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Objectives: Tuberculosis is a chronic lung disease caused by Mycobacterium tuberculosis (MTB), whose
thick cell envelope and drug metabolizing enzymes offering it multidrug resistance. Therefore, there is
a need to identify new molecular targets, biologically active as well as clinically safe anti-MTB com-
pounds from natural resources.
Methods: In this study, we performed high throughput computational screening of FDA listed natural
bioactive compounds for identifying novel anti-MTB leucyl-tRNA (LeuRS) synthetase inhibitors.
Results: Initial virtual molecular docking of 136 bioactive compounds has identified Docetaxel, Reserpine
and Irinotecan as promising lead molecules owing to their structural plasticity and binding affinity with
the active site of MTB-LeuRS. Further, deep molecular docking and molecular dynamics (MD) simulation
analysis (at 100 ns) of the above three test compounds along with Oxaborole compound (GSK656) has
demonstrated the superior binding affinity and stability of Irinotecan in forming molecular complexes
with LeuRS protein. Interestingly, it also showed comparable binding residues and affinity parameters
(like flexibility, structural divergence) as the GSK656 inhibitor in binding the tRNASyn domain 2 of
LeuRS. A good correlation of pharmacokinetic properties (ADME-Tox) like bioavailability, absorption, sol-
ubility, and low toxicity between Irinotecan and GSK656 was evident. Competitive binding of Irinotecan
to tRNASyn domain 2 of LeuRS is likely to make it unavailable to bind Leucine amino acid, which may
negatively impact the protein biosynthesis and eventually inhibit the bacterial growth and attenuate
the pathogen’s virulence.
Conclusions: Our findings pave the way for further experimental confirmation of Irinotecan in the quest
for a novel anti-LeuRS specific inhibitor to combat drug resistant MTB infection.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Mycobacterium tuberculosis (MTB), a rod-shaped aerobic bac-
terium causes tuberculosis (Furin et al., 2019). It usually remains
latent in the host with no symptoms, but 5–10% of patients develop
clinical manifestations, which can be intensified with an HIV co-
infection (Harries and Dye 2006). When the infection is active,
patients may feel fatigued, have night sweats, fever, cough, and
hemoptysis (Suárez et al., 2019). As a first line, for the initial
2months, tuberculosis is treated by a combination therapy of pyraz-
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inamide (PZA), ethambutol (EMB), isoniazid (INH), and rifampicin
(RMP), followed by additional therapy of INH and RMP for the next
four months (Benaissa et al., 2022) (Ahmed and Saif 2017). Patients
infected with INH and RMP drug resistant MTB (MDR-TB) must be
treated with fluoroquinolones or other second line injectable drugs
such as amikacin, kanamycin, and capreomycin, among others
(Suárez et al., 2019). If the patients had an INH, RMP, and second line
injectable drug resistance, then the infection is called ‘‘extensively
drug resistant tuberculosis” (XDR-TB). In such infections, the treat-
ment options are very limited and the chances ofmortality is usually
very high (Seaworth and Griffith 2017).

The rapid emergence of drug resistance in MTB necessitates us
to explore the novel alternative therapeutic candidates, that are
more efficient and less toxic than chemically synthesized drug
molecules (Alsulaimany et al., 2021). In recent years, naturally
occurring bioactive compounds have shown great promise in com-
bating drug resistant strains of MTB (Wang et al., 2019, Pawar
et al., 2020). Aminoacyl-tRNA synthetases (aaRSs) owing to their
unique solubility profile, stability, and expression profile, they rep-
resent as a promising enzyme group to develop anti-MTB drug
compounds. These enzymes catalyze the transfer of an amino acid
to cognate tRNAs in the protein translation process. Leucyl-tRNA
synthetase (LeuRS), belonging to class I aaRSs is a proven therapeu-
tic target for AN2690 (5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzox
aborole), a bioactive compound in some microorganisms (Ndagi
et al., 2021). The distinctive structural features of prokaryotic
and eukaryotic Leu-RS catalytic domains make it an ideal thera-
peutic target by different chemical inhibitors (Gadakh and Van
Aerschot 2012). However, the potential of inhibiting MTB leucyl-
tRNA synthetase with natural bioactive compounds is not yet well
explored.

