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Abstract In this note, the velocity field and the associated shear stress corresponding to the tor-

sional oscillatory flow of a generalized second grade fluid, between two infinite coaxial circular cyl-

inders, are determined by means of Laplace and Hankel transforms. Initially both cylinders and

fluid are at rest and then the two cylinders suddenly start torsional oscillations around their com-

mon axis with simple harmonic motions having angular frequencies x1 and x2. The solutions that

have been obtained are presented under integral and series forms in terms of the generalized G and

R functions and satisfy the governing differential equation and all imposed initial and boundary

conditions. The respective solutions for the motion between the cylinders, when one of them is at

rest, can be obtained from our general solutions. Furthermore, the corresponding solutions for

the similar flow of ordinary second grade fluid and Newtonian fluid are also obtained as limiting

cases of our general solutions. At the end, flows corresponding to the Newtonian, second grade

and generalized second grade fluids are shown graphically by plotting velocity profiles.
ª 2011 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
14858413.
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1. Introduction

Flows in the neighborhood of spinning or oscillating bodies
are of interest to both academic workers sand industry.
Among them, the flows between oscillating cylinders are some

of the most important and interesting problems of motion. As
early as 1886, Stokes established an exact solution for the rota-
tional oscillations of an infinite rod immersed in a classical
linearly viscous fluid. Casarella and Laura (1969) obtained

an exact solution for the motion of the same fluid due to
both longitudinal and torsional oscillations of the rod. Later,
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Rajagopal (1983) found two simple but elegant solutions for
the flow of a second grade fluid induced by the longitudinal
and torsional oscillations of an infinite rod. These solutions

have been already extended to Oldroyd-B fluids by Rajagopal
and Bhatnagar (1995). Others interesting results have been
recently obtained by Khan et al. (2005), Fetecau and Fetecau

(2006) Mahmood et al. (2009), Vieru et al. (2007), Fetecau et
al. (2008), Massoudi and Phuoc (2008), Khan et al. (2009),
and Mahmood et al. (2010).

Recently, the fractional calculus has encountered much suc-
cess in the description of viscoelasticity. Specifically, rheologi-
cal constitutive equations with fractional derivatives play an
important role in the description of the properties of polymer

solutions and melts. The starting point of the fractional deriv-
ative model of non-Newtonian fluids is usually a classical dif-
ferential equation which is modified by replacing the time

derivative of an integer order by so-called Riemann–Liouville
fractional differential operator. This generalization allows us
to define precisely non-integer order integrals or derivatives

(Podlubny, 1999).
It is important to mention here that a number of research

papers in the literature (Fetecau et al., 2008; Massoudi and

Phuoc, 2008; Khan et al., 2009; Mahmood et al., 2010) are de-
voted to the study of the flow of different viscoelastic fluids be-
tween two cylinders, when only one of them is oscillating and
other is at rest. On the other hand, the exact solutions corre-

sponding to the flow of these fluids between two cylinders,
when both of them are oscillating along or around their com-
mon axis simultaneously, are very rare in literature. Recently,

Mahmood et al. (2009, 2010) have studied the flow of frac-
tional Maxwell and second grade fluids between two cylinders,
when both of them are oscillating around, respectively, along

their common axis. As far as the knowledge of authors is con-
cerned, in the literature, no attempt has been made to study the
flows of fractional second grade fluid due to torsional oscilla-

tions of two cylinders. Therefore, in this paper, we are inter-
ested into the torsional oscillatory motion of a generalized
second grade fluid between two infinite coaxial circular cylin-
ders when both of them are oscillating around their common

axis with given constant angular frequencies x1 and x2. Veloc-
ity field and associated tangential stress of the motion are
determined by using Laplace and Hankel transforms and are

presented under integral and series forms in terms of the gen-
eralized G and R functions. It is worthy to point out that the
solutions that have been obtained satisfy the governing differ-

ential equation and all imposed initial and boundary condi-
tions as well. The solutions corresponding to the ordinary
second grade fluid and those for Newtonian fluid, performing
the same motion, are also determined as special cases of our

general solutions. Furthermore, the respective solutions for
the oscillatory motion between the cylinders, when one of them
is at rest, can be obtained from our general solutions.

