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ABSTRACT

Tissue engineering methods may be applied for the repair or regeneration of damaged teeth by inducing
cell proliferation and differentiation in endodontic regeneration. One of the main factors in tissue engi-
neering is the scaffold used. An ideal scaffold should be able to facilitate predictable tissue development
in endodontic regeneration. Thus, tissue engineering requires consideration for the composition and
functionality of the scaffold suited for biological applications. The objective of this study was to assess
the morphological, physico-chemical, and biological properties of a new gelatin (Gel)-nano-
hydroxyapatite (nHA)-based scaffold to be applied in endodontic regeneration. The scaffold containing
gelatin and nHA was prepared by a freeze-drying method. Conventional techniques, including scanning
electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction analysis
(XRD), and dynamic light scattering (DLS) analysis were used to evaluate the physico-chemical properties
of the fabricated Gel-nHA sponge scaffold. Biological examination for cell survival and differentiation of
dental pulp stem cells (DPSCs) was evaluated by the MTT assay and ALP activity techniques, respectively.
The produced Gel-nHA scaffold had spongy properties that all functional groups of gelatin and hydrox-
yapatite were present in the sponge. In biological studies, the viability of the cells grown on Gel-nHA scaf-
fold had no different change from the control group on days 2nd, 4th, and 6th. Besides, after 14 days of
cells cultured on Gel-nHA, alkaline phosphatase (ALP) activity showed a significant increment. In sum-
mary, the Gel-nHA scaffold revealed favorable effects on odontogenic activity, implying a potential future
for application in endodontic regeneration.
© 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Regenerative endodontics is one of the latest endodontic treat-
ment modalities that has recently been presented and has found a
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dictory results have called into doubt its validity and dependability
in endodontic treatments (Bansal et al., 2015). This procedure uses
cells with the ability to differentiate, such as stem cells, to try to
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rebuild lost and necrotic tissues. Despite being innovative and
using modern technology, this therapeutic strategy has consider-
able drawbacks. One of the method’s main shortcomings is its
inability to regenerate tissues completely (Galler and Widbiller
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2020). One of the main aims of the tissue engineering technique is
to induce regeneration to heal injured tissues by utilizing bioactive
chemicals, cell resources, and scaffolds to restore bone function
through the regeneration and adaptation to the host tissue process
(Hill et al., 2006, Sharifi et al., 2020a; Sharifi et al., 2020b; Khezri
et al., 2021).

Stem cells are defined as cells with self-renewal potential and
multi-lineage differentiation (Lavik and Langer 2004, Vahedi
et al.,, 2019, Vahedi et al., 2021). Dental pulp stem cells (DPSCs)
have a high capability for differentiation and for the regeneration
of the dentin-pulp complex (Gronthos et al., 2000). Scaffolding
functions as a synthetic matrix, enabling cells to proliferate while
still performing their specialized function. Natural materials such
as chitosan, gelatin (Gel), collagen, hyaluronic acid and fibrin have
all been utilized to fabricate scaffolds for tissue engineering
(Ahmadian et al., 2020, Sharifi et al., 2021). Cellular scaffolds suited
for cell implantation or injection should promote cell survival,
induce bioactivity, and increase cell adhesion in the location of cell
implantation or injection. In addition, scaffolds are composed of
various kinds of polymers, which shield cells from the immune sys-
tem and allow the exchange of nutrients and waste compounds
(Azami et al., 2012, Henkel et al., 2013, Firouzi et al., 2020).

Gel is a natural biopolymer derived from animal skin, bone, and
tendon collagen. Gel structures with varying physical and chemical
characteristics emerge from differences in collagen supply and
manufacturing procedures (Djagny et al., 2001, Alipour et al,
2021). Gel may also improve cell proliferation and differentiation
(Zhu et al., 2004, Salamon et al., 2014), such as DPSC adhesion
and proliferation, migration, and odontogenic differentiation,
which increases mineralization, alkaline phosphatase (ALP) activ-
ity, and increases collagen expression (Qu and Liu 2013).

The main inorganic constituent of bone and enamel is hydrox-
yapatite (HA). HA particles have the ability to induce macrophages
to release odontogenic and angiogenic growth factors (Honda et al.,
2006, Kilian et al., 2008).

