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This article explores a phase change problem in a one-dimensional infinite domain x > 0 including the
time-dependent speed of a phase change material. In this problem, the Dirichlet type of boundary con-
dition is considered, and the thermal conductivity and specific heat are assumed as linear functions of
temperature. In case of « = B, the exact similarity solution to the problem is established, and its existence
and uniqueness are also deliberated. For all « and g, we also present an approximate approach based on
spectral shifted Legendre collocation method to solve the problem. The approximate results thus
obtained are likened with our exact solution for different parameters and it is shown through tables.
From this study, it can be seen that the approximate results are adequately accurate. The impact of dif-
ferent parameters appearing in the considered model on temperature profile and tracking of moving
phase-front is also studied.

© 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
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1. Introduction

The phase-change problems (Stefan problems) involve one or
more moving boundaries that separate the different phases of
the material. These problems arise in many natural and manufac-
turing phenomena. The applicability of these problems and the
presence of the moving boundaries make it interesting from indus-
trial as well as mathematical point of views. Moreover, the pres-
ence of moving boundary is also a key reason for these problems
to be a non-linear even in its simplest form. In the classical Stefan
problems (Gupta, 2017), the velocity of phase change material has
been assumed as zero, and the thermal coefficients have been
taken as constants. But it is not always appropriate with the many
materials. Hence, the variable thermal coefficients have been
attracted many scientists and engineers in the field of phase-
change processes (Oliver and Sunderland, 1987; Rogers and
Broadbridge, 1988; Ramos et al, 1994; Tritscher and
Broadbridge, 1994; Broadbridge and Pincombe, 1996). Mondal
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et al. (2015) also assumed temperature-dependent thermal con-
ductivity in the study of thermal radiation on an unsteady MHD
axisymmetric stagnation point flow over a shrinking sheet. The
temperature-dependent thermal coefficients in the one-
dimensional phase change problem are considered by Briozzo
et al. (2007), and they discussed the exact solution to the problem.
Many other authors (Briozzo and Natale, 2015; Briozzo and Natale,
2017) also took variable thermal coefficients in their study and
presented either exact or approximate solutions or both. Khader
(2016) also considered temperature-dependent thermal conduc-
tivity in the problem of flow of Newtonian fluid over an imperme-
able stretching sheet. Ceretani et al. (2018) assumed thermal
conductivity which linearly varies with temperature and Robin
boundary condition in a phase change problem, and presented
the similarity solution of the problem. Recently, Kumar et al.
(2019) presented a Stefan problem involving thermal conductivity
as a function of time and temperature. They discussed similarity
solution for a limit case and approximate solution for the general
case. Another Stefan problem containing temperature-dependent
specific heat and thermal conductivity is mentioned by Kumar
et al. (2018).

The occurrence of the phase change when the material is moving
itself during the process is not much studied in the literature (Fila
and Souplet, 2001; Lombardi and Tarzia, 2001). However, this type
of physical situation may arise in many phase change processes.
Recently, Turkyilmazoglu (2018) discussed the problems concern-
ing melting and solidification processes that include moving phase
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Nomenclature

~

temperature [K]

temperature [K] on the fixed face x =0
melting temperature [K]

specific heat capacity [kjkg=1 K]
specific heat capacity coefficients
thermal conductivity [Wm~1K™]
thermal conductivity coefficients
latent heat [kjkg1]

moving interface [m]

time [s]

distance [m]

I e |
e ER

xX T » xR
S)

Pe Peclet Number
u velocity [ms~1]
v thermal diffusivity[m? s

Greek letters

o, B constants

p density [kg m~3]

n similarity variable

A moving boundary coefficients

Ste Stefan number (Ste = ¢co(Tm — Tw)/L)

change material (PCM). He has presented some analytical solutions
to the problem by taking constant thermal coefficients. Singh et al.
(2018) also discussed a freezing problem including convective
boundary condition, moving phase change material and variable
thermal coefficients.