Laboratory screening of bioactive compounds involving cellular
systems and animal models can be an expensive and time-
consuming process. On the contrary, bioinformatics methods
accelerate drug target identification through rapid drug candidate
screening, refinement, and also by predicting pharmacodynamic
properties (Shaker et al., 2021). These bioinformatic approaches
deploy artificial intelligence methods like machine learning and
pattern classification methods (neural networks, support vector
machines, and decision trees) to virtually screen bioactive com-
pound libraries for potential antimicrobial molecules (Naik et al.,
2020). Throughput computational approaches like molecular
dynamics simulations and molecular docking allow us to study
the structural plasticity and binding characteristics of inhibitor
molecules toward target proteins at a three-dimensional (3D)
structural level (Almeleebia et al., 2021). Furthermore, bioinfor-
matics tools are also known to be efficient in predicting the
ADME-Tox and other pharmacological properties of potential drug
molecules (Aronica et al., 2021; Behl et al., 2021). Because there is a
growing need to find new and safe anti-MTB drugs, this study used
high-throughput virtual screening of FDA-approved natural bioac-
tive compounds to look for anti-MTB aaRS inhibitory molecules.
Deep molecular docking and molecular dynamics simulations were
used to look for these molecules.
2. Methodology

2.1. Therapeutic target sequence retrieval and its conservation analysis

The amino acid sequences of LeuRS (MTB: TBMG_00040) were
initially retrieved from the KEGG Gene database. Then, the amino
acid sequence and physiochemical properties [molecular weight
(mw), instability index, pH, and grand average of hydropathy
(GRAVY)] of the protein were predicted using the ProtParam tool
hosted on the ExPASy server (https://web.expasy.org/protparam)
2

(Gasteiger et al., 2003). The LeuRS protein sequences of MTB,
Escherichia coli, Helicobacter pylori, Salmonella bongori, Hae-
mophilus influenza, and Plasmodium falciparumwere aligned using
the Clustal Omega sequence alignment webserver (https://mul-
talin.toulouse.inra.fr/multalin) for identifying conserved regions,
insertions, and deletions across different species (Sievers and
Higgins 2018). Clustal Omega is a unique multiple sequence align-
ment program that generates alignments between three or more
sequences using seeded guide trees and HMM profile-profile
algorithms.

2.2. Protein model preparation

At first, the amino acid sequence of MTB LeuRS (KEGG ID:
T00940) was provided as input to PSI-BLAST tool for searching
the experiment sourced structures deposited in the Protein Data
Bank (PDB) database. Since a fully solved LeuRS structure was
not available, a SWISSMODEL based homology modelling
approach, followed by energy minimization (Steepest descent)
using steps with SwissPdbViewer 3.5, was adopted (Waterhouse
et al., 2018) (Guex and Peitsch 1997). The structural evaluation
and stereochemical quality of the predicted LeuRS model were

checked with the PROCHECK webserver (http://services.mbi.ucla.

edu). The PyMOL molecular visualization tool was used for visual

exploration of the LeuRS molecular structures (https://pymol.org).

2.3. Bioactive compounds collection and energy refinement

A total of 136 Food and Drug Administration (FDA) listed natu-
ral bioactive compounds were downloaded from the ZINC database

(https://zinc.docking.org), using the following option,
‘‘substances > filters > FDA approved compounds”. All these com-
pounds were downloaded in compressed structure data format
(SDF). Energy refinement of all the downloaded compounds was

done using Open Babel in the PyRx 0.8 tool (https://pyrx.source-

forge.io).

