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Tolerance to degrading water qualities in relation to the gill morphohistology was investigated in pure
and reciprocal crosses of two important catfishes. Progenies of Clarias gariepinus (CG), Pangasianodon
hypophthalmus (PH), Pangapinus ($PH�#CG) and the two observed morphotypes (Clarias-like and
Panga-like) of Clariothalmus ($CG�#PH) were obtained from the same breeding history. These fishes
were cultured in a static system without aeration and at high stocking density for a maximum period
of two weeks. Mortality and water quality were monitored daily. Total mortality was observed 24 h post
exposure (1DPE) in the Panga-like Clariothalmus, while the Pangapinus and pure P. hypophthalmus did
not survive beyond the third day (3DPE). However, total mortality was not recorded in the Pure C. gariepi-
nus and Clarias-like Clariothalmus even after 14DPE. Morphohistology of the gills of the latter fishes
showed the presence of an accessory breeding organ in the form of branched bulbous dendritic-like
structures and less occurrence/severity of many histopathological conditions observed during the chal-
lenge experiment. However, this was not the case with the other fish groups. It was concluded that
the architecture and the level of susceptibility of the gill influenced the tolerance ability of the different
fishes to poor water quality.
� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Intergeneric crosses in fish have been attempted with the aim of
increasing genetic and phenotypic variation for the purpose of
research and commercial production. Progenies of many distance
hybridization are often composed of different phenotypic charac-
ters (Zhao et al., 2015) which is suggestive of significant differences
in genetic composition and inheritance pattern (Okomoda et al.,
2017a). Hence, they not only differ in their external phenotypic
character but also could have significant variation in their physiol-
ogy, and performance characteristic. However, the intra-cross
comparison between different morphotype of the same hybrid
has been limited to only phenotypic, genetic cytogenetic (Zhong
et al., 2012) and erythrocyte characterization (Okomoda et al.,
2017b).

Intergeneric crosses between Asian catfish Pangasianodon
hypophthalmus (Sauvage, 1878) and African catfish Clarias gariepi-
nus (Burchell, 1822) was recently attempted to produced novel
aquaculture candidate for culture and solve some breeding chal-
lenges associated with the production of the pure crosses
(Okomoda et al., 2017a,c). The resultant progeny of the cross with
higher growth rate ($C. gariepinus � #P. hypophthalmus aka Clario-
thalmus) consisted of two distinct morphotypes (Clarias-like and
Panga-like). While the reciprocal cross ($P. hypophthalmus � #C.
gariepinus aka Pangapinus) had only one morphotype (Panga-
like). A twenty-four hours challenge test conducted was suggestive
that some of the progenies of the Clariothalmus had low tolerance
to dissolve oxygen when compared to the other crosses (Okomoda
et al., 2017c). However, no strong scientific backing could be
advanced for this observation aside the assumption of genetic
incompatibility (Okomoda et al., 2017a). More so, in view of the
aquaculture potential of the novel hybrid, there is need to study
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in detail the tolerance of the fish to deteriorating water quality if
commercial production is envisaged.

Characterization of the morphohistology of the internal organs
of fish is pivotal to understanding the fundamental of its physiol-
ogy. For instance, the nature and structure of the respiratory
organs of fish have a significant consequence on its ability to toler-
ate poor water condition. The gill of C. gariepinus is equipped with
an air-breathing organ known as suprabranchial organ
(Vandewalle and Chardon, 1991, Ahmed et al., 2008) while those
of P. hypophthalmus do not have this organ but possesses a vascu-
larized swim bladder (Browman and Kramer, 1985; Okomoda
et al., 2017c). The efficiency of the air-breathing organ of the latter
makes it more tolerant to anoxic water than the former. Although
there is an increasing interest in the anatomical and histological
aspects of the gills of fish in the light of its application in the eval-
uation of fish’s health (Strzyzewska et al., 2016), however, data on
many ichthyofaunal species are still very scarce. More so, the Clar-
iothalmus and Pangapinus been a novel progeny have no available
or documented information on the nature and structure of its gills.
Assessing the morphohistology of the gills of the different morpho-
types of the hybrids progenies may provide important insight into
their perceived responses to degrading water quality, hence, the
aim of this study.
2. Materials and methods

