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Abstract In this paper, a meshless local Petrov–Galerkin (MLPG) method is presented to treat the

heat equation with the Dirichlet, Neumann, and non-local boundary conditions on a square domain.

The Moving Least Square (MLS) approximation is a classical MLS method, in which the Gaussian

weight function is the most common shape function. However, shape functions for the classical MLS

approximation lack the Kronecker delta function property. Thus in this method, the boundary condi-

tions cannot have a penalty parameter imposed easily and directly. In the method we choose a weight

function that leads to the MLS approximation shape functions approximating the Kronecker delta

function property, and nodes on the Dirichlet boundary conditions, which enables a direct application

of essential boundary conditions without the additional numerical method. The improved weight func-

tion inMLS approximation has been successfully implemented in solving the diffusion equation prob-

lem. Two test problems are presented to verify the efficiency, easiness and accuracy of the method. Also

Ne and root mean square errors are obtained to show the convergence of the method.
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1. Introduction

In the past several decades, there has been a growing interest in

the development of meshless numerical techniques as alterna-
tives to classical mesh-dependent numerical methods. The
MLPG method was first discovered by Atluri and Zhu

(1998). This method has been described in textbooks (Atluri,
2004; Liu and Gu, 2005) as allowing for freedom to choose
the test function. The method is based on local weak forms
and moving least square (MLS) approximation, and obtains
ier B.V. All rights reserved.
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the true solution of the problem. The main advantage of the
MLPG method is that it only requires nodes and a description
of the external and internal boundary conditions, therefore, no

element connectivity, neither total nor part, is needed. Effec-
tive implementations of meshless methods are a key to success
(Katz, 2009; Dehghan, 2005; Liu, 2009; Atluri and Zhu, 1998,

2000; Atluri and Shengping, 2002; Abbasbandy and Shirzadi,
2011; Wu and Tao, 2008).

Finding the numerical solution with a non-local boundary

condition is important for research in many fields of science
and engineering such as chemical diffusion, diffusion equation,
thermoelasticity, heat conduction process, heat transfer, control
theory, medical schemes and so on (Martin-Vaquero and Vigo-

Aguiar, 2009;Abbasbandy and Shirzadi, 2011;KazemandRad,
2012; Bogoya et al., 2012; Syed and Ahmet, 2011; Pisano et al.,
2009). It is most widely used and very important in thermoelas-

ticity. In 1963, Cannon (1963) first introduced non-local bound-
ary condition problems, and most investigations developed
various problems with one dimension, two dimension, the

Dirichlet boundary condition, and theNeumann boundary con-
dition. In 2010, Abbasbandy and Shirzadi (2010, 2011) re-
searched on the MPLG method for the two-dimensional

diffusion equation with the Neumann boundary condition and
non-classical boundary condition, and a meshless method for
the two-dimensional diffusion equation with an integral condi-
tion. The proposedmethodworked very well for the two-dimen-

sional diffusion equations with a non-classical boundary
condition, because of its simplicity and high accuracy.

The purpose of this paper is to improve the weight function

in the MLS approximation to make the meshless method very
efficient for solving the following two-dimensional time-depen-
dent heat equation with non-local boundary conditions, given

by Abbasbandy and Shirzadi (2011):

@u

@t
¼ @2u

@x2
þ @

2u

@y2
; ðx; yÞ 2 X ð1Þ

with initial condition

uðx; y; 0Þ ¼ fðx; yÞ; X ¼ ðx; yÞ j 0 6 x; y 6 1; ð2Þ

and boundary conditions

@uð0; y; tÞ
@x

¼ g0ðy; tÞ; 0 6 t 6 T; 0 6 y 6 1; ð3Þ

@uð1; y; tÞ
@x

¼ g1ðy; tÞ; 0 6 t 6 T; 0 6 y 6 1; ð4Þ

uðx; 1; tÞ ¼ h1ðx; tÞ; 0 6 t 6 T; 0 6 x 6 1; ð5Þ

uðx; 0; tÞ ¼ h0ðxÞlðtÞ; 0 6 t 6 T; 0 6 x 6 1; ð6Þ

and the non-local boundary conditionZ
X
uðx; y; tÞdX ¼ mðtÞ; 0 6 x 6 1; 0 6 y 6 1; ð7Þ

where f, g0, g1, h0, h1 and m are given functions, while the func-
tions u and l are unknowns. The non-local boundary condi-

tion is variable-separable, with spatial dependence given by
h0(x) and time dependence given by l(t).