Inspired by all these works, we consider a phase change prob-
lem related to melting process in which the phase change material
moves with a speed u in the positive direction of x-axis which
depends on time. Simultaneously, the variable thermal conductiv-
ity k(T) and specific heat c(T) are assumed in the problem. The con-
stant melting temperature T,, is assumed as initial temperature of
the material. The mathematical model governing the process is
given below:

pc(T)(%Z—&-ug—)T():%(k(T)g—D, 0<x<s(t), t>0, (1)
T(0,t) = Tw, >0, 2)
T(s(6),6) = T, t>0, 3)
KT 5.0 = oL 50 )
s(0) =0, (5)

where T(x,t) denotes the temperature description at the location x
and the time ¢, s(t) denotes the location of the moving boundary,
T, > Ty, is a constant temperature applied at the fixed boundary
x =0, p is the density of the material and L is the latent heat. Here,
we consider the temperature-dependent specific heat capacity c(T)
and thermal conductivity k(T) as:

¢(T) = (1 ral A‘T?) (6)
and
k(T) = ko (1 + ﬁT A_T?) (7)

where ¢y >0, kg >0 and o« > 0,8 >0 are given constants and
ATy(= Ty — Tyw) is the reference temperature.

Due to the complexity associated with the phase change prob-
lems, the establishment of analytical solutions always draws the
attention of investigators. Some existing exact solutions of phase
change problems can also be seen in the (Voller et al., 2004;
Voller and Falcini, 2013; Zhou and Li-jiang, 2015). In this article,
the similarity solution to the problem (mentioned in Eqgs. (1)-(5))
is discussed for oo = g and the uniqueness of this solution is also
deliberated. Beside analytical method, we also present a spectral
approach with the aid of shifted Legendre polynomials and colloca-
tion technique to the problem for all & and 8.

Due to the exponential rate of convergence, spectral methods
have been used by many researchers to solve differential equations
of various orders, and few of them are Canuto et al., 1988; Gottlieb
and Hesthaven, 2001; Doha and Abd-Elhameed, 2006; Guo and Yan,
2009; Doha et al., 2012; Atabakzadeh et al., 2013; Hosseini et al.,
2013; Agbaje et al.,, 2018. The applications of spectral relaxation
method in fluid flow can be seen in Haroun et al., 2015a; Haroun
et al., 2015b; Haroun et al., 2015c; Oyelakin et al., 2016; Haroun
et al., 2016. Some other applications of spectral method, viz. spec-
tral quasi linearization method, multi-domain quasilinearization
method and multi-domain collocation method are reported by
Mondal et al., 2016; Ahamed et al., 2016; Mahapatra et al., 2012;
Almakki et al., 2018; Goqo et al., 2018; Noreldin et al., 2018;
Mondal et al., 2019. Ahmadian et al. (2013) discussed the opera-
tional matrix based on shifted Legendre polynomials to solve the
fuzzy differential equations of fractional order. Khader and
Babatin (2014) used Legendre spectral collocation method to solve
SIRC model and influenza A. Bhrawy and Zaky (2015) proposed
shifted Jacobi collocation technique based on Jacobi operational
matrix for Caputo fractional derivatives and solved the fractional
order cable equation in one and two dimensional spaces. Abd-
Elhameed et al. (2015) presented a new operational matrix method
to solve the various boundary value problems by using the colloca-
tion method and Petrov-Galerkin method. Bhrawy and Zaky
(2017a) developed an exponential order accurate Jacobi-Gauss-
Lobatto collocation method to find the solution of the fractional
Schrodinger equations in one and two dimensions. Bhrawy and
Zaky (2017b) have derived new operational matrices of the shifted
Jacobi polynomials for the fractional derivatives of Caputo and
Riemann-Liouville types. They also used this development to find
the solution of the variable-order Schrodinger equations. The spec-
tral methods used to solve the differential/integral equations are
characterized by the representation of the function, to be known,
by a truncated series of smooth functions like polynomials. In this
expansion, the main concern is to determine the unknown expan-
sion coefficients. Doha et al. (2018) presented an article to give an
overview of numerical difficulties while determining these coeffi-
cients and proposed the rich variety of tools to resolve these diffi-
culties. Recently, Zaky (2018) produced an efficient method based
on the Legendre-tau approximation for fractional Rayleigh-Stokes
problems for a generalized second-grade fluid. Zaky et al. (2018)
established a Legendre spectral-collocation technique for numeri-
cal solution of the distributed order fractional initial value prob-
lems and also discussed the convergence analysis of the method.