As angiogenesis and bone formation induction are crucial pro-
cesses in bone regeneration, using nanohydroxyapatite (nHA) in
the scaffold makes sense. Adding bioactive elements as fillers to
scaffolds may enhance their physical and chemical characteristics;
therefore, scaffolds incorporating inorganic and polymeric materi-
als may increase mechanical strength, biocompatibility, and
biodegradability (Sharifi et al., 2019). The nHA, which has a chem-
ical and crystal structure similar to bone mineral is considered an
excellent scaffolding material (Zakaria et al., 2013). Smaller nHA
particles (<100 nm) seem more favorable to the host due to
improved interfacial adhesion, cell proliferation, and cell adher-
ence (Jiang et al., 2017).

In assessing the effectiveness of tissue engineering, the qualities
of scaffolding are vital in cell survival or induction of differentiation,
in addition to evaluate the characteristics of scaffolding. Tissue tox-
icity generally develops as a result of excessive absorption and the
concentration of a chemical exceeding the tissue tolerance thresh-
old and depletion of antioxidants reservoirs (Ma 2004, Ahmadian
et al., 2017). According to several investigations, increasing cyto-
toxicity inhibits tissue regeneration and causes cell death. As a
result, an evaluation of the impact of designed scaffolding on cell
survival or toxicity is required. Changes in ALP activity must also
be monitored to measure bone differentiation in scaffolding
(Kanczler and Oreffo 2008, Polini et al., 2014). Several investiga-
tions have revealed that this enzyme plays an essential role in min-
eralizing organic tissue in bone and dental tissue samples (Liu and
Chang 2002, Haque et al., 2005). Based on these examples, it is pos-
sible to infer that assessing the amount of this marker is critical in
evaluating the success and efficacy of tissue engineering.

Thus, the aim of this study was to engineer the gelatin sponge
scaffold containing nHA with an odontogenic specificity. Subse-
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quently, this scaffold was studied to determine its effect on cell
growth. Finally, the change in the level of ALP activity in DPSCs
grown on the engineered scaffold was analyzed to assess longer-
term effects.

2. Materials and methods
2.1. Ethics approval

The ethical code of this investigation is IR.TBZMED.VCR.
REC.1400.391, which was accepted by the Ethic Committee of the
Tabriz University of Medical Sciences.

2.2. Preparation of scaffold

Gelatin solution was prepared with a 1/10 w/v ratio of gelatin
(Sigma Aldrich-USA) and distilled water at 65 °C. Then, the solution
was stirred at 35 °C and 1 % w/v of glutaraldehyde (Sigma Aldrich-
USA) was added and stirred. The resulting solution was poured into
a mechanical stirrer. Then, 10 % w/v of nHA was added to the gela-
tin solution and stirred for 60 min. The resulting material was
placed in a freezer at —20 °C for 24 h. The frozen material was then
incubated in a vacuum oven for 24 h and dried.

2.3. Characterization of the scaffold

2.3.1. Scanning electron microscopy (SEM)

The morphological characteristics of the scaffold were exam-
ined using SEM (Razi Company of Tehran, Tehran, Iran). The sam-
ples were placed on a SEM plate and subsequently gold-coated in
a high-vacuum environment and at an acceleration voltage of
10 kV. The magnification of the SEM was set to 100X.

2.3.2. Particle size

By an argon laser beam in a scattering angle of 90° and at
633 nm, dynamic light scattering (DLS, Malvern, Cambridge, Mas-
sachusetts, United Kingdom) was utilized to validate the nanoscale
size accuracy of the nHA at 25 °C. The device’s specific tube was
filled with distilled water to generate a high-quality suspension
of scaffolds.

2.3.3. X-ray diffraction (XRD)

The raw materials and the prepared scaffold were evaluated at
room temperature utilizing XRD patterns. The patterns of the sam-
ples were determined using an X-ray diffractometer (D5000, Sie-
mens, Munich, Bavaria, Germany) set at 5405/1 A wavelength,
40 kV voltage, and 30 mA. Their patterns were analyzed between
zero and sixty 20 values.