2. Torsional oscillations between two cylinders

Among the many constitutive assumptions that have been em-

ployed to study non-Newtonian fluid behavior, one class that
has gained support from both the experimentalists and the the-
oreticians is that of Rivlin–Ericksen fluids of second grade.

The Cauchy stress tensor T for such fluids is given by

T ¼ �pIþ lA1 þ a1A2 þ a2A
2
1; ð1Þ
where �p is the pressure, I is the unit tensor, l is the coefficient

of viscosity, a1 and a2 are the normal stress moduli and A1 and
A2 are the kinematic tensors defined through

A1 ¼ gradvþ ðgradvÞT;

A2 ¼
dA1

dt
þ A1ðgradvÞ þ ðgradvÞTA1: ð2Þ

In the above relations, v is the velocity, d/dt denotes the mate-

rial time derivative and grad the gradient operator. Since the
fluid is incompressible, it can undergo only isochoric motions
and hence

divv ¼ trA1 ¼ 0: ð3Þ

If this model is required to be compatible with thermody-
namics, then the material moduli must meet the following
restrictions:

l P 0; a1 P 0 and a1 þ a2 ¼ 0: ð4Þ

The sign of the material moduli a1 and a2 has been the subject
of much controversy. A comprehensive discussion on the
restrictions given in (4), as well as a critical review on the fluids

of differential type, can be found in the extensive work of
Dunn and Rajagopal (1995).

Generally, the constitutive equation of the generalized sec-
ond grade fluids has the same form as (1), but A2 is defined by

A2 ¼ Db
tA1 þ A1ðgradvÞ þ ðgradvÞTA1; ð5Þ

where Db
t is the Riemann–Liouville fractional calculus opera-

tor of order b with respect to t defined by

Db
t fðtÞ ¼

1

Cð1� bÞ
d

dt

Z t

0

ðt� sÞ�b
fðsÞds; 0 < b 6 1; ð6Þ

where C(Æ) is the Gamma function. When b = 1, Eq. (5) may
be simplified as (2)2 while for a1 = 0 the constitutive relation-

ship (1) describes the Rainer–Rivlin viscous fluid.

2.1. Mathematical formulation of the problem and governing
equation

Suppose that an incompressible generalized second grade
fluid is situated in the annular region between two infinite

straight circular cylinders of radii R1 and R2(>R1) as shown
in Fig. 1. At time t= 0, the fluid and cylinders are at rest.
At time t= 0+, inner and outer cylinders suddenly begin to
oscillate around their common axis (r = 0) with the veloci-

ties W1sin(x1t) and W2sin(x2t), where x1 is the frequency
of velocity of inner cylinder and x2 is that of outer cylinder.
Owing to the shear, the fluid between the cylinders is grad-

ually moved, its velocity being of the form

v ¼ vðr; tÞ ¼ vðr; tÞeh; ð7Þ

where eh is the unit vector along h-direction. For such flows the
constraint of incompressibility is automatically satisfied.

Introducing (7) into the constitutive equation, we find that

sðr; tÞ ¼ ðlþ a1D
b
t Þ

@

@r
� 1

r

� �
vðr; tÞ; ð8Þ



Figure 1 Flow geometry.
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where s(r, t) = Srh(r, t) is the shear stress, which is different
from zero. In the absence of body forces and assuming no
pressure gradient in the flow direction, the balance of the linear
momentum leads to the relevant equation

q
@vðr; tÞ
@t

¼ @

@r
þ 2

r

� �
sðr; tÞ: ð9Þ

Eliminating s(r, t) between Eqs. (8) and (9) we get the govern-

ing equation of our problem

@vðr; tÞ
@t

¼ ðmþ aDb
t Þ

@2

@r2
þ 1

r

@

@r
� 1

r2

� �
vðr; tÞ;

r 2 ðR1;R2Þ; t > 0; ð10Þ

where a = a1/q and m = l/q is the kinematic viscosity of the
fluid (q being its constant density).