2. Shifted Legendre polynomials and its properties

In the interval [-1, 1], the well-known classical Legendre poly-
nomials {L;(x);i =0, 1,...} are defined and orthogonal. In order to
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utilize these polynomials on the interval [a, b], we define the
shifted Legendre polynomials L] (x) as

Li(x) =L (LH

b—a ) 12071727”' (8)

and L; (x) satisfies the following relation:

(i+1)L;;1(x):(2i+1)(”%T)L;(x)—u;](x), i=1,2,3,... (9

where Lj(x) = 1 and L; (x) = 2=2-b,

In this study, the following results of the shifted Legendre poly-
nomials (Abd-Elhameed et al., 2015) are used:

(a) Let us first define a space

L3la.b] = { o0 € ’[a,b] : g(a) = p(b) = 0}, (10)

and we select the following basis functions in the Hilbert space
L2]a, b]:

@;(x) = (x —a)(x = b)L; (x),

Now, the function u(x) € L3]a, b] can be written as:

u(x) =Y Go;(x), (12)
=0
where the constants ¢; are given below:
2j+1 ([P ‘
=515 [ ungwmd =012, (13)
a

. . _ 1
and the weight function w(x) = e

In numerical calculation, the series given in Eq. (12) for the
function u(x) can be approximated as

N
u(x) ~ un(x) = > ¢ @;(x) = C'®(x) (14)
j=0

where C” represents the transpose of the coefficient vector and ®(x)
is the shifted Legendre vector which are given by

"= [co, €1, .- ) (/’N(X)]T- (15)

- enjand d(x) = [, (X), @;(X), ...

(b) The derivative of ®(x) in matrix form is given as:
do(x)
dx

where D = (dij)0<ij<N represents the operational matrix of order
(N +1) and its elements are given by

= DO(x) + 5, (16)

D gy = [P @+ DA+ 2M=2H) i) (i+jodd, o
0, otherwise,
and
8 = [30(%), 01 (), 52(%), -+, on(®)], (18)
a+b-2x wheniiseven,
%i(x) = { a-b when iis odd. (19)

In Eq. (17), H; and H; are harmonic numbers which are defined
as

n
1 .
H, = ; ¢ with Ho=0. (20)

(c) The relation between second order derivative of ®(x) and
the operational matrix D is given by

d*®(x)
dx?

where

= D*®(x)+Dé + 4, (21)

—2 wheniiseven,

; / Ng s/ / T Y —
o' = [55(x), 81 (), 05 (%), - -, 6y(x)] and &j(x) { 0 when iisodd.

(22)
3. Formulation of the problem
Substituting the following transformation
_ T(X7 t) - TW
fx,t) = TOAT, (23)
into the Egs. (1)-(5), we obtain
of  of\ 0 of
(+af) (B +ud) = vge (A +50 %), 4
f(0,t) =0, (25)
f(s(6),t) =1, (26)
a0 1 dste) a7
ox v(1+ p)Ste dt
s(0)=0. (28)
where Ste = —©4™ s the Stefan number.
Now, let us consider the following similarity variables
X
X, t) = 0(n)withy = 29
fix.6) = 0ty withn = 27 (29)
and assume that
s(t) = 24V vE, (30)
where v = p"—go (thermal diffusivity for ko and cp) and / is a positive

parameter.
Substituting Eqs. (29) and (30) into Eqgs. (24)-(27), we get the
following system involving ordinary differential equations:

0" (1) + OO’ () + B0 ())* + 2(n — Pe)' (1)

+ 20((n — Pe)0(11)0' ()= 0, (31
0(0) = 0, (32)
002) =1, (33)

, 2

where Pe = u\@ denotes the Peclet number.
Now, we substitute the following transformation

0(m) =y(m) + g (35)
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into the Egs. (31)-(34) which produce

y'n) -+ B(yom + L)y on) + ﬁ(y’(n) T %)2 207 Pe) (y’(n) " %)

+20n - pe) (v + 1) (¥ + 5) =0, (36)

¥(0)=0.y(7) =0, (37)
1 2,

Yy +-5= A5 p)Ste (38)

4. Approximate solution

To solve Eq. (36), we take an approximation of y(#) in terms of
the shifted Legendre polynomials as:

N
Y = yn(n) =Y cigi(n) = C @), (39)
i=0

where €' = [co, C1, ... &), @(17) = [@o (1), @1 (1), s ()] (40)