Fingerlings of pure and reciprocal crosses of C. gariepinus and P.
hypophthalmus (two months old) were obtained from four breed-
ing trials following the method described by Okomoda et al.
(2017c). Based on the different morphotype observed in the treat-
ments, a novel water quality challenge evaluation procedure was
designed. The experimental set designed was 5 � 4 � 2 i.e. five fish
groups, four replicates and two experimental setups (treatment
and control setup). For the treatment setup, one hundred litter of
water was vigorously aerated overnight in a 5 � 1 � 1 m3 fiber-
glass tank. From this, fifteen aquariums (23.0 � 12.5 � 12.5 cm3)
meant for the treatment setup were half filled with aerated water
(2 L) to ensure uniformity in water quality at the start of the study.
To ensure a high stocking density, ten fish (10 g ± 2.3) per morpho-
type of each cross were then distributed evenly into the aquarium
(in triplicate). The treatment setup was maintained without aera-
tion or water change for two weeks.
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Fig. 1. Mortality in the culture system of the treat
For the control setup, same aquarium size, number and size of
fish as described in the treatment setup was used. However, this
setup was continuously aerated and the water changed on daily
bases. Fishes in both the treatment and control setup were starved
throughout the experimental period. The water quality from all
system was monitored using YSI professional plus multi-
parameter water quality meter (Model 13 M10065, Made in the
USA). Water quality and mortality were initially recorded six hours
into the challenge test and subsequently on daily bases (twice daily
for treatment and control group) until total mortality was observed
in the treatment group or the study was terminated at two weeks.
Triplicate data of the mortality and water quality result were ana-
lyzed for descriptive statistics and presented in line graphs using
the Microsoft Excel software. The odds ratio of mortality in this
study was also determined according to Altman (1991) using the
MedCalc (2017) online software bvba (Seoul, Republic of Korea).

The forth replicate of the treatment group were used for the gill
histological examination. However, to ensure efficient observation,
fishes selected for anatomic assessment were older (four months of
age) and larger (between 30 and 100 g) than those used for histo-
logical assessment (2months old with a mean weight of 10 g ± 2.3).
Ten samples were used for morphohistological examination. Sam-
ples for anatomic examination were tranquilized with 150 mg/1
solutions of tricaine methane sulphonate (MS222) (Wagner et al.,
1997) and then sacrificed. The fishes were then incised by the
opercular cavity to expose the gills and any observable attached
accessory respiratory organ. Organs were examined in situ and
washed under slowly running tap water to remove blood stain
from the tissue. The ventral and dorsal view of the gills were then
photographed using a Sony camera (Cyber-shot 16.2MP Model
number: DSC-TX10 50i) fitted to a triple camera stand.

Samples for histological examination were fixed in 10% buffered
formaldehyde for 48 h, after which gills samples were collected for
analysis. The gills were subjected to routine histological techniques
(dehydration, diaphanization, and paraffin embedding) and micro-
sectioned at 5 lm following the method adopted by Solomon et al.
(2017). Samples were stained with Harris’s hematoxylin and eosin
(H&E), following routine procedures. For the slide microphotogra-
phy procedure, a Nikon Eclipse 80i compound microscope was
used, and the images were processed using NIS element basic
research software (at 40 �magnification). Histopathological con-
dition observed in the gills were noted and scored according to
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Fig. 2. Mortality of control fishes under continuous aeration.

0HPE 6HPE 1DPE 2DPE 3DPE 4DPE 5DPE 6DPE 7DPE 14DPE
Pure Clarias 1 1 0.58 1 1 1 1 5.44 5.44 5.44
Clarias-like Clariothalmus 1 1 0.38 1 1.5 2.25 2.25 2.25 2.25 2.25
Panga-like Clariothalmus 1 45 45
Pangapinus 1 1 1 45 30.33
Pure Pangasius 1 1 1 30.33 45
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Fig. 3. Odds ratio of mortality per time of exposure of the fishes to low dissolved oxygen.
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Fig. 4. Dissolved oxygen changes in the culture system of the treated groups of fishes during the challenge test.
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the method described by Dutta et al. (1993) and Aghamirkarimi
et al. (2017).
3. Result and discussion