2.4. Fourier-transform infrared (FT-IR) spectroscopy

FT-IR spectroscopy (FTIR, Shimadzu 8400S-Japan, Kyoto, Japan)
was used to identify the functional groups. The samples were com-
bined with IR-grade potassium bromide and pressed using IR pellet
production equipment. The wavelengths were then adjusted from
400 to 4000 (cm™ ).

2.5. MTT assay

In this study, to evaluate the toxic effect of scaffolding on DPSCs,
an MTT assay was used. In order to perform these experiments,
DPSCs were purchased from Shahid Beheshti University, which
had a low passage number. The prepared scaffold was placed at
the bottom of the 96-well plate and then the cells (5 x 10° cell/
well) were added to each well in Dulbecco’s Modified Eagle’s Med-
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ium (DMEM) medium containing 10 % fetal bovine serum (FBS) and
1 % antibiotics. The plates were incubated for 2, 4, and 6 days. Fol-
lowing this, the culture medium was removed and incubated with
200 pl of culture medium. Further, 50 pl of MTT solution (2 mg/ml
PBS) was added and incubated for 4 h at 37 °C and kept away from
light. After the incubation period, the above solution was removed
and 200 pl of DMSO was added to each well. Their absorption was
read at 540 nm and the percentage of living cells was measured by
comparing the control (cells grown in the absence of the scaffold).

2.6. ALP activity

The sterilized scaffolds were put into the 24-well plate, and
DPSCs were added to each well (5 x 10* cells/well). ALP activity
was assessed after 14 days. Briefly, the wells were washed three
times with PBS. A stock solution of cell digestion buffer, which
has 1.5 M Tris-HCl, 1 mM ZnCl,, and MgCl,x6H,0, was diluted in
a solution of distilled water (1:10) and added to each well. Then,
1 % of Triton X-100 was added to the wells. Then, the plates were
incubated at 37 °C for 30 min and were then stored at 4 °C over-
night. Cell lysates were put into samples, vortexed for 2 min, and
centrifuged for 5 min at 2000 rpm. Also, about 10 pl of cell lysate
mixed with 190 pl of ALP solution (37.1 mg of pNPP in 20 mL of cell
assay buffer) was added to each well of the 96-well plate. The sam-
ple was shaken at room temperature in the dark for 50 min. The
Cytation 5 system was used to measure the absorbance of the
ALP activity at 405 nm. The control group was cells grown in the
absence of the scaffold.

2.7. Statistical analysis

To establish the significance of the experimental findings, one-
way ANOVA and t-test statistical analysis were used for MTT tests
and ALP activity tests, respectively. A statistically significant p-

value of p < 0.05 was used. Tukey’s post hoc test was used for
the analysis between the groups for MTT test.

3. Results and discussion
3.1. Characterization of scaffold

Fig. 1a shows the produced sponge. SEM image of the sponge
has presented in Fig. 1b. The microscopic structure of the prepared

a
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sponge under SEM showed a porous structure with the micromet-
ric and nanometric pores. The micro/nano-structured porous
sponges are recently in the core of attention to use as scaffolds.
The micro/nano pores allow for cell mobility and metabolic pro-
cesses (Sari et al., 2021). Nanometer-scale pores on the surface of
the sponge can also leads to surface roughness (Xue et al., 2019).

3.2. Particle size

The size distribution for nHA particles is presented in Fig. 2.
Based on the results, the mean particle size of 75 nm with a poly-
dispersity index (PDI) value of 0.2 shows the relatively monodis-
perse particle size distributions (Jana et al., 2014). This index
shows that values smaller than 0.05 are mostly highly monodis-
perse. PDI values bigger than 0.7 specify that the sample has a very
wide-ranging particle size distribution and is possibly not appro-
priate to be investigated by the DLS method (Danaei et al., 2018).

3.3. FT-IR analysis

FTIR results showed that all functional groups of gelatin and HA
were present in the sponge (Fig. 3). The amide I peak in the sponge
sample was related to gelatin (1634 cm™!) (Tengroth et al., 2005).
Also, it was revealed that the broad peak at 3200-3500 cm~! was
linked to the OH group’s tension spectrum (El-Rahman and Al-
Jameel 2014). The index peaks were associated with the HA phos-
phate group at 563 and 602 cm~! (Hezma et al., 2019).