The appropriate initial and boundary conditions are

vðr; 0Þ ¼ 0; r 2 ðR1;R2Þ; ð11Þ
vðR1; tÞ ¼W1 sinðx1tÞ; vðR2; tÞ ¼W2 sinðx2tÞ for t > 0: ð12Þ
2.2. Calculation of the velocity field

Applying the Laplace transform to Eqs. (10)–(12) and using

the Laplace transform formula for sequential fractional
derivatives (Podlubny, 1999), we obtain the ordinary differ-
ential equation

@2�vðr; qÞ
@r2

þ 1

r

@�vðr; qÞ
@r

� 1

r2
�vðr; qÞ � q

aqb þ m
�vðr; qÞ ¼ 0;

r 2 ðR1;R2Þ; ð13Þ

where the image function �vðr; qÞ of v(r, t) has to satisfy the

conditions

�vðR1; qÞ ¼
W1x1

q2 þ x2
1

; �vðR2; qÞ ¼
W2x2

q2 þ x2
2

: ð14Þ

In the following, let us denote by

�vnðqÞ ¼
Z R2

R1

r�vðr; qÞB1ðrrnÞdr; n ¼ 1; 2; 3; . . . ; ð15Þ

the finite Hankel transforms of �vðr; qÞ, where rn are the positive
roots of the transcendental equation B1(R1r) = 0 and

B1ðrrnÞ ¼ J1ðrrnÞY1ðR2rnÞ � J1ðR2rnÞY1ðrrnÞ: ð16Þ
In the above relation, J1(Æ) and Y1(Æ) are Bessel functions of

order one of the first and second kind. Applying the finite
Hankel transform to Eq. (13) and taking into account the con-
ditions (14), we find that

2W2x2

p q2 þ x2
2ð Þ �

2W1x1

p q2 þ x2
1ð Þ

J1ðR2rnÞ
J1ðR1rnÞ

� r2n�vnðqÞ

� q

aqb þ m
�vnðqÞ ¼ 0; ð17Þ

or equivalently,

�vnðqÞ ¼
2W2x2 aqb þ mð Þ

p q2 þ x2
2ð Þ ar2nq

b þ qþ mr2n
� �

� 2W1x1ðaqb þ mÞ
p q2 þ x2

1ð Þ ar2nq
b þ qþ mr2n

� � J1ðR2rnÞ
J1ðR1rnÞ

: ð18Þ

In order to determine �vðr; qÞ, we firstly write �vnðqÞ under the
suitable form

�vnðqÞ ¼
2W2x2

pr2nðq2 þ x2
2Þ
� 2W1x1

pr2nðq2 þ x2
1Þ

J1ðR2rnÞ
J1ðR1rnÞ

� 2W2x2q

pr2nðq2 þ x2
2Þðar2nqb þ qþ mr2nÞ

þ 2W1x1q

pr2nðq2 þ x2
1Þðar2nqb þ qþ mr2nÞ

J1ðR2rnÞ
J1ðR1rnÞ

ð19Þ

and use the inverse Hankel transform formula (Sneddon, 1955)

�vðr; qÞ ¼ p2

2

X1
n¼1

r2nJ
2
1ðR1rnÞB1ðrrnÞ

J21ðR1rnÞ � J21ðR2rnÞ
�vnðqÞ ð20Þ

and (A1) from Appendix A. Furthermore, in order to avoid

the burdensome calculations of residues and contour integrals,
we apply the discrete inversion Laplace transform method,
writing

1

ar2nq
b þ qþ mr2n

¼ 1

qb mr2nq
�b þ ðq1�b þ ar2nÞ

� �
¼
X1
k¼0

ð�mr2nÞ
k
q�bk�b

ðq1�b þ ar2nÞ
kþ1 ð21Þ

and use Eq. (A2), where (Lorenzo and Hartley, 1999)

Ga;b;cðd; tÞ ¼
X1
j¼0

ðcÞjd
jtðjþcÞa�b�1

Cðjþ 1ÞC½ðjþ cÞa� b� ð22Þ

is the generalized G function and (c)j is the Pochhammer poly-
nomial (Lorenzo and Hartley, 1999).

