0.000235700154354 1.35208e — 04 8.06390e — 03
(1/8)° 0.000105568519578 0.000236520354251 1.30952e — 04 1.81032e — 02
(1/8)* 0.000163000607271 0.000268923723107 1.05923e — 04 4.06404e — 02
(1/8)° 0.000812770505922 0.001174594502890 3.61824e — 03 9.12346e — 02
(1/8)? 0.008164077730671 0.010408552873172 2.24448e — 03 2.04815¢e - 01
(1/8) 0.091334624757964 0.099095364598783 7.76074e — 03 4.59794e — 01
1 1.032301949525868 1.038672793906552 6.37084e — 03 1.03220
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Table 5

Numerical solution and absolute error for Example 4 N=10,q=1/2,a=1)

t Yy (t) ¥y () Absolute error
0 1.000000000000000 0.999999999998487 1.51257e — 12

9 0.999997456871446 0.999997456864538 6.90803e — 12
(1/2)

8 0.999989827521264 0.999989827520871 3.930194e - 13
(1/2)

7 0.999959310652706 0.999959310658919 6.21358e — 12
(1/2)

6 0.999837251692708 0.999837251699265 6.55653e — 12
(1/2)

5 0.999349152046140 0.999349152053606 7.46603e — 12
(1/2)

4 0.997398930360074 0.997398930361860 1.78668e — 12
(1/2)

3 0.989632734120284 0.989632734133493 1.32099¢ — 11
(1/2)
(1/2)? 0.959114182538539 0.959114182536891 1.64735e — 12
(1/2) 0.845249015882399 0.845249015891874 9.47542e — 12
1 0.494014946056096 0.494014946047678 8.41804e — 12

suggested method for solving the studied examples are written in
MATLAB 2016b in a Laptop PC with 4 GB Ram. It should be noted
that the default MATLAB’s tolerance is used in the fsolve solver.
We set M; = M, = M3 = K; = K, =100 in all computations. The
Multiquadric radial basis function is used in the approximated
solutions (24) and (31), and the trial and error method is applied
for choosing shape parameters.
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Example 1. First, we consider the following Caputo type -
fractional initial value problem

0<t<1,
y(0) =0.

The exact solution is y(t) = %t% The exact and approximated
2

1
‘Day(t) =t,

solution at N = 10, are shown in Fig. 1.The obtained results for
Example 1 are compared the results in Zhang and Tang (2019), in
Table 1. From this table, one can see high accuracy of the proposed
method.

Example 2. Consider the Caputo type q-fractional initial value
problem

Diy(t)=t+12, 0<t<1,
y0)=1.

The exact solution is y(t) = 1 + 222 L3

4 Tq()
exact solution and approximated solution at N = 10. Absolute value

£ + 38 Fig. 2 shows the
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Fig. 4. Numerical solution for different value of « for Example 4 N = 10,q = 1/2).
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Table 6

Numerical results for Example 5 N=10,q=1/3,a=1).
t yi(0) W 1 = ¥4
0 0 8.399500539546523e — 11 8.3995e — 11
1/3)° 5.080526335720037e — 05 5.080527530022111e — 05 1.1943e — 11
(]/3)3 1.524157884374290e — 04 1.524157231143283e — 04 6.5323e — 11
/3y’ 4.572473211896416e — 04 4.572472881195014e — 04 3.3070e — 11
(1/3)° 0.001371740772258 0.001371740956903 1.8465e — 10
(1/3)° 0.004115190151394 0.004115190393954 2.4256e — 10
(1/3)* 0.012344701995526 0.012344701915369 8.0156e — 11
(1/3) 0.037010659197795 0.037010658981692 2.1610e — 10
(1/3)? 0.110399301846614 0.110399301891554 4.4940e — 11
(1/3) 0.314209777667648 0.314209777829496 1.6185e — 10
1 0.506694834907219 0.506694834174431 7.3279e — 10

error is reported in Table 2. It is obvious from these Figure and
Table that, the suggested scheme is very accurate.