Studies on fish tolerance to deterioration in water quality are
scarce and seldom reported despite their importance. This is likely
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because of the difficulty in the experimental setup which may
require subjecting fishes to a constant value of water quality over
a period. Unlike experiment for temperature and salinity tolerance,
it is practically difficult and many times impossible to keep water
quality parameters such as DO, pH, and NH3 constant for a pro-
longed time because of the fish activities. In this study, we
designed a novel method in which high stocking density ensured
depletion of DO over time. Also, increase in NH3 and pH was
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hypothesized with prolonged excretion of the fish in the static nat-
ure of the treatment group (without a water change). The same
stocking density was used in the control group; hence, mortality
only could have resulted from the effect of high stocking density
and starvation. Since these two factors are also interplaying in
the treatment group in addition to poor water quality, the odd ratio
calculated therefore isolates the effect of water quality on perfor-
mance from those caused by these other factors. The result of this
study (Figs. 1 and 2) suggests three categories of fish tolerance
Fig. 8. Morphology of the gills of Clarias gariepinus (A), Clarias-like Clariothalmus (B), P
Keys: G = gills; SDO = small part of dendritic organ; F = gill fan; LDO = large part of dendrit
= second gill arch; (v) = third gill arch; (vi) = fourth gill arch and (vii) = fifth rudimental
namely (i) the less tolerant group i.e. the Panga-like Clariothalmus
progenies (ii) the fairly tolerant group i.e. the Pangapinus and P.
hypophthalmus progenies and lastly (iii) the extremely tolerant
group i.e. the Clarias-like Clariothalmus and C. gariepinus. This is
justified by the odds ratio value recorded during the study period
for the pure and reciprocal progenies (Fig. 3). Okomoda et al.
(2017a) had earlier highlighted, that the progeny of the $C. gariepi-
nus � #P. hypophthalmus (Clariothalmus) hybrids were more sensi-
tive than other crosses to a degradation of water quality. This
anga-like Clariothalmus (C), Pangapinus (D), and Pangasianodon hypophthalmus (E).
ic organ, (i) = Dorsal view of gills; (ii) = ventral view of gills; (iii) = First gill arch; (iv)
gill arch.
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study, however, revealed that a certain portion of the same crosses
(Clarias-like Clariothalmus) is resistant to deteriorating water
quality just like the maternal parent. However, all the progenies
of the Pangapinus were fairly tolerant like the maternal parent.
The differences in tolerance of these fishes may be linked to the
different pattern of inheritance which is evident in the appearance
of different morphotypes of the same crosses.

Tucker and D’Abramo (2008) had earlier, shown that undesir-
able pH (very high or low) could be detrimental to fish survival
reared in aquaculture ponds. Knepp and Arkin (1973) had also sta-
ted that ammonia level for favorable rearing condition of fish
Fig. 9. Photomicrographs of a typical normal gill from the control groups of fishes.
Primary lamellar (long arrow); secondary lamellar (short arrow).

Fig. 10. Photomicrographs of the gill of Clarias gariepinus. (a) partial hyperplasia of the
epithelial cells (long arrow), blood congestion in primary lamellar (small arrow); (d) fus
should be below 0.2 mg/l. Hence, the combined effect of increased
pH and un-ionized ammonia in the absence of oxygen became
lethal to the fish over time. However, C. gariepinus was able to sur-
vive prolonged exposure to this lethargic condition for two weeks.
According to Toko et al. (2007), C. gariepinus could survive and
even growth at a normal rate at oxygen concentration between
0.9 ppm to 1.2 ppm. After six hours of exposure in the treatment
group, most water quality parameters recorded were already
below the recommended ranges by Boyd (1982) to support the sur-
vival and development of aquatic life in any culture system (Figs. 4–
7). However, since none of the deteriorating water qualities
observed in this study could be isolated as the sole causative of
the mortality in the treatment group, it is important to kept water
quality optimum at all time if commercialization of the novel
hybrid is to be achieved. Despite the high tolerance of the
Clarias-like Clariothalmus and C. gariepinus, mortality was noticed
earlier than the fairly tolerant Pangapinus/P. hypophthalmus proge-
nies both in the control and treatment group (Figs. 1 and 2). This
observation is strongly linked to the high rate of aggressive beha-
viour and cannibalism. Aside food availability and size differentia-
tion, cannibalism and aggression are strongly influenced by
stocking density (Hecht and Appelbaum, 1987; Al-Hafedh and
Ali, 2003; Brummett et al., 2007; Solomon and Okomoda, 2012;
Olufeagba and Okomoda, 2016). The finding of this study is sugges-
tive that Pangapinus/P. hypophthalmus progenies could withstand
higher stocking density for culture than the Clarias-like Clariothal-
mus/C. gariepinus progenies provided water quality is kept opti-
mum. The number of death recorded in the control group of
Panga-like Clariothalmus progenies culture under optimum water
quality further justifies the assumption of reduced fitness in this
fish. However, with a total mortality occurring within twenty-
four hours in the Panga-like Clariothalmus progenies in the treat-
epithelial cells (arrow); (b) epithelia lifting (arrow); (c) partial hyperplasia of the
ion of 3 lamellae (arrow). Scale bar 50 mm. Hematoxylin/Eosin stain.



V.T. Okomoda et al. / Journal of King Saud University – Science 31 (2019) 713–723 719
ment group, the issue of survival might outweigh any other advan-
tage this fish may have over the parent species whenever water
quality is not optimal (Okomoda et al., 2017c).