As mentioned in Section 2, ¥'(r7) and y” (1) can be approximated
as

¥ () ~ C'Dd(n) +C's (41)
and
y'(n) ~ C'D*®(n) + C'Dé + C"& (42)

Substituting the considered approximations of y(#), y'() and
y"(n) into the Eq. (36), we get the residual, denoted by Ry(#), cor-
responding to the Eq. (36) which is given below:

Rv(n) = (CTDzd)(n) +C'Ds + cTa/)

+ 6 (c"o(n) + 1) (c"D*@(y) + D5 + €75

7
2
+B <CTDq>(n) +CT6+ %)
+2(1 — Pe) (CTDd)(r]) +CTo+ %)
+ 20 — Pe) (€' () + g) (CTDcI)(n) 1Mo+ }) . (43)

According to the spectral collocation method (Abd-Elhameed
et al., 2015), we impose Ry(#) =0 at the first (N+ 1) roots of
Ly.1(n) which produces (N + 1) non-linear algebraic equations
involving (N +2) unknowns (cp,c1,---,cy and A ). Beside these
(N +1) non-linear algebraic equations, one additional algebraic
equation can be obtained with the aid of Eq. (38) which is

C'Do(2) +C"6 + L—

.~ (1+p)Ste (“44)

The obtained system of (N +2) algebraic equations can be
solved by an appropriate numerical technique like Newton-
Raphson method to get all the (N + 2) unknowns. From Eq. (39),
the approximate solution of y(1) can be found, hence the f(x,t)
can be obtained by back substitution. After getting 4, the moving
phase front s(t) can also be achieved with the help of Eq. (30).

5. Exact solution

First, we take o = 8 in the problem (31)-(34), hence the ordi-
nary differential Eq. (31) becomes:

(1+ BON)O" () + B(O'(1))” + 201 — Pe)(1 + pOn)0'(n) =0 (45)

According to Singh et al.,, (2018), the solution of the Eq. (45)
with the conditions (32) and (34) is given by

(Pe—7)? 172
o = [—1 v (1 22 VT rfpe) - erfpe - n))) } 7
(46)

where erf(.) denotes the well-known error function.
The Eqs. (29) and (46) give rise to the following equation:

f(x’t);[1+<1+W<erf(Pe)erf<Pe 7 )))1/2}

Ste 2V/ut
(47)
Now, the Eqgs. (33) and (46) yield the following equation:
(Pe—7)?
w (erf (Pe) — erf (Pe — 1)) — (2 + §) = 0. (48)

We can calculate the unknown 2 from transcendental Eq. (48) if
it exists. After getting 1, we can easily find analytical expressions
of s(t) and f(x,t) with the aid of (30) and (47), respectively. The
existence and uniqueness of / satisfying the transcendental Eq.
(48) is deliberated in the next section.

6. Existence and uniqueness

In order to show the existence and uniqueness of the exact solu-
tion discussed in Section 5, we consider the following function:

22 ePe=27 /1t
Ste

To prove the uniqueness of solution to the considered problem,
it is enough to show that there exists a unique value of 1 in (0, o)
which satisfies the Eq. (49). From the Eq. (49), it is obvious that the
function h(Z) is continuous and differentiable on the interval
(0,00). Moreover, }irg h(Z) =—-(2+p) and llrglo h(2) = oo for the

h(z) = (erf(Pe) —erf(Pe — 1)) — (2 + B). (49)

positive parameters 8 and Ste.
Now, the derivative of h(Z) is given as

'(2) = % + Zeajes#ﬁ(erf(ﬂa — A) —erf(Pe)) (72 + 2Pei — 1).

(50)

It is also observed that h'(1) >0 on the interval (0,c0) for
Ste > 0, Pe < v/2. Hence, h(J) is a strictly increasing function on
the interval (0,c0). This shows that the equation h(1) =0 has
exactly one positive root in the interval (0, co)for the positive val-
ues of parameters.