Finally, Eqs. (19)–(21), (A5) and (22) give the velocity field

vðr; tÞ ¼W1R1ðR2
2 � r2Þ sinðx1tÞ þW2R2ðr2 � R2

1Þ sinðx2tÞ
ðR2

2 � R2
1Þr

� p
X1
n¼1

X1
k¼0
ð�mr2nÞ

k J1ðR1rnÞB1ðrrnÞ
J21ðR1rnÞ � J21ðR2rnÞ

� W2x2J1ðR1rnÞ
Z t

0

cosðx2ðt� sÞÞG1�b;�bk�b;kþ1 �ar2n; s
� �

ds

�
�W1x1J1ðR2rnÞ

Z t

0

cosðx1ðt� sÞÞG1�b;�bk�b;kþ1 �ar2n; s
� �

ds

	
: ð23Þ
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2.3. Calculation of the shear stress

Applying the Laplace transform to Eq. (8), we find that

�sðr; qÞ ¼ ðlþ a1q
bÞ @

@r
� 1

r

� �
�vðr; qÞ; ð24Þ

where

@

@r
� 1

r

� �
�vðr; qÞ ¼ 2R1R2

ðR2
2 � R2

1Þr2
R1W2x2

q2 þ x2
2

� R2W1x1

q2 þ x2
1

� �
þ p

X1
n¼1

X1
k¼0
ð�mr2nÞ

k � J1ðR1rnÞ½ð2=rÞB1ðrrnÞ � rn eB1ðrrnÞ�
J21ðR1rnÞ � J21ðR2rnÞ

W2x2J1ðR1rnÞ
q

q2 þ x2
2

ðkþ 1Þjð�ar2nÞ
j

j!qkþjð1�bÞþ1

"

�W1x1J1ðR2rnÞ
q

q2 þ x2
1

ðkþ 1Þjð�ar2nÞ
j

j!qkþjð1�bÞþ1

#
ð25Þ

has been obtained from (23) and (A8), where in the above
relationeB1ðrrnÞ ¼ J0ðrrnÞY1ðR2rnÞ � J1ðR2rnÞY0ðrrnÞ:

Introducing (25) into (24), applying again the discrete inver-

sion Laplace transform method to the obtained result and
using (A3) and (A5), where

Ra;bðc; d; tÞ ¼
X1
j¼0

cjðt� dÞðjþ1Þa�b�1

C½ðjþ 1Þa� b� ð26Þ

is R function (Lorenzo and Hartley, 1999), we find for the
shear stress the expression

sðr;tÞ¼ 2R1R2

ðR2
2�R2

1Þr2
h
l R1W2 sinðx2tÞ�R2W1 sinðx1tÞð Þ

þa1 R1W2x2R2;bð�x2
2;0;tÞ�R2W1x1R2;bð�x2

1;0;tÞ

 �	

þp
X1
n¼1

X1
k¼0
ð�mr2nÞ

k J1ðR1rnÞ½ð1=rÞB1ðrrnÞ�rn eB1ðrrnÞ�
J21ðR1rnÞ�J21ðR2rnÞ

� W2x2J1ðR1rnÞ l
Z t

0

cosðx2ðt�sÞÞ
��

G1�b;�bk�b;kþ1ð�ar2n;sÞdsþa1G1�b;�bk�1;kþ1ð�ar2n;tÞ

�a1x2

Z t

0

sinðx2ðt�sÞÞG1�b;�bk�1;kþ1ð�ar2n;sÞds


�W1x1J1ðR2rnÞ l
Z t

0

cosðx1ðt�sÞÞ
�

G1�b;�bk�b;kþ1ð�ar2n;sÞdsþa1G1�b;�bk�1;kþ1ð�ar2n;tÞ

�a1x1

Z t

0

sinðx1ðt�sÞÞG1�b;�bk�1;kþ1ð�ar2n;sÞds
	
:

ð27Þ
3. Limiting cases

3.1. Solutions for ordinary second grade fluid (b fi 1)

Making b fi 1 into Eqs. (23) and (27) and using (A4) and (A7),

we obtain the velocity field
vSðr;tÞ¼
W1R1ðR2

2�r2Þsinðx1tÞþW2R2ðr2�R2
1Þsinðx2tÞ

ðR2
2�R2

1Þr

�p
X1
n¼1

J1ðR1rnÞB1ðrrnÞ
J21ðR1rnÞ�J21ðR2rnÞ

� W2x2J1ðR1rnÞ
m2r4nþx2

2ð1þar2nÞ
2

mr2n cosðx2tÞ�exp �
mr2nt

1þar2n

� �� ��"