Abbasbandy and Shirzadi (2011) used a meshless local Pet-

rov–Galerkin (MLPG) method to treat parabolic partial differ-
ential equations with Dirichlet and Neumann conditions and a
non-classical boundary.A difficulty in implementing theMLPG

method to impose essential boundary conditions is that the
Moving Least Square (MLS) trial functions do not pass through
the nodal values. To overcome this difficulty, they used the
MLPG method only inside the domain, while at boundaries,

they used finite difference schemes in all boundary conditions.
Most and Bucher (2005) presented the application of the

MLS interpolation is solved with a new weighting function,

which makes the MLS interpolation more attractive especially
within a Galerkin method. A new weighting function was de-
signed for meshless shape functions to fulfill these essential

conditions with a very high accuracy without any additional
effort. Due to the approximative character of this interpolation
the obtained shape functions do not fulfill the interpolation
conditions, which causes an additional numerical effort for

the application of the boundary conditions. This will be clear
by pointing out, that the choice of the base polynomial is arbi-
trary, thus the accuracy can be increased by choosing higher

order polynomials.
Yang et al. (2011) used an improved hybrid boundary node

method (hybrid BNM) for solving steady fluid flow problems,

Miao et al. (2005) used a meshless hybrid boundary-node meth-
od for Helmholtz problems, and Wang et al. (2011) used the
multi-domain hybrid boundary node method for 3D elasticity.

This research used the Hybrid BNM, proposed by Zhang
et al. (2002), for potential and elasticity problems which is a
new boundary type meshless method and has been developed
by Miao et al. (2005). Belytschko et al. (1996) combined MLS

approximation and a modified variational principle. It only re-
quires nodes constructed on the boundary of the domain, and
does not require any mesh for the interpolation of variables,

nor for the integration. The accuracy of the hybrid BNM is
rather high. However, shape functions for the classical MLS
approximation lack the delta function property, due to which

Yang et al. (2011) in their paper used the improved MLS ap-
proach in the hybrid boundary node method. They proposed
adopting a regularized weight function and used a new weight

function that was designed by Most and Bucher. This method
leading to the MLS shape functions fulfilling the interpolation
condition exactly, enables a direct application of essential
boundary conditions without additional numerical effort.

The objective of the present study is to improve the weight
function in the classical MLS method. The Gaussian weight
function is the most common; however, this kind of shape

function does not have the Kronecker delta function property,
so the boundary condition cannot be enforced easily and di-
rectly. Consequently, a transformation strategy of boundary

condition application is inevitable, therefore, additional com-
putational efforts cannot be avoided. In order to remove it,
Most and Bucher designed a new weight function that allows
for the fulfillment of the MLS interpolation condition with a

very high accuracy.
In this paper, we implement the problems under a non-local

boundary condition as in Eq. (7). Also, we used the weight

function (Most and Bucher, 2005) in our implementation, for
which the MLS approximation lacks the Kronecker delta func-
tion property, so it should be noted that the weight function

leads to the MLS approximation shape functions fulfilling
the interpolation condition exactly and enables a direct appli-
cation of the Dirichlet boundary conditions, where solving the

two-dimensional diffusion equation is shown to be accurate
and less coding computational expense can be obtained.

The contents of this paper are as follows: Section 2 presents
the improvedMLS approach, Section 3 discusses the local weak
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formulation of the problem, Section 4 describes the numerical
implementation of the method for the diffusion equation with
regular nodes, and finally Section 5 presents the conclusions.

2. The improved MLS approach

Consider a sub-domain Xx, the neighborhood of a point x and

denoted as the domain of definition of the MLS approxima-
tion for the trial function at x, which is located in the problem
domain Xx. To approximate the distribution of function u in

Xx, over a number of randomly located nodes xi, i = 1, 2,
..., n, the moving least square approximation uh(x) of u, "x

2 Xx can be defined by

uhðxÞ ¼ PTðxÞaðxÞ 8x; ð8Þ

where PT(x) = [p1(x),p2(x),. . .,pm(x)] is a complete monomial
basis of order m; and a(x) is a vector containing coefficients

aj(x), j= 1, 2, . . ., m, which are functions of the space coordi-
nates x. For example, for a 2-D problem, PT(x) = [1, x, y] and
PT(x) = [1, x, y, x2, xy, y2], for linear basis (m = 3) and qua-

dratic basis (m= 6), respectively. The coefficient vector a(x) is
determined by minimizing a weighted discrete L2 norm, de-
fined as