Most bony fishes have been previously reported to possess four
pairs of gills arches (Eiras-Stofella et al., 2001; Eiras-Stofella and
Fank-de-Carvalho, 2002). In addition, a fifth rudimentary gill, with-
out gill filaments was observed in the entire fish group in this
study (Fig. 8). The Clarias-like Clariothalmus/C. gariepinus proge-
nies also had accessory respiratory organ structurally similar to
those previously reported in other catfishes (Maina and Maloiy,
1986; Vandewalle and Chardon, 1991; Ahmed et al., 2008). This
is in the form of branched bulbous dendritic-like structures. In
fishes such as Bowfin Amia calva (Gervais and Tufts, 1998), Ara-
paima gigas (Brauner et al., 2004) and P. hypophthalmus
(Browman and Kramer, 1985; Okomoda et al., 2017c), a vascular-
ized swim bladder help take in oxygen-rich water at the interface.
However, the efficacy of the accessory respiratory organ of the
Clarias-like Clariothalmus/C. gariepinus progenies explains why
they could survive extremely low dissolve oxygen for prolonged
period. The dendritic part of the air-breathing organ of the
Clarias-like Clariothalmus/C. gariepinus progenies are derived from
the 2nd and 4th gill arches (Fig. 8) which is accordance with the
findings of other catfishes (Moussa, 1956; Munshi, 1961; Harder,
1975; Lewis, 1979; Johnston et al., 1983; Maina and Maloiy,
1986; Chandra and Banerjee, 2003; Zayed and Mohamed, 2004).
However, the dendritic organ of Anabantoidei, Perciformes, Channa
punctata and Channa striatus originated only from the 1st gill arch
(Harder, 1975; Munshi, 1962). These variations may be attributed
to the differences in the mechanisms of respiration of the different
fishes. The gill filaments and lamellae of Panga-like fishes are
longer and larger than those of the Clarias-like fishes, indicating
a larger surface area. Similarly, the findings of Moron and
Fig. 11. Photomicrographs of the gill of Clarias-like Clariothalmus. (a) partial hyperplasi
epithelial lifting (long arrow); partial hyperplasia of the epithelial cells (short arrow); (c) c
arrow). Scale bar 50 mm. Hematoxylin/Eosin stain.
Fernandes (1996), Fernandes and Mazon (2003) suggest that large
gill respiratory surface is usual characteristics of fishes that are
exclusive water-breather. More so, it is well established that tele-
osts which undergo aerial respiration have reduced gill surface
area (Schottle, 1931; Dubale, 1951; Carter, 1957; Hughes and
Morgan, 1973) as observed in the Clarias-like progenies.

The physiological response of fish to changes in water chem-
istry is an adaptation to maintaining a relatively stable internal
system (Mancera et al., 1993; Carmona et al., 2004). The extent
of changes in the gills can serve as a biomarker to evaluate whether
the environmental imbalances experienced has an acute or chronic
effect on the fish (Winkaler et al., 2001; Tkatcheva, et al., 2004).
Based on the classification by Takashima and Hibiya (1995),
Bernet et al. (1999). Myers and Fournie (2002), Bais and
Lokhande (2012), the acute lesions observed in this study include
epithelial lifting and swelling (Figs. 9–14, Table 1). The chronic
lesions, however, include hyperplasia, aneurysm, and telangiecta-
sia. Several authors have opined that the fusion of secondary
lamellae in many fishes are physiological responses to increased
levels of ammonia and nitrite concentration in the culture system
(Svobodova et al., 1993; Cardoso et al., 1996; Frances et al., 1998;
Svobodova et al., 2005; Das et al., 2004). Some other authors have
linked low oxygen content in water (Scott and Rogers, 1980;
Fernandes and Mazon, 2003), pH changes (Capkin et al., 2009),
and irritation of the gills by parasites to hyperplasia as a result of
increased mucus production in this organ (Speare et al., 1991;
Thiyagarayah et al., 1996, Lease et al., 2003, Svobodova et al.,
2005). In theory, it is believed that this physiological change
increases the distance between the blood capillary and lamellae
surface, hence, reducing the intake of the causative chemical. How-
ever, this cell proliferation leads to respiratory dysfunction, as it
also affects gas exchange because of the decrease in the gill surface
a of the epithelial cells (long arrow); expanded primary lamellar (short arrow); (b)
omplete fusion of several lamellae (arrow); (d) blood congestion in primary lamellar
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area and disrupting the fish osmoregulation process (Mallat, 1985;
Poleksic and Mitrovic-Tutundzic, 1994; Takashima and Hibiya,
1995; Liebel, 2013). The presence of an accessory respiratory organ
in the Clarias-like fishes may explain why these fishes are less vul-
nerable to this condition as compared to the Panga-like fishes.