Example 3. Consider the following nonlinear Caputo type q-
fractional initial value problem

Diy(t) = t7y2(t), 0<t<1,
¥(0) = 0.0001.

The exact solution of this problem is y(t) = 0.0001 + pzﬁ; t6. The
EAYE

numerical results, for N=10,q =4 and o =1, are presented in
Fig. 3 and Table 3. A simple comparison between of the proposed
scheme and the numerical results of Thang and Zhang (2019)
(i.e., iterative scheme) confirms the accuracy of our proposed

method.

Example 4. Consider the gq-Caputo fractional order system

CDZYl(t) = Y,(t),
y:1(0)=0

DRy, (t) = —yi ()  0<t<1,

¥2(0)=1.

(20

The exact solution is y(t) =55 (~1) = and

Ya(t) = 3520 (=1) by, that .#—o0. We set .# =10 in the
reported exact solution in Tables 4 and 5. For o = 1, we obtain
Yi(6) =singt(1—q) and y,(t) = cosgt(1 —q) (t(1—q)[<1). In
Fig. 4, we have plotted the approximated solutions behaviour for
different values of fractional and integer- order derivatives. Also,
in Tables 4 and 5 we illustrate the errors associated to the pre-
sented method. From this tables, one can see high accuracy of
the proposed method.

Example 5. Consider the g-Caputo fractional order system

‘Day1 (t) = ya(0),
¥1(0)=0

Dy, () =—q %y, (qt)  0<t<1,

%00 =1.

The exact solution is y,(t) = t“zj‘-fo(—l)jqiuf”“% and
Ya(t) = S (=1Y ¢ D" L5, that ./—oc. We set .# =10 in
the reported exact solution in Tables 6 and 7.

In Fig. 5, we have plotted the approximated solutions behaviour
for different values of fractional and integer-order derivatives.
Also, in Tables 6 and 7 we illustrate the errors associated to the
presented method. From this tables, one can see high accuracy of
the proposed method.

6. Conclusions and future works

In this article, a high accurate global numerical framework (i.e.,
RBF collocation approach) has been proposed for solving system of
nonlinear qFDEs of Caputo type. This type of problems was inves-
tigated by analytical methods extensively, but from the numerical
point of view, only two recent research works (i.e. FDMs) were sug-
gested to solve them approximately. As far as we know, this is the
first paper that solve these equations numerically and globally.
Applying a short number of collocation points give us accurate
results as fast as possible. Superior numerical results with respect
to two recent numerical schemes motive us to implement the
method for solving other types of g-fractional models and test
problems. As our future research work, we will investigate numer-
ical treatment of g-version of time-fractional diffusion (Ghanbari
and Atangana, 2020), Burgers (Akram et al., 2020), foam drainage
(Al-Mdallal et al, 2020; Shi et al, 2020), coupled Kkaup-
kupershmidt (Wang et al., 2019), Klein-Gordon (Akram et al.,
2020), Shrodinger (Ain, YYYY), Telegraph (Akram et al., 2020), Levi
(Feng, 2020) and Ginzburg-Landau equations (Al-Ghafri, 2020).
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Table 7

Numerical results for Example 5 N=10,q=1/3,a=1).
t ¥2(t) yy(t) v, —¥5|
0 1 0.999999999929966 7.0034e — 11
(1/3)° 0.999999998064119 0.999999998048430 1.5689¢ — 11
(1/3)8 0.999999982577070 0.999999982503621 7.3449e — 11
173y’ 0.999999843193633 0.999999843202192 8.5587e — 12
(1/3)8 0.999998588742821 0.999998588786891 4.4071e - 11
(1/3)° 0.999987298695312 0.999987298717936 2.2623e - 11
(1/3)* 0.999885689061944 0.999885689020719 4.1225e — 11
(1/3)? 0.998971266691906 0.998971266679367 1.2539e — 11
(1/3)? 0.990746675759062 0.990746675981385 2.2232e - 10
(1/3) 0.917147141194653 0.917147141235329 4.0676e — 11
1 0.288727585859356 0.288727585896525 3.7169e — 11
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Fig. 5. Numerical solution for different value of « for Example 5 N =10,q = 1/2).