2.4. Receptor-Based virtual screening

The potential anti-MTB LeuRS therapeutic molecules from the
bioactive compound library were identified through virtual dock-
ing by PyRx, a Graphical User Interface (GUI) software. Both the
target protein and bioactive compounds were initially prepared
in PDBQT file formats. The physical parameters of the docking grid
box around the ligand molecules were defined using the ‘Maxi-
mize’ [Center X: 22.4884, Y: 11.0007, Z: 24.4633; Dimensions (Å)
X: 108.6, Y: 97.8, Z: 85.53] option available in PyRx software for
ensuring the availability and accessibility of protein surface areas
during the docking procedure. Using the default exhaustiveness
value of 8, molecular docking was performed, by keeping the pro-
tein receptor rigid and the ligand molecule in a flexible
conformation.

2.5. Deep molecular docking

The virtual docking of top-ranked bioactive compounds was
further explored by deep molecular docking analysis with MTB-
LeuRS by the DockThor program (Santos et al., 2020, Guedes
et al., 2021). The receptor and ligand files were prepared by adding
polar hydrogen atoms and partial charges by applying the
MMFF94S force field. A grid box configuration is determined by
the redocking of each complex according to its reference ligand.
The grid box was defined using the center (average of the
coordinates) and size (20 Å in each dimension). The discretization
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was maintained at 0.25 Å. The redocking was verified using the
root mean square of atomic position deviation of � 2 Å.

2.6. Drug-Likeness analysis

By using SwissADME, the top-scoring molecules were further
evaluated for toxicity, drug-likeness, and pharmacokinetics (Pires
Fig. 1. Multiple sequence alignment of LeuRS protein across 6 bacterial species. Highly co
(.) and deleted regions in dashes (-).

3

et al., 2015; Daina et al., 2017). SwissADME was used to evaluate
the drug-likeness of molecules retrieved from the ZINC database.
Lipinski’s rule assesses various parameters needed for drug design.
As per this rule, any drug should fulfill the following drug-likeness
parameters: (a) molecular mass < 500 Daltons (Da), (b) < 5H bond
donors, (c) < 10H bond acceptors, and (d) octanol/water partition
coefficient logP is < 5, to be considered a biologically active drug
nserved regions in star (⁄), semi conserved regions in colon (:), mutated region in dot



Fig. 2. Homology modeling of the MTB-LeuRS. (A) 3D structure of MTB-LeuRS B) Residue local quality plot of MTB-LeuRS, generated from Swiss-Model server C). MTB-LeuRS
structural residue distribution in Ramachandran plot D). Secondary structure elements of MTB-LeuRS via Swiss model DSSP method.
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molecule. The biological toxicity and pharmacokinetic properties
of the compounds were validated using the SwissADME tool.

2.7. Molecular dynamics (MD) simulations

MD simulation was performed using Desmond41 software
(https://www.deshawresearch.com/index.html) to study the pro-
tein–ligand complex interaction and binding energy analysis. The
proteins and their ligand systems were created with the ‘‘System
Builder” node in Desmond workflow. The hydration model was
created by the top ranked energy minimized docking complex that
was placed in the orthorhombic box (10 Å buffer distance), with
SCP water mode l42 as water model implementing default cut-
off metrics for Van der Waal forces (9 Å), time step (2.0 fs), initial
temperature (300 K) and pressure (1.013 Pa) bar of the system.
Desmond software calculates electrostatic force by fractionating
near term and far term values with a 9 Å internal boundary. Fur-
thermore, the sampling interval during simulation was set to
100 ps (picoseconds). Lastly, MD simulations were performed
under the NPT ensemble (isothermal-isobaric ensemble) for
100 ns (nanoseconds). The structures with the largest populations
were included in the analysis (ligand binding sites, H-bonds, root-
mean-square fluctuation (RMSF), root-mean-square deviation
(RMSD), and torsion angels etc.,).

3. Results

3.1. LeuRS protein sequence analysis

The physiochemical characterization results of MTB LeuRS pro-
tein (969 aa) are as follows; molecular weight of 107594.77 Da, pH
of 5.08 (acidic), stability index of 30.90 (stable), and a grand aver-
age of hydropathicity (GRAVY) index of �0.317 (hydrophobic).
Amino acid sequence alignment of MTB LeuRS proteins with differ-
ent bacteria has suggested a 40% similarity with Salmonella bon-
gori, 38% with E. coli, 37.9% with Haemophilus, and 30% with
Helicobacter pylori (Fig. 1).