þx2ð1þar2nÞsinððx2tÞÞ

� W1x1J1ðR2rnÞ

m2r4nþx2
1ð1þar2nÞ

2

� mr2n cosðx1tÞ�exp �
mr2nt

1þar2n

� �� ��
þx1ð1þar2nÞsinðx1tÞ

	
; ð28Þ

and associated shear stress

sSðr; tÞ ¼
2R1R2

ðR2
2 � R2

1Þr2
l R1W2 sinðx2tÞ � R2W1 sinðx1tÞð Þ½

þa1 R1W2x2 cosðx2tÞ � R2W1x1 cosðx1tÞð Þ�

þ p
X1
n¼1

J1ðR1rnÞ½ð1=rÞB1ðrrnÞ � rn eB1ðrrnÞ�
J21ðR1rnÞ � J21ðR2rnÞ

� J1ðR1rnÞg2 � J1ðR2rnÞg1ð Þ; ð29Þ

where in above Eq. (29)

gm ¼Wmxm

l

m2r4n þx2
mð1þ ar2nÞ

2
mr2n cosðxmtÞ � exp � mr2nt

1þ ar2n

� �� ��"

þxmð1þ ar2nÞ sinðxmtÞ

þ a1

1þ ar2n
exp � mr2nt

1þ ar2n

� �
� a1xm

m2r4n þx2
mð1þ ar2nÞ

2
� xm

�
1þ ar2n

�
expð� mr2nt

1þ ar2n
Þ � cosðxmtÞ

� ��
þmr2n sinðxmtÞ


corresponding to the ordinary or classical second grade fluid,

performing the same motion. The velocity field (28) and shear
stress field (29) are same as obtained in the Ref. Mahmood
et al. (in press).

Eqs. (28) and (29) correspond to the transient solutions
of the velocity field and shear stress, respectively, of the sec-
ond grade fluid. As time goes to infinity, these terms vanish

and we are left with the corresponding steady-state
solutions.
3.2. Solutions for Newtonian fluid

Making a fi 0 (equivalently a1 fi 0) into Eqs. (28) and (29),
velocity field and associated shear stress for Newtonian fluid,
performing the same motion, can be obtained. For instance,

the velocity field is

vNðr; tÞ ¼
W1R1ðR2

2 � r2Þ sinðx1tÞ þW2R2ðr2 �R2
1Þ sinðx2tÞ

ðR2
2 �R2

1Þr

� p
X1
n¼1

J1ðR1rnÞB1ðrrnÞ
J21ðR1rnÞ � J21ðR2rnÞ

W2x2J1ðR1rnÞ
m2r4n þx2

2

�
mr2n cosðx2tÞð

�
� exp �mr2nt

� ��
þx2 sinððx2tÞÞ


�W1x1J1ðR2rnÞ

m2r4n þx2
1

�
mr2n cosðx1tÞ � expð�mr2ntÞ
� �

þx1 sinðx1tÞ
	
: ð30Þ
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4. Concluding remarks

Our purpose in this paper was to establish exact analytic solu-
tions for the velocity field and shear stress corresponding to the

flow of a generalized second grade fluid between two infinite
coaxial circular cylinders, by using Laplace and Hankel trans-
forms. The motion of fluid was due to the simple harmonic

sine oscillations of both cylinders around their common axis,
with different angular frequencies x1 and x2 of their velocities.
It is important to point out that the velocity field and the shear
stress for the oscillatory motion between the cylinders, when

one of them is at rest, can be obtained from our general
Figure 2 Velocity profiles for different values of time.
solutions by making W1 = 0, W2 =W and x2 = x (when
inner cylinder is at rest) or W1 =W, W2 = 0 and x1 = x
(when outer cylinder is at rest). For instance, the velocity field

for the flow of generalized second grade fluid, when inner
cylinder is at rest and the outer cylinder is oscillating, is given
by (from Eq. (23))

vðr; tÞ ¼WR2ðr2 � R2
1Þ sinðxtÞ

R2
2 � R2

1

� �
r

� pWx
X1
n¼1

X1
k¼0
�mr2n
� �k

� J21ðR1rnÞB1ðrrnÞ
J21ðR1rnÞ � J21ðR2rnÞ

Z t

0

cosðxðt� sÞÞ

� G1�b;�bk�b;kþ1ð�ar2n; sÞds: ð31Þ
Figure 3 Velocity profiles for different values of time.