Appendix A

In this appendix a simple Matlab program of nonlinear Example
3 is furnished to ease up the understanding of the proposed
method.

function F=equation (landa)
global Nm t x0 ¢ alpha GAMMA shape B
o = ones(1,length(t));

rx(:,:,1) = txo — (tx0)’; % signed distance matriz

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, athttps://doi.org/10.1016/j.jksus.2020.101288.

References

Abdeljawad, T., Benli, B., Baleanu, D., 2012. A generalized q-Mittag-Leffler function
by g-Caputo fractional linear equations. Abstr. Appl. Anal. 2012, 1-11.

Abdeljawad, T., Baleanu, D., 2011. Caputo g-fractional initial value problems and a
g-analogue Mittag-Leffler function. Commun. Nonlinear Sci. Numer. Simul. 16,
4682-4688.

Abdeljawad, T., Alzabut, J., 2018. On Riemann-Liouville fractional g-difference
equations and their application to retarded logistic type model. Math. Methods
Appl. Sci. 41, 8953-8962.

Agarwal, R.P., 1969. Certain fractional g-integrals and g-derivatives. Proc. Camb.
Phil. Soc. 66, 365-370.

Akram, T., Abbas, M., Igbal, A., Baleanu, D., Asad, ]J.H., 2020. Novel numerical
approach based on modified extended cubic B-spline functions for solving non-
linear time-fractional telegraph equation. Symmetry 12, 1154.

Almeida, R., Martins, N., 2014. Existence results for fractional q-difference equations
of order oe(2,3)) with three-point boundary conditions. Commun. Nonlinear
Sci. Numer. Simul. 19, 1675-1685.

Akram, T., Abbas, M., Riaz, M.B., Ismail, A.L, Ali, N.M., 2020. Development and
analysis of new approximation of extended cubic B-spline to the non-linear
time fractional Klein-Gordon equation. Fractals 28, 1-20.

Akram, T., Abbas, M., Riaz, M.B., Ismail, AL, Ali, N.M., 2020. An efficient numerical
technique for solving time fractional Burgers equation. Alex. Eng. ]. 59 (4),
2201-2220. https://doi.org/10.1016/j.aej.2020.01.048.

Al-Ghafri, Kh.S., 2020. Soliton behaviours for the conformable space-time
fractional complex Ginzburg-Landau equation in optical fibers. Symmetry
12, 1-14.

Annaby, M.H., Mansour, Z.S., 2012. g-Fractional Calculus and Equations. Springer
Heidelberg, New York.

Atangana, A., Baleanu, D., 2016. New fractional derivatives with non-local and non-
singular kernel: theory and applications to heat transfer model. Therm. Sci. 20,
763-769.

Atici, F.M., Eloe, P.W., 2007. Fractional g-calculus on a time scale. ]J. Nonlinear Math.
Phys. 14, 341-352.

Caputo, M., Fabrizio, M., 2015. A new definition of fractional derivative without
singular kernel. Prog. Fract. Differ. Appl. 1, 73-85.

Feng, W., 2020. Exact solutions and conservation laws of time-fractional Levi
equation. Symmetry 12, 1-13.

Ghanbari, B., Atangana, A., 2020. An efficient numerical approach for fractional
diffusion partial differential equations. Alex. Eng. J. 59, 2171-2180.


https://doi.org/10.1016/j.jksus.2020.101288
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0005
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0005
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0010
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0010
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0010
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0015
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0015
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0015
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0020
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0020
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0040
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0040
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0040
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0045
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0045
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0045
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0045
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0045
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0035
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0035
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0035
https://doi.org/10.1016/j.aej.2020.01.048
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0050
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0050
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0050
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0055
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0055
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0060
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0060
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0060
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0065
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0065
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0070
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0070
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0075
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0075
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0080
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0080

Fahimeh Akhavan Ghassabzadeh, E. Tohidi, H. Singh et al.

Jackson, F.H., 1908. On g-functions and a certain difference operator. Trans. R. Soc.
Edinb. 46, 64-72.