3.2. Computational 3D protein modeling

Homology modelling is a suitable approach to study 3D struc-
tures of proteins, which are not yet characterized through the con-
ventional x-ray crystallography method (24). Therefore, we
modelled the 3D structure of LeuRS using the SWISS-MODEL web-
server. Based on the PSI-BLAST search results, homologous
sequence of Leucyl-tRNA synthetase protein from Thermus ther-
mophilus was identified to have 40.02 % overall identity with
MTB and had the highest query coverage of 96 %. Initially, five
MTB-LeuRS models were assembled using the SWISS-MODEL tool
Table 1
The top ten natural bioactive compounds showing highest binding energies in virtual doc

S.No Compound Name Zinc ID Energy Minim

1 Docetaxel ZINC000085537053 E = 1580.93
2 Reserpine ZINC000003938746 E = 824.92
3 Irinotecan ZINC000001612996 E = 787.89
4 Toposar ZINC000003938684 E = 9257.10
5 Idarubicin ZINC000003920266 E = 393.58
6 Piperacillin ZINC000003913937 E = 1217.81
7 Methotrexate ZINC000001529323 E = 352.96
8 Synribo ZINC000043450326 E = 603.92
9 Synribo ZINC000043450324 E = 723.50

5

utilizing Thermus thermophilus Leucyl-tRNA (PDB ID: 1H3N) as a
template. Quality assessment of predicted models was done with
GMQE and QMEAN scoring tools. The best model (Fig. 2A) was
selected based on the template model score, root mean square
deviation, and confidence score metrics (Table 1). The disordered
regions in the predicted models were illustrated with the help of
the Local Quality Plot (Fig. 2B). The residues in these disordered
regions have low structural reliability as their individual QMEAN
scores are below the 0.6 threshold value. A PROCHECK-based qual-
ity check with a Ramachandran plot has confirmed that out of the
969 amino acids, 97.2 % fell into allowed regions and 2.8 % fell into
disallowed regions (Fig. 2C). The secondary structure of 1H3N is
aligned with the sequence of MTB LeuRS (Fig. 2D).
3.3. Virtual docking of bioactive compounds

Virtual screening of 136 bioactive compound libraries of natural
bioactive compounds by molecular docking analysis has revealed
that, 10 compounds showed > -9.1 highest binding affinity with
MTB LeuRS protein. Based on the binding affinity cut off value
of > -9.7 Kcal/Mol., we selected three bioactive compounds, i.e.,
Docetaxel, Reserpine, and Irinotecan, for targeting the LeuRS mole-
cule (Table 1).
3.4. ADME-Tox of natural bioactive compounds

All the ADME-tox analyses of the three test compounds, along
with the known LeuRS inhibitor (GSK656), have shown good phar-
macokinetic properties owing to the bioavailability score of < 0.55.
Also, the two compounds, Reserpine, and Irinotecan, show good
absorption that is almost 80 % identical to the known inhibitor.
The absorption percentage is a functional variable that demon-
strates drug transport properties. The compounds that possess sig-
nificant permeability of the plasma membrane have TPSA
values < 224 Å. Out of the three compounds, Irinotecan has shown
a good correlation with the known inhibitor in the physio-chemical
properties. The octanol–water partition coefficient (log P = 4.95)
indicates a decent absorbency, while log S = � 5.83 demonstrates
good solubility in the body. Fig. 3 presents the bioavailability
radars of the three test compounds in a graphical format. The
drug-likeness snapshots are hexagons consisting of vertices, each
indicating a bioavailability parameter of the prospective drug. Pink
sections represent size (MW between 150 and 500 g/mol),
lipophilicity (logP value of a reference compound between 0.7
and + 5.0), solubility (log S between 0.7 and + 5.0), polarity (TPSA
between 20 and 130), flexibility (no>9 rotatable bonds), and satu-
ration (fraction of carbons in the sp3 hybridization at no<0.25).Red
distorted hexagons represent drug-likeness properties within the
pink background (Table 2). This graph indicates that Irinotecan is
king analysis.