JðxÞ ¼
Xn
i¼1

wiðxÞ½pTðxiÞaðxÞ � ûi�2

¼ ½P � aðxÞ � bu�TW½P � aðxÞ � bu�; ð9Þ

where wi(x) is the weight function associated with the node i,
with wi(x)> 0 for all x in the support of wi(x), xi denotes
the value of x at node i, n is the number of nodes in Xx for

which the weight functions wi(x)> 0, the matrices P and W

are defined as

P ¼

PTðx1Þ
PTðx2Þ
� � �

PTðxnÞ

0BBB@
1CCCA

n�m

;W ¼

w1ðxÞ . . . 0

..

. . .
. ..

.

0 � � � wnðxÞ

0BB@
1CCA

and buT ¼ ½û1; û2; . . . ; ûn�: Here it should be noted that
ûi; i ¼ 1; 2; . . . ; n; in (9) are fictitious nodal values, and not

the nodal values of the unknown trial function uh(x) in general.
The stationary point of J in (9) with respect to a(x) leads to the
following linear relation between a(x) and bu
AðxÞaðxÞ ¼ BðxÞbu; ð10Þ

where the matrices A(x) and B(x) are defined by

AðxÞ ¼ PTWP ¼
Xn
i¼1

wiðxÞpðxiÞpTðxiÞ; ð11Þ

BðxÞ ¼ PTW

¼ ½w1ðxÞpðx1Þ;w2ðxÞpðx2Þ; . . . ;wnðxÞpðxnÞ�: ð12Þ

The MLS approximation is well-defined only when the ma-
trix A in (10) is non-singular. It can be seen that this is the case
if and only if the rank of P equals m. A necessary condition for

a well-defined MLS approximation is that at least m weight
functions are non-zero (i.e., n > m) for each sample point
x 2 X and that the nodes in Xx are not arranged in a special
pattern, such as on a straight line. Here, a sample point may

be a nodal point under consideration or a quadrature point.
Solving a(x) from (10) and substituting it into (8) gives a
relation which may be written in the form of an interpolation
function similar to that used in FEM, as:

uhðxÞ ¼ UTðxÞ:bu ¼Xn
i¼1

/iðxÞûi; uhðxÞ � ui; x 2 Xx ð13Þ

and essentially ui–ûi; where

UTðxÞ ¼ pTðxÞA�1ðxÞBðxÞ; ð14Þ

or

/ðxÞ ¼
Xm
j¼1

pjðxÞ½A�1ðxÞBðxÞ� ð15Þ

Usually /i(x) is called the shape function of the MLS

approximation corresponding to nodal point yi. From (12)
and (14), it may be seen that /i(x) = 0 when wi(x) = 0. In
practical applications, wi(x) is generally chosen such that it is
non-zero over the support of nodal points yi. The support of

the nodal point yi is usually taken to be a circle of radius ri,
centered at yi. The fact that /i(x) = 0, for x not in the support
of nodal point yi, preserves the local character of the moving

least square approximation.
Let Cq(X) be the space of qth continuously differentiable

functions on X. If wi(x) e Cq (X)pj(x) e Cs(X), i = 1, 2, ..., n

and j = 1, 2, ..., m, then ui(x) e Cr(X) with r = min(q, s).
The partial derivatives of /i(x) are obtained as

/i;kðxÞ ¼
Xm
j¼1
½pj;kðA�1BÞji þ pjðA�1B;k þ A

�1
;k BÞji�; ð16Þ

in which A�1;k ¼ ðA
�1Þ;k represents the derivative of the inverse

of A with respect to xk, which is given by A�1;k ¼ �A
�1A;kA

�1;
where (�),i denotes @ð�Þ

@xi
:

In this paper, we should first choose the weight function in
the implementation of the MLS approximation. In the classical

MLS method, the Gaussian weight function is the most com-
mon. However, this kind of shape function does not have
the Kronecker delta function property, so the boundary condi-
tion cannot be enforced easily and directly. Consequently, a

transformation strategy of boundary condition application is
inevitable, therefore, additional computational effort cannot
be avoided. In order to remove it, Most and Bucher (2005) de-

signed a new weight function which allows the fulfillment of
the MLS interpolation condition with a very high accuracy:

/MLS
i ðxjÞ � dij: ð17Þ

The new weight function (Most and Bucher, 2005) is used as

wRðxÞ ¼
~wRðxÞXk

j¼1
~wRðxjÞ

; ð18Þ

where

~wRðxÞ ¼
ðs2þeÞ�2�ð1þeÞ�2

e�2�ð1þeÞ�2 ; 0 6 s 6 1

0 s P 1:

(
ð19Þ

The variable k belongs to the number of supporting points
influencing x; s is the normalized distance between the interpo-
lation point and the considered supporting point, si ¼ kx�xikD

and D is the influence radius.
Most and Bucher (2005) recommended the regularization

parameter e, which should be very small, as
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e ¼ 10�5: ð20Þ
344
3. Local weak formulation

The MLPG method constructs the weak form over local sub-

domains such as Xs, which is a small region taken for each
node in the global domain X and may be of any geometric
shape and size. In this paper they are taken to be of circular

shape. Because the weak form is constructed over local sub-do-
mains, the formulation is called the ‘‘local weak formulation’’.

The local weak form of (1) for xi ¼ ðxi; yiÞ 2 Xi
s can be writ-

ten as follows:Z
Xi
s

@u

@t
�r2u

� �
vidX ¼ 0; ð21Þ

where vi is a test function. Using the divergence theorem and

ðr2uÞvi ¼ @
@x

@u
@x
vi

� �
þ @

@y
@u
@y
vi

� �
� @u

@x
@vi
@x
þ @u

@y
@vi
@y

� �
yields the fol-

lowing expression:Z
Xi
s

@u

@t
vidX�

Z
@Xi

s

@u

@n
vidCþ

Z
Xi
s

@u

@x

@vi
@x
þ @u
@y

@vi
@y

dX

¼ 0; ð22Þ

where Xi
s is a circle of radius r0 centered at xi; @X

i
s is the bound-

ary of Xi
s; n ¼ ðn1; n2Þ is the outward unit normal to the bound-

ary @Xi
s ¼ Ci

su [ Ci
sq0
[ Ci

sq1
;

@u

@n
¼ @u

@x
n1 þ

@u

@y
n2;

and yields the following expression:Z
Xi
s

@u

@t
vidX�

Z
Ci
su

@u

@n
vidC�

Z
Ci
sq0

@u

@n
vidC�

Z
Ci
sq1

@u

@n
vidC

þ
Z

Xi
s

@u

@x

@vi
@x
þ @u
@y

@vi
@y

dX

¼ 0: ð23Þ

Substituting trial function uhðx; tÞ ¼
Pn

j¼1/jðxÞûjðtÞ and
q � @u

@n
into (23) yields:Z

Xi
s

vi
Xn
j¼1

/j

@ûj
@t

dX�
Z

Ci
su

vi
Xn
j¼1

@/j

@n
ûjdC�

Z
Ci
sq0

g0vidC

�
Z

Ci
sq1

g1vidCþ
Z

Xi
s

Xn
j¼1

@/j

@x

@vi
@x

ûj þ
Xn
j¼1

@/j

@y

@vi
@y

ûjdX

¼ 0; ð24Þ

Xn
j¼1

Z
Xi
s

vi/jdX
@ûj
@t
�
Xn
j¼1

Z
Ci
su

vi
@/j

@n
dC ûj þ

Xn
j¼1

Z
Xi
s

�
@/j

@x

@vi
@x
þ
@/j

@y

@vi
@y

dX ûj

¼
Z

Ci
sq0

g0vidCþ
Z

Ci
sq1

g1vidC; ð25Þ

where i = 1, 2, 3, ..., n.
By substituting (13) into (23), the governing equations are

transformed in the discretized system, written in a matrix form
as

K
@ eU
@t
þ FeU ¼ CðtÞ; ð26Þ
where, K, F and C are matrices described as follows:

K ¼ ½Kij�; Kij ¼
Z

Xi
s

/jvidX; ð27Þ

F ¼ ½Fij�; Fij

¼
Z

Xi
s

@/j

@x
ðviÞx þ

@/j

@y
ðviÞydXþ

Z
Ci
su0

vi
@/j

@y
dC�

Z
Ci
su1

vi

�
@/j

@y
dC; ð28Þ

CðtÞ ¼ ½CiðtÞ�; CiðtÞ ¼
Z

Ci
sq0

g0vidCþ
Z

Ci
sq1

g1vidC: ð29Þ

Setting a time-stepping scheme to overcome the time deriv-
ative and applying the Crank–Nicolson technique of approxi-

mation to (26) yields:

K
eUkþ1 � eUk

Dt
þ F

2
ðeUkþ1 þ eUkÞ ¼ Ckþ1

2 ð30Þ

which can be rearranged into:

ð2Kþ DtFÞeUkþ1 ¼ ð2K� DtFÞeUk þ 2DtCkþ1
2 ð31Þ

where eU is a matrix described as follows:

eU ¼ Û

l̂

 !
: ð32Þ

From (31), assuming that ûki , for i= 1, 2, . . ., N and l̂k are
known, our aim is to compute ûkþ1i , for i = 1, 2, . . ., N and

l̂kþ1: Now we have N + 1 unknowns so we need one equation
to compute these unknowns, which can be obtained from the
non-local boundary condition from (7). Substituting trial func-

tion uhðxÞ ¼
Pn

j¼1/jðxÞûj, yields:Z
X
ðuhÞkþ1ðxÞdX ¼

Z
X

Xn
j¼1

/jðxÞu
_kþ1

j dX

¼
Xn
j¼1

Z
X

/jðxÞdX
� 	

u
_kþ1
j ¼ mkþ1; ð33Þ

which can be written in a matrix form as

SbUkþ1 ¼ mkþ1; ð34Þ

where S is a matrix described as follows:

S ¼ ½Sj�; Sj ¼
Z

X
/jðxÞdX: ð35Þ

We use the matrix forms in (31) and (34) to compute ûkþ1i

and l̂kþ1 for nodes located inside the domain and on the Neu-
mann boundary conditions. For nodes on the Dirichlet bound-

ary conditions, we have to impose boundary conditions as
follows:

For nodes xl = (xl, 1) on the top horizontal boundary

ð0 6 xl
6 1Þ; using (5), we have

ukþ1i ðxlÞ ¼ h1ðxl; ðkþ 1ÞDtÞ: ð36Þ

For nodes xl = (xl, 0) on the bottom horizontal boundary
ð0 6 xl

6 1Þ; using (6), we have

ukþ1i � h0ðxlÞl̂kþ1 ¼ 0: ð37Þ



Table 1 Values of RMS and Ne for Example 1 at time instant

t= 0.5 with using Dt = 0.1, m = 3.

u(x,y,t) l(t)

n RMS Ne RMS Ne

9 7.3057e�1 7.2590e�2 1.0598e�1 1.1697e�1
25 3.5521e�1 3.7904e�2 5.5402e�2 1.0191e�1
36 2.4873e�1 2.6939e�2 3.7492e�2 8.2754e�2
81 1.1058e�1 1.2252e�2 1.2751e�2 4.2217e�2
121 7.4128e�2 8.2759e�3 7.4247e�3 3.0045e�2
289 3.8756e�2 4.3771e�3 2.7789e�3 1.7379e�2

Table 5 Values of RMS and Ne for Example 2 at time instant

t= 0.5 with using Dt= 0.1, m = 3.

u(x,y,t) l(t)

n RMS Ne RMS Ne

9 1.3599e�1 2.7574e�2 3.4410e�2 6.2613e�2
25 3.5470e�2 7.5184e�3 1.5547e�3 4.7147e�3
36 2.5973e�2 5.5563e�3 3.4247e�4 1.2463e�3
81 1.3503e�2 2.9292e�3 8.4598e�4 4.6180e�3
121 9.6428e�3 2.1018e�3 6.3712e�4 4.2507e�3
289 6.98e�3 1.53e�3 4.46e�4 4.60e�3

Table 2 Values of RMS and Ne for Example 1 at time instant

t= 0.5 with using Dt = 0.1, m = 6.

u(x,y,t) l(t)

n RMS Ne RMS Ne

9 1.8850e�1 1.8729e�2 5.1431e�2 5.6761e�2
25 4.1526e�2 4.4312e�3 6.3143e�3 1.1615e�2
36 2.5892e�2 2.8043e�3 3.0335e�3 6.6957e�3
81 8.4987e�3 9.4160e�4 3.5117e�4 1.1627e�3
121 5.7840e�3 6.4575e�4 1.2698e�4 5.1384e�4
289 2.0057e�2 2.2652e�3 5.7904e�5 3.6213e�4