Jarad, F., Abdeljawad, T., Baleanu, D., 2013. Stability of q-fractional non-autonomous
systems. Nonlinear Anal. Real World Appl. 14, 780-784.

Kac, V., Cheung, P., 2002. Quantum Calculus. Springer-Verlag, New York.

Kilbas, A.A., Srivastava, H.M., Trujillo, ].J., 2006. Theory and Applications of
Fractional Differential Equations, NorthHolland Mathematics Studies, 207.
Elsevier, Amsterdam.

Al-Mdallal, Q.M., Yusuf, H., Ali, A., 2020. A novel algorithm for time-fractional foam
drainage equation. Alex. Eng. J. 59, 1607-1621.

Lyu, P., Vong, S., 2019. An efficient numerical method for q-fractional differential
equations. Appl. Math. Lett. https://doi.org/10.1016/j.am1.2019.106156.

Salahshour, S., Ahmadian, A., Chan, C.S., 2015. Successive approximation method for
Caputo g-fractional IVPs. Commun. Nonlinear Sci. Numer. Simul. 24, 153-158.

Shi, D., Zhang, Y., Liu, W., 2020. Multiple exact solutions of the generalized time
fractional foam drainage equation. Fractals 28, 2050062.

Stynes, M., 2018. Fractional-order derivatives defined by continuous kernels are too
restrictive. Appl. Math. Lett. 85, 22-26.

Tang, Y., Zhang, T., 2019. A remark on the g-fractional order differential equations.
Appl. Math. Comput. 350, 198-208.

10

Journal of King Saud University — Science 33 (2021) 101288

Wang, Q., Wang, H., 2016. Meshless method and convergence analysis for2-
dimensional Fredholm integral equationwith complex factors. J. Comput. Appl.
Math. 304, 18-25.

Wang, Zh., Zhang, L., Li, Ch., 2019. Lie symmetry analysis to the weakly coupled
kaup-kupershmidt equation with time fractional order. Fractals 27, 1950052.

Wei, S., Chen, W,, Zhang, Y., Wei, H., Garrard, R.M., 2018. A local radial basis function
collocation method to solve the variableorder time fractional diffusion equation
in a twodimensional irregular domain. Numer. Methods Partial Differ. Equ. 34,
1209-1223.

Wu, G.C,, Baleanu, D., 2013. New applications of the variational iteration method-
from differential equations to q-fractional difference equations. Adv. Differ. Equ.
2013, 21-37.

Zhang, T., Guo, Q., 2020. The solution theory of the nonlinear q-fractional
differential equations. Appl. Math. Lett. 104. https://doi.org/10.1016/j.
aml.2020.106282.

Zhang, T., Tang, Y., 2019. A difference method for solving the q-fractional
differential equations. Appl. Math. Lett. 98, 292-299.

Ain, Q.T., He, J.H., Anjumand, N., Ali, M. The Fractional complex transform: a novel
approach to the time-fractional Schrodinger equation. Fractals. doi: 10.1142/
S0218348X2150002X..


http://refhub.elsevier.com/S1018-3647(20)30401-8/h0085
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0085
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0090
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0090
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0095
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0100
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0100
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0100
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0110
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0110
https://doi.org/10.1016/j.aml.2019.106156
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0115
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0115
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0120
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0120
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0125
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0125
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0130
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0130
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0135
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0135
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0135
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0140
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0140
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0145
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0145
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0145
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0145
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0150
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0150
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0150
https://doi.org/10.1016/j.aml.2020.106282
https://doi.org/10.1016/j.aml.2020.106282
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0155
http://refhub.elsevier.com/S1018-3647(20)30401-8/h0155

	RBF collocation approach to calculate numerically the solution of the nonlinear system of qFDEs
	1 Introduction
	2 Preliminary remarks
	2.1 Essential results about q-calculus, fractional q-derivatives and q-integrals
	2.2 Radial basis functions collocation method

	3 Discussion on equivalent problem
	4 Outline of the approximation method
	5 Examination of the method experimentally
	6 Conclusions and future works
	Declaration of Competing Interest
	Appendix A 
	Appendix B Supplementary data
	References