40
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Fig. 2. The size distribution for nHA particles.
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Fig. 1. The produced sponge (a). The SEM image of the sponge (b).
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Fig. 3. FTIR results for nHA (a), Gelatin (b) and the prepared sponge (c).
3.4. Identification of crystallinity state

XRD patterns were determined at room temperature for the raw
materials and the final product, respectively (Fig. 4). The produced
sponge showed the peaks for both materials. In a previous study,
XRD results showed that the structure of gelatin was essentially
amorphous (Hezma et al., 2019). XRD pattern findings revealed
that HA exhibited its index peaks at 26, 31, 39, and 41° according
to pervious study (Hezma et al., 2019).

3.5. Cell viability

MTT assay results revealed that sponge was not cytotoxic, sim-
ilar to the corresponding control groups (Cells were grown in the
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Fig. 4. XRD diffraction patterns, Gelatin (a), nHA (b) and the prepared sponge (c).

absence of scaffolds) (p > 0.05) (Fig. 5). Tukey’s post hoc test also
showed that there was no significant difference between the
groups (p > 0.05). Sadeghinia et al synthesized
nanohydroxyapatite/chitosan/gelatin scaffolds which did not show
any cytotoxicity on dental pulp stem cells and had proliferative
effect (Sadeghinia et al., 2019). In our previous study, we prepared
gelatin-hydroxyapatite nano-fibers which didn’t show the cyto-
toxic effect on DPSCs and showed a significant proliferative effect
(Sharifi et al., 2020a; Sharifi et al., 2020b). The non-toxicity of
Gel-HA sponge on DPSCs was consistent with the results of other
studies as well (Sharifi et al., 2020a; Sharifi et al., 2020b; Alipour
et al,, 2021).

3.6. ALP activity

After 14 days of culture, the ALP activity of DPSCs cultured on
Gel-HA rose considerably in contrast to the control groups
(p < 0.05). This increase suggests that the DPSCs progressively dif-
ferentiated into osteoblasts (Fig. 6). A previous study has shown

MTT assay

120 1

100 A

60 -

40 4

Cell viability (%)

Control

m 2 days
B4 days

u 6 days

Gel-HA sponge

Fig. 5. The cell viability of seeded DPSCs on the Gel-HA sponge scaffolds.
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Fig. 6. The ALP activity in DPSCs seeded on the Gel-HA sponge scaffolds. * shows statistically significant (p < 0.05) difference with control.

that MSCs seeded on Gel-HA scaffold have a strong bio-mimetic
potential as a hard tissue scaffold (Li et al., 2018). The combination
of polymeric scaffolds by inorganic particles may induce a positive
cellular response compared to neat scaffolds, for example in
enhanced cell proliferation and early osteogenic differentiation of
human mesenchymal stem cell (hMSC), as showed by the ALP
expression (Raucci et al., 2019). Sadeghinia et al. showed
nanohydroxyapatite/chitosan/gelatin scaffolds increased ALP
activity of DPSCs after two weeks (Sadeghinia et al., 2019).

4. Conclusions

Our findings showed that the Gel/nHA sponge scaffold, in par-
ticular, has the best overall characteristics for endodontic regener-
ation applications. We believe that because this method of forming
organic/inorganic hybrid scaffolds is reasonable and typically per-
formed under mild conditions, while improving bioactive and
mechanical properties, such a scaffold will have potential applica-
tions in tooth tissue regeneration, drug delivery, and other related
medical fields. However, more studies should be conducted over a
longer time period to develop the cell/gelatin scaffold build and
explore the mechanical and physical properties that will be suit-
able for endodontic regeneration. In future, organic/inorganic
hybrid materials may be accessible as a main part of the biomate-
rial scaffolds. Such advanced biomaterials can be used as scaffold-
ing blocks with human stem cells in developing bioprinting
application, antimicrobial and antioxidant therapy, including drug
screening and disease modelling. However, more in vivo and clin-
ical tests are needed to show these abilities.
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