ize Binding
Affinity

Interacting Amino Acids H-bonds

�10.2 Phe77, His89, Asp117, His661 4
�9.8 Tyr79, Arg526, Gln694 3
�9.7 Arg389 2
�9.7 Phe77, His661 2
�9.7 Asp97 1
�9.4 Tyr79, Arg526 3
�9.2 Arg617, Ser611 2
�9.2 Gln694 1
�9.1 Tyr79, Gln694 3

https://www.deshawresearch.com/index.html
http://S.No


Fig. 3. SwissADME bioavailability and Target prediction plots of Docetaxel, Reserpine, Irinotecan and GS3036656. The pink area on the bioavailability radar represents the
optimal range for each property: Molecular Weight (SIZE) (between 150 and 500 gmol �1), lipophilicity (LIPO) (XLOGP3 between 0.7 + 5.0), Solubility (INSOLU) (log S > 6),
polarity (POLAR) (TPSA 20–130), saturation (INSATU) (<9 rotatable bonds). The pie chart denotes the predicted molecular targets of 4 compounds.
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Table 2
Physio-Chemical and ADME-Tox Properties for 3 natural bioactive and GSK3036656 compounds.

Compound Formula MW Rotatable
bonds

H-bond
acceptors

H2
bond
donors

TPSA iLOGP Ali
solubility
class

GI
absorption

CYP1A2
inhibitor

CYP2C19
inhibitor

Bioavailability
Score

MRTD
(mg/day)

Docetaxel C43H53NO14 807.88 14 14 5 224.45 4.1 Poorly
soluble

Low No No 0.17 268

Reserpine C33H40N2O9 608.68 10 10 1 117.78 5.21 Poorly
soluble

High No No 0.17 1.1

Irinotecan C33H38N4O6 586.68 6 8 1 114.2 4.95 Moderately
soluble

High No No 0.55 188

GSK3036656 C10H13BClNO4 257.48 4 5 3 84.94 0 Very
soluble

High No No 0.55 2515
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marginally outside of the pink region on one side. In other test
compounds, Reserpine and Docetaxel, an offshoot of one of the ver-
tices to the polar regions is shown in Fig. 3. The target prediction
has identified that all compounds can possibly inhibit multiple tar-
get proteins such as receptors, kinases, proteases, transporters, and
structural proteins.

3.5. Deep docking of natural bioactive compounds with LeuRS

The three test bioactive compounds and known inhibitor
GSK656 were docked with MTB LeuRS protein using the DockThor
server, which is a grid-based method that implements the steady-
state genetic algorithm for evaluating the docking poses using the
MMFF94S force field. Deep docking results suggest that all the test
compounds show the highest binding affinity value of > -7.389
Kcal/Mol with the LeuRS protein (Table 3) (Fig. 4). Interestingly,
the Irinotecan is seen to be forming a strong H-bond with
Glu367 of LeuRS, and its binding region is identical to that of the
GSK656 inhibitor (Supplementary Figure S1).
3.6. Complex molecular dynamics simulations

The relative binding affinity and stability of the LeuRS and
bioactive compound complexes were explored by studying the cor-
responding RMSD, RMSF, H-bond, and ligand torsion profiles pre-
dicted by MD simulation. During the 100 ns timeframe of MD
simulation, after 20 ns, RMSD curves of Irinotecan-LeuRS were
seen to become uniform with average values of 6.5 Å and 5.5 Å,
respectively. On the other hand, during the entire simulation per-
iod, the RMSD curve for LeuRS-Docetaxel and LeuRS- Reserpine
complexes converged at 60 ns with values ranging from 5.5 Å to
7.0 Å, while for the LeuRS- GSK656 complex, it was on the lower
side (3Å– 6Å). Despite the RMSD curve of Irinotecan-LeuRS com-
plex being on the top side compared to GSK656, the relative devi-
Table 3
Binding and interaction scores of 3 natural bioactive and GSK3036656 compounds determ