Table 3 Values of RMS and Ne for Example 1 at time instant

t= 1 with using Dt= 0.1, m = 3.

u(x,y,t) l(t)

n RMS Ne RMS Ne

9 2.1242e+0 7.7644e�2 3.3082e�1 1.3431e�1
25 8.9967e�1 3.5317e�2 1.3377e�1 9.0521e�2
36 6.2220e�1 2.4791e�2 8.5169e�2 6.9158e�2
81 2.6276e�1 1.0710e�2 2.5011e�2 3.0464e�2
121 1.7538e�1 7.2031e�3 1.3890e�2 2.0678e�2
289 9.3034e�2 3.8655e�3 5.0629e�3 1.1648e�2

Table 4 Values of RMS and Ne for Example 1 at time instant

t= 1 with using Dt= 0.1, m = 6.

u(x,y,t) l(t)

n RMS Ne RMS Ne

9 4.3870e�1 1.6036e�2 1.0908e�1 4.4288e�2
25 1.0064e�1 3.9508e�3 1.2502e�2 8.4599e�3
36 6.3443e�2 2.5278e�3 6.0435e�3 4.9074e�3
81 2.1955e�2 8.9485e�4 7.0239e�4 8.5552e�4
121 1.5056e�2 6.1836e�4 1.8767e�4 2.7938e�4
289 4.2948e�2 1.7844e�3 1.8851e�4 4.3371e�4

Table 6 Values of RMS and Ne for Example 2 at time instant

t= 0.5 with using Dt= 0.1, m = 6.

u(x,y,t) l(t)

n RMS Ne RMS Ne

9 5.1141e�2 1.0370e�2 1.4069e�2 2.5599e�2
25 1.1087e�2 2.3501e�3 1.9632e�3 5.9538e�3
36 7.0657e�3 1.5115e�3 1.0018e�3 3.6456e�3
81 3.0529e�3 6.6229e�4 1.3558e�4 7.4007e�4
121 2.1725e�3 4.7352e�4 8.9797e�5 5.9911e�4
289 9.9018e�3 2.1736e�3 1.1148e�4 1.1495e�3

Table 7 Values of RMS and Ne for Example 2 at time instant

t= 1 with using Dt= 0.1, m = 3.

u(x,y,t) l(t)

n RMS Ne RMS Ne

9 1.8325e�1 2.2537e�2 3.4242e�2 3.7791e�2
25 6.0470e�2 7.7742e�3 1.4521e�3 2.6709e�3
36 4.2662e�2 5.5355e�3 1.8026e�3 3.9788e�3
81 1.9650e�2 2.5856e�3 8.3361e�4 2.7600e�3
121 1.3465e�2 1.7801e�3 5.0689e�4 2.0512e�3
289 1.01e�2 1.34e�3 3.83e�4 2.40e�3

Table 8 Values of RMS and Ne for Example 2 at time instant

t= 1 with using Dt= 0.1, m = 6.

u(x,y,t) l(t)

n RMS Ne RMS Ne

9 6.5064e�2 8.0019e�3 1.5036e�2 1.6595e�2
25 1.4472e�2 1.8606e�3 1.7848e�3 3.2829e�3
36 9.5892e�3 1.2442e�3 9.1070e�4 2.0102e�3
81 3.8241e�3 5.0318e�4 1.0290e�4 3.4071e�4
121 2.5400e�3 3.3580e�4 4.7439e�5 1.9197e�4
289 9.8013e�3 1.3050e�3 4.0534e�5 2.5350e�4
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4. Numerical experiments

For the improved MLS approximations, two test problems

with regular nodes are presented to illustrate the efficiency
and accuracy of the method. The new weight function is used
for the MLS approximations, which the regularization param-

eter e is chosen as e = 10�5. In this paper it is chosen as
r0 = 6h, where h is the distance between nodes in each direc-
tion and the analyzed domain is X = [0,1] · [0,1]. The errors
of u and l presented in the numerical results are presented
by the root mean square (RMS) and Ne errors respectively

where

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
k¼1
ðuðxkÞ � ûðxkÞÞ2

N

vuuut
;



Figure 1 The error obtained at time instant t= 0.5 (a), t= 1 (b) and using Dt= 0.1, m= 3 with an increasing number of nodes for

Example 1.