Parasitic infections of gills can occur due to environmental fac-
tors such as in the pond such as stocking density and/or stress
(Roberts, 1989; Nowak et al., 2004). More so, increased organic
pollution and its decomposition increase the vulnerability of the
fish gills to pathogenic and parasitic infections (Klontz, 1995;
Poleksic et al., 1999; Nikolic et al., 2003; Cirkovic, 2003). It is
hypothesized that these organic matters accumulate between the
gill filaments and constitute an excellent medium for parasitic
infections (Turnbull, 1993; Abbas, 2006; Roberts, 2001). However,
the reaction of the gill tissue to mitigate parasitic infections are
limited to focal hyperplasia and mucous cells proliferation
(Liebel, 2013), hence, this would not affect the normal function
of the gills and as such non-lethargic. Parasites were prevalent
more in the Panga-like fishes as compared to the Clarias-like fishes
in the present study. This may be explained by the presence of a
longer and larger gill filaments and lamellae in the former com-
Fig. 12. Photomicrographs of the gill of Panga-like Clariothalmus. (a) epithelial liftin
secondary lamellae (long arrow), Telangiectasis at the secondary lamellae (short arrow);
lamellae. (e) fusion of 3 lamellae (long arrow), ecto-parasite in the gills (short arrow), se
stain.
pared to those found in the latter. Epithelia lifting and telangiec-
tasia of the respiratory lamellae have been associated with the
acidification of water (Roberts, 2001); however, these conditions
were noticed even with increasing pH levels of the culture system
in the present study. Some authors have also linked this phe-
nomenon to increased ammonia level among other chemical cau-
satives (Arellano et al., 1999; Pane et al., 2004; Schwaiger et al.,
2004; Authman and Abbas, 2007; Monteiro et al., 2008). However,
these conditions are symptoms of disorders of osmoregulation
(Movahedinia et al., 2012) and were found commonly in all treated
groups of fish in the present study.
4. Conclusion

In conclusion, the susceptibility to water quality and the sever-
ity of the histopathological conditions in the gills of Panga-like
Clariothalmus within a short time of exposure as against the obser-
vation in other groups in this study is an indication of genetic
incompatibility of this hybrid progeny as compared to the others.
The findings of this study have also justified the hypothesis of dif-
ferences in the inheritance pattern of the fishes (even within the
g; (b) Complete hyperplasia of the secondary lamellae (arrow); (c) aneurisms in
(d) blood congestion in primary lamellae (short arrow), complete fusion of several

condary lamellae disorganization (arrow head). Scale bar 50 mm. Hematoxylin/Eosin



Fig. 13. Photomicrographs of the gill of Pangapinus. (a) Partial hyperplasia of the epithelial cells (arrow); (b) parasite in the gills (long arrow), fusion of few lamellae (short
arrow); (c) epithelial lifting (arrow); (d) complete hyperplasia of the epithelial cells (arrow). Scale bar 50 mm. Hematoxylin/Eosin stain.

Fig. 14. Photomicrographs of the gill of Pangasianodon hypophthalmus. (a) partial hyperplasia of the epithelial cells (arrow); (b) complete fusion of the lamellae (long arrow),
telangiectasis at the secondary lamellae (short arrow); (c) hyperplasia of the lamellae (short arrow), parasitic cyst (long arrow), (d) epithelial lifting (short arrow), parasitic
cyst (long arrow). Scale bar 50 mm. Hematoxylin/Eosin stain.
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Table 1
Histopathological scores of the gills of pure and reciprocal hybrids Pangasianodon hypophthalmus and Clarias gariepinus under normal rearing condition.

Parameter $CG � #CG $CG � #PH $PH � #CG $PH � #PH

Clarias-like Panga-like

Hyperplasia + + +++ +++ +++
SL Detachment – – ++ + ++
Aneurysm – – +++ +++ ++
Ectoparasite – – +++ +++ +++
Blood congregation in PL + + ++ ++ ++
Epithelia lifting ++ ++ ++ ++ ++
Telangiectasia – – ++ + +

Keys: –, No significant observed microscopic changes.
+, Mild changes (10 percent changes in 40 � objective microscope view).
++, Moderate changes (20 percent changes in 40 � objective microscope view).
+++, Severe changes (more than 20 percent changes in 40 � objective microscope view).
PL, Primary lamellae.
SL, Secondary lamellae
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same cross). Hence, future studies can be done to characterise the
nature of hybrids gotten in this study using cytogenetic and
genetic approaches.
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