Figure 4 Velocity profiles for different values of time.
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The solutions that have been obtained, presented under

integral and series forms in terms of the generalized G and R
functions, satisfy the governing equation and all imposed ini-
tial and boundary conditions and for b fi 1 reduce to the sim-

ilar solutions for the second grade fluid. Finally, the solutions
for the flow of Newtonian fluid for the similar flow between
cylinders have been also recovered as a special case of our gen-

eral solutions, when b fi 1 and a fi 0.
Finally the graphical illustrations, Figs. 2–4, are given to

show the comparison between the flow of generalized second
grade (curves vG1(r) and vG2(r) for b = 0.9 and 0.6,
respectively), second grade (curve vS(r) for b = 1) and that
of Newtonian fluid (curve vN(r) for b = 1 and a fi 0). These
graphs also show the influence of the fractional coefficient b
on the velocity v(r, t). In all figures we consider R1 = 1,
R2 = 4, V1 = 1, V2 = 4, X1 = 5, X2 = 7, a = 9 · 10�3 and
m = 1.1746 · 10�3 while SI units of parameters are used.

Appendix A. Some results used in the text:

The finite Hankel transform of the function
aðrÞ ¼ AR1ðR2
2 � r2Þ þ BR2ðr2 � R2

1Þ
ðR2 � R2

1Þr
ðA1Þ
satisfying a(R1) = A and a(R2) = B is

an ¼
Z R2

R1

raðrÞB1ðrrnÞdr ¼
2B

pr2n
� 2A

pr2n

J1ðR2rnÞ
J1ðR1rnÞ

:

L�1
qb

ðqa � dÞc
� 

¼ Ga;b;cðd; tÞ;Reðac� bÞ > 0;

ReðqÞ > 0;
d

qa

���� ���� < 1: ðA2Þ

L�1
e�dqqb

qa � c

� 
¼ Ra;bðc; d; tÞ ¼

X1
j¼0

cjðt� dÞðjþ1Þa�b�1

C½ðjþ 1Þa� b� ; ðA3Þ

d P 0; Reððjþ 1Þa� bÞ > 0; ReðqÞ > 0:

R2;1ð�a2; 0; tÞ ¼ cosðatÞ: ðA4Þ

If u1ðtÞ ¼ L�1f�u1ðqÞg and u2ðtÞ ¼ L�1f�u2ðqÞg then ðA5Þ

L�1f�u1ðqÞ�u2ðqÞg ¼ ðu1 � u2ÞðtÞ ¼
Z t

0

u1ðt� sÞu2ðsÞds

¼
Z t

0

u1ðsÞu2ðt� sÞds:

1

zþ a
¼
X1
k¼1
ð�1Þk zk

akþ1
: ðA6Þ

X1
k¼0

�
� mr2n

�k

G0;�k�1;kþ1ð�ar2n; tÞ

¼
X1
k¼0

�
� mr2n

�kX1
j¼0

ðkþ 1Þjð�ar2nÞ
j

j!

tk

k!

¼
X1
k¼0

�
� mr2n

�k
1

ð1þ ar2nÞ
kþ1

tk

k!

¼ 1

1þ ar2n

X1
k¼0

1

k!
� mr2nt
1þ ar2n

� �k

¼ 1

1þ ar2n
exp � mr2nt

1þ ar2n

� �
: ðA7Þ

d

dr
½B1ðrrnÞ� ¼ rn½J0ðrrnÞY1ðR2rnÞ � J1ðR2rnÞY0ðrrnÞ�

� 1

r
B1ðrrnÞ: ðA8Þ
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