Figure 2 The error obtained at time instant t= 0.5 (a), t= 1 (b) and using Dt= 0.1, m= 6 with an increasing number of nodes for

Example 1.

Figure 3 The error obtained at time instant t= 0.5 (a), t= 1 (b) and using Dt= 0.1, m= 3 with an increasing number of nodes for

Example 2.
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Ne ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
k¼1
ðuðxkÞ � ûðxkÞÞ2

XN
k¼1

uðxkÞ2

vuuuuuuut ;

u(xk) and ûðxkÞ are achieved by an exact and approximate
solution on xk points and N is the number of nodes.
The errors of the method for Example 1 at time instant

t= 0.5, Dt= 0.1, m= 3 are presented in Table 1 and
m= 6 is presented in Table 2. The errors of the method for
Example 1 at time instant t= 1, Dt= 0.1, m= 3 are pre-

sented in Table 3 and m= 6 is presented in Table 4. The errors
of the method for Example 2 at time instant t = 0.5, Dt = 0.1,
m= 3 are presented in Table 5 and m = 6 is presented in Ta-

ble 6. The errors of the method for Example 2 at time instant



Figure 4 The error obtained at time instant t= 0.5 (a), t= 1 (b) and using Dt= 0.1, m = 6 with an increasing number of nodes for

Example 2.
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t= 1, Dt= 0.1, m = 3 are presented in Table 7 and m= 6 is

presented in Table 8. The numerical results in these tables
show the convergence of the method by increasing the number
of nodal points, which can see an increasing accuracy by
increasing the number of nodal points. The error with an

increasing number of nodes is presented in Figs. 1–4. The re-
sults reveal that the error decreases when the number of nodes
increase.

In this paper, we referenced two examples from Abbasban-
dy and Shirzadi (2011) in a numerical scheme.

Example 1. For the first test problem with non-local boundary
conditions, consider (1)–(7) with

fðx; yÞ ¼ expðxþ yÞ; g0ðy; tÞ ¼ expðyþ 2tÞ; g1ðy; tÞ
¼ expð1þ yþ 2tÞ; h1ðx; tÞ ¼ expð1þ xþ 2tÞ; h0ðxÞ
¼ expðxÞ;mðtÞ ¼ expð2tÞðexpð2Þ � 2 expð1Þ þ 1Þ;

for which the exact solution is
uðx; y; tÞ ¼ expðxþ yþ 2tÞ; lðtÞ ¼ expð2tÞ:

Example 2. For the second test problem with non-local
boundary conditions, consider (1)–(7) with

fðx; yÞ ¼ ð1þ yÞ expðxÞ; g0ðy; tÞ ¼ ð1þ yÞ expðtÞ; g1ðy; tÞ
¼ ð1þ yÞ expð1þ tÞ; h1ðx; tÞ ¼ 2 expðxþ tÞ; h0ðxÞ
¼ expðxÞ;

mðtÞ ¼ 3
2
ðexpð1Þ � 1Þ expðtÞ,for which the exact solution is

uðx; y; tÞ ¼ ð1þ yÞ expðxþ tÞ; lðtÞ ¼ expðtÞ:
5. Conclusions

In this paper, an MLPG method was proposed for the study of

two-dimensional heat equation with Dirichlet, Neumann, and
non-local boundary conditions on a square domain. This
method improved the classic MLS approximation by changing
the Gaussian weight function, due to the shape functions con-

structed in the classical MLS that lack the delta function prop-
erty so that the boundary condition cannot be enforced
directly and a transformation strategy is indispensable. The

efficiency has been greatly improved by using the improved
MLS approach and the boundary conditions can be enforced
easily and directly imposing the Dirichlet boundary conditions

and the coding work can also be reduced. Two numerical
examples are presented to treat heat equation problems. The
numerical results have demonstrated the accuracy, effective-
ness of the present method, and the computation expense is de-

creased slightly since the boundary conditions can be enforced
easily and directly imposing the Dirichlet boundary condi-
tions. The values of Ne and RMS errors corroborate the

appropriate accuracy of our method. It indicates that the
method we introduced in this paper can easily be implemented
to other problems.
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