7. Results and discussions

We first discuss about the correctness of the solution obtained
by spectral collocation technique (deliberated in Section 4) and
the results thus found are depicted through the Tables 1 and 2.
In this study, Wolfram Research (8.0.0) software and the following
matrices are used in the calculation:

000 0 00 bo()
p=213 0 0[i0*=5| 0 0 0|andgm=| a0 |.
06 0 18 0 0 ()
(51)
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Table 1
Absolute errors between exact and approximate values of f(x,t) at v =1.5and t =1.
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o, B Pe, Ste X fe fa Absolute Error
o=f=1 Pe=1,Ste=02 0.1 0.09096898 0.09102588 5.6901e—05
0.2 0.18148967 0.18162926 1.3958e—04
0.3 0.27186285 0.27203707 1.7421e—04
0.4 0.36228358 0.36243156 1.4797e—04
0.5 0.45287079 0.45295025 7.9463e—05
a=p=15 Pe=1.5,Ste =0.5 0.2 0.04834152 0.04840274 6.1216e—05
0.4 0.10496521 0.10513470 1.6948e 04
0.6 0.17005546 0.17028651 2.3104e—04
0.8 0.24359455 0.24380526 2.1070e—04
1.0 0.32537556 0.32549448 1.1891e—04
o=p=2 Pe=2,Ste=1 0.5 0.02080022 0.02045477 3.4545e—04
1.0 0.06143613 0.05962531 1.8108e-03
15 0.13171326 0.12936176 2.3514e—03
2.0 0.23907970 0.23642179 2.6579e—03
2.5 0.38546466 0.38247065 2.9940e-03
Table 2
Absolute errors between exact and approximate values of s(t) at v = 1.5.
o, B Pe, Ste t Sg(t) sa(t) Absolute Error
o=p=1 Pe=1,Ste =02 0.1 0.34760060 0.34759579 4.8067e—06
0.2 0.49158148 0.49157468 6.7977e—06
0.3 0.60206190 0.60205357 8.3255e—06
0.4 0.69520120 0.69519158 9.6134e—06
0.5 0.77725857 0.77724782 1.0748e—05
u=p=15 Pe =1.5,Ste=0.5 0.1 0.71770593 0.71766326 4.2668e—05
0.2 1.01498947 1.01492912 6.0342e—05
0.3 1.24310315 1.24302924 7.3904e—05
0.4 1.43541187 1.43532653 8.5337e—05
0.5 1.60483926 1.60474385 9.5410e—05
w=p=2 Pe=2,Ste=1 0.1 1.26900478 1.26858798 4.1679e—04
0.2 1.79464377 1.79405433 5.8944e—-04
0.3 2.19798075 2.19725884 7.2191e—04
0.4 2.53800956 2.53717597 8.3359e—04
0.5 2.83758095 2.83664897 9.3198e—04
. Pe=1 Pe=2  Pe=3
where () =n(i—n), @ () ="2=2E0 and  @,(n) = 10
32p-2°% 1
0 —m) (222 - 4). o
The approximate dimensionless temperature f,(x,t), exact '
dimensionless temperature f;(x,t) and absolute error between <
them are revealed in Table 1 at » = 1.5, t =1 and N = 2 for differ- Q goi;
ent o, 5, Pe and Stefan number. Table 2 portrays the assessment for
the accuracy of the exact solution sg(t) and the approximate solu- 04 |
tion s4(t) of the moving phase front at a constant thermal diffusiv-
ityv = 1.5 by considering the matrices given in (51). Both the a3
Tables endorse that the proposed approximate solutions of f(x, t)
and s(t) are sufficiently near to the analytical solution discussed
in Section 5 for a = f. Therefore, sl?ectral collocation approach ?s 0 2 4 3 g 10
a useful procedure to solve the moving boundary problems associ-
ated with phase change phenomenon. X —>

With the aid of the procedure discussed in Section 3 and consid-
ering the operational matrix of order three; the Figs. 1-6 are plot-
ted. The dependency of dimensionless temperature f(x,t) on x for
three different Peclet numbers (Pe=1,2,3)at v =15and t=5
is displayed in Fig. 1. The Fig. 2 demonstrates the variations of
f(x,t) versus x for three different a(o = 1, 2, 3) at the fixed thermal
diffusivity (» = 1.5) and time (t = 5). These figures represent that
the dimensionless temperature are zero at x = 0 and continuously
increases till the last point of domain, i.e. x = 1. It is also detected
from Figs. 1 and 2 that the rate of change of dimensionless temper-
ature with respect to x decreases when we increase either the Pec-
let numbers or the parameter o. But, the temperature distribution
is more affected with the variation of Peclet numbers than the

Fig. 1. Plot of f{x,t) for different values of Pe at Ste=0.5 and a=g=1.

parameter o. Fig. 3 shows the temperature distribution within
the domain for three cases, i.e., =1, 2 and 3 at v =1.5 and
t = 5. This figure presents that the rate of change of temperature
with respect to x increases with the enhancement in the value of
B till some points of x and after that the reverse situation is
observed that can be seen in the figure.