Name DockT Scorea T. Energyb I. Energyc vdW Energyd

Docetaxel �7.389 257.417 �41.916 �11.14
Irinotecan �7.956 69.03 �40.392 �20.246
Reserpine �7.793 505.355 �37.686 �12.544
GSK3036656 �7.798 �17.608 �34.976 �17.743

Note:
Cintra/Inter molecular Energy.

a Protein-Ligand Binding score based on linear and empirical scoring.
b Total Energy based on docking ranking by DTStatistic program.
d Vanderwall energy (Intra + inter Molecular interaction = electrostatic, VdW and tors
e Electrostatic energy (Intra + inter Molecular interaction = electrostatic, VdW and tor

7

ations were very low (2Å) throughout the RMSD curve analysis.
This information shows that Irinotecan has a stable binding profile
when compared to that of GSK656 against LeuRS. Both ligands
showed minimum deviations while interacting with the amino
acid residues in LeuRS protein. Interestingly, the flexibility of LeuRS
increased to > 3 Å, while interacting with all the 3 bioactive com-
pounds compared to GSK656 (Fig. 5). Protein-ligand interactions
such as hydrogen bonds, hydrophobic interactions, ionic and water
bridges were also monitored throughout the 100 ns period. Fig. 6
illustrate a stacked bar chart of the Docetaxel-LeuRS complex,
revealing that G676, Y678, Q704, and P708 residues showed inter-
action values of > 0.75, and these residues formed > 70% of the
interactions with LeuRS throughout the 100 ns simulation period.
The Reserpine-LeuRS complex showed that Y665 and K708 resi-
dues formed 60% of the interactions throughout the simulation
period. However, the Irinotecan compounds showed the highest
interaction with five amino acid residues (N221, E222, L490,
W517, Y637) and these residues (>65%) were shown to constantly
interact with protein throughout the simulation period (Fig. 6) The
GSK656 showed constant interaction of three residues (L208,
W276 and R487) with the LeuRS protein over a 100 ns simulation
period. Flexibility in the proteins might have allowed Irinotecan to
interact with LeuRS protein more strongly compared to the
GSK656 compound. Fig. 6 illustrate the ligand torsion plot of rotat-
able bonds in Docetaxel, Irinotecan, Reserpine, and GSK656 at a
100 ns simulation period. The Irinotecan shows the lowest of seven
rotatable bonds, and the bonds’ rotations are constantly seen
throughout the simulation period. Other test compounds like Doc-
etaxel, Reserpine, and GSK656 demonstrated 18, 9, and 15 degrees
of freedom, respectively (Supplementary Figure S2). However,
these bonds were uncertain during the simulation period. Overall,
our results showed the conformational diversity of Docetaxel,
Reserpine, and Irinotecan test compounds, but Irinotecan has
demonstrated a superior binding affinity and stability in forming
molecular complexes with LeuRS protein.Fig. 7..
ined by DockThor, deep molecular docking method.

Elec. Energye Interacting AA H2 Bonds and Distance

�30.776 Glu367, Glu705 3 (<1.8 Å)
�20.146 Glu367 1 (2.3 Å)
�25.142 Asn221, Trp577, Arg493, Lys708 5 (<2.4 Å)
�17.233 Glu367,Lys708 2 (<1.9 Å)

ional energy).
sional energy).



Fig. 4. Docetaxel, Reserpine and Irinotecan in molecular docking with MTB-LeuRS. The 2D-residual interaction diagram created with Discovery Studio (according to
convention, interaction types are distinguished by colored circles (residues) and dashed lines (directed to the ligand moiety).
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4. Discussion

Drug-resistant MTB is posing a significant challenge in reducing
global TB infection-related morbidity and mortality. So, there has
been a continuous search for new drugs to improve the treatment
of TB infection and patient recovery. Those drugs can efficiently
8

target DNA replication, energy metabolism, folate metabolism,
RNA synthesis, and bacterial cell wall synthesis of MTB
(Bahuguna and Rawat 2020). Natural compounds extracted from
multicellular or unicellular organisms, either in crude mixtures
or pure compounds, present a potential opportunity to discover
new therapeutic candidates due to their enormous chemical



Fig. 5. RMSD and RMSF analysis of MTB-LeuRS lead compounds using MD simulation. The RMSD plot shows the C a backbone (blue) of MTB-LeuS and lead compound
fluctuations (red) at 100 ns. The RMF plot shows the fluctuation of the MtbLeuS protein while interacting with lead compounds at a 100 ns simulation period.
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diversity and biological safety (Rizwan et al., 2014) (Fatima et al.,
2019). In MTB, aaRSs mediate the transfer of a specific amino acid
to cognate tRNA, forming a charged aminoacyly-tRNA (aaRS)
(Ndagi et al., 2021). Because of their role in protein translation,
these enzymes are thought to represent new therapeutic targets
for antimicrobial agents (Bouz and Zitko 2021). Computational
molecular docking approaches have proven to be an efficient
method for discovering novel compounds in drug discovery
9

(Shaik et al., 2019). Inhibitors of aaRS have the potential to target
multiple regions, including the editing domain, ATP binding, tRNA
recognition, amino acid binding, and the allosteric sites. Mupirocin,
a clinically approved aaRS, binds to the catalytic domain of the bac-
terial isoleucyl-tRNA synthetase and does the competitive inhibi-
tion of the isoleucine- adenylate complex.

As mentioned above, the present study has explored the
anti-microbial activity of 136 FDA approved natural products
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(secondary metabolites) as a potential alternate to conventional
anti-MTB drugs. Out of all the tested products, molecular docking
results predict that Docetaxel, Irinotecan, Reserpine compounds
have the highest binding affinity with the MTB-aaRS. In recent
years, Deep Learning (DL) approaches have been proposed to
replace classical scoring systems in the context of molecular dock-
ing (Gentile et al., 2020). DL applications have become popular
because they can predict the properties of drug compounds, design
new drugs, predict reactions, and make new compounds (Jiménez-
Luna et al., 2020). Findings from our Deep Docking method have
confirmed that Irinotecan has the highest binding affinity with
aaRS and is comparable to the GSK656 compound.

Irinotecan [(S)-4,11-diethyl-3,4,12,14-tetrahydro-4-hydroxy-3,
14-dioxo1H-pyrano[30,40:6,7]-indolizino[1,2-b]quinolin-9-yl-[1,40b
ipiperidine]-10-carboxylate] belongs to pyranoindolizinoquino-
lines. The hydrochloride salt trihydrate of Irinotecan, in combina-
tion with fluorouracil and leucovorin, are used to treat patients
with metastatic adenocarcinoma of the pancreas treated with
gemcitabine-based therapy (Fujita et al., 2015). Historically,
Irinotecan is known to inhibit the action of the topoisomerase I
enzyme, which regulates DNA supercoiling and topology, and
enables nuclear activities such as DNA replication, transcription,
and repair. Irinotecan prevents re-ligation of the DNA strand, binds
to the topoisomerase I-DNA complex, and forms a ternary complex
that restricts the replication fork from moving (de Man et al.,
2018). Correspondingly, double-stranded breaks and replication
arrest in the DNA can occur. As a result, apoptosis (programmed
cell death) occurs due to the inefficient repair of the developed
DNA damage (Bailly 2019).

The interfering role of Irinotecan on the aaRS activity in MTB
infections is not yet well explored. The LeuRS of MTB belongs to
the Class I category of aaRS, which has a distinct structure in the
catalytic domain (Fujita et al., 2015). It is made up of three func-
tional domains: the tRNA synthetase class I (M) domain (71–
192), the Leucyl tRNA synthetase domain 2 (305-504aa), and the
anti-codon binding domain (814–938aa). Irinotecan inhibits LeuRS
activity by binding to