Figs. 4-6 depict the dependency of trajectory of phase front s(t)
on Pe, o and g for the fixed thermal diffusivity (¢ = 1.5) and Ste-
fan number(Ste = 0.5). From Fig. 4, it is seen that the phase front
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10
a=1

08 a=2
=
~
=

06
= a=

04

02

0 1 2 3 4 5
X —>

Fig. 2. Plot of f{x,t) for different values of at « at Ste=0.5, =1 and Pe=1.

10
B=1 B =2
08
~ g =3
\m
< o6f
<
04 [
02
0 1 2 3 3 5
X —>

Fig. 3. Plot of f{x,t) for different values of g at Ste=0.5, «a=1 and Pe=1.

Pe=3
30F
25 Pe=2
< 20
= Pe=1
15¢
10}
05
02 0..4 0.'6 0.‘8 10
P —>

Fig. 4. Plot of s(t) for different values of Pe at Ste=0.5 and a = =1.

s(t) propagates faster in the direction of phase change material as
we increase the Peclet numbers (Pe = 1, 2, 3). Moreover, the sim-
ilar observations are established from Figs. 5 and 6, i.e. the
enhancement in the movement of phase front s(t) is found if we
increase the value of either o or g or both. If phase front moves
more quickly with the increment in the value of a parameter then
this indicates that the material melts/solidifies faster when we
increase or decrease the same parameter. Therefore, the advance-
ment of melting process is detected by the improvement of either
o or p or Pe form the Figs. 4-6. It is also observed that the effect of
Peclet numbers in the progression of tracking of the phase front
s(t) is more than the parameters o or f.

Fig. 5. Plot of s(t) for different values of « at Ste=0.5, p=1 and Pe=1.

B=3

20 ~_ B=2

——__ B=1
S 15

Lol
10
05
02 04 06 08 10

Fig. 6. Plot of s(t) for different values of g at Ste=0.5, «=1 and Pe = 1.

To show the accuracy of the proposed numerical solution with
increasing the number of terms, Figs. 7 and 8 are plotted according
to Zaky et al. (2018). Fig. 7 demonstrates the plot of logo|error| of
the moving interface factor (1) for different approximating polyno-
mials of degree (N+2) at the wvalue of o=p=0,
Ste = 0.5and Pe = 1.5. In Fig. 8, we plot the graph of logo|error|
of the obtained numerical solution of 6(y) for different approxi-
mating polynomials of degree (N+2) at the value of oo = =0,
n = 0.5, Ste = 0.5 and Pe = 1.5. From Figs. 7 and 8, it is clear that
the proposed solution converges rapidly as the degree of approxi-
mating polynomials or N increases.

[

Logyg lerror|

1 1 L L
4 5 6 7

w

Degree of polynomials in the approximations

Fig. 7. Convergence of approximate A.
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Logyg lerror|

=1k L s L L L

4 5 6 2

w

Degree of polynomials in the approximations

Fig. 8. Convergence of approximate 6(#).

8. Conclusion

This article included a problem of melting process in which it is
assumed that the thermal coefficients depend on temperature and
the phase change material moves with a variable velocity. The
spectral collocation method is successfully applied to get an
approximate solution to the problem. It is found that the spectral
collocation method is a simple and sufficiently accurate scheme
to develop the solution of the phase change problems. Hence, spec-
tral collocation approach is an effective tool to get the solution of
the problems associated to phase change processes. Beside this
solution, an exact solution to the problem is established for a par-
ticular case, and it is revealed that there occurs a unique solution to

the problem when Pe < v/2. Like classical phase change problems
Gupta (2017), this problem also consists of phase front s(t) propor-

tional to v/t. This article also described that the melting process is
dependent on Peclet number Pe, ¢ and f; and the melting process
becomes rapid as the parameter Pe or « or  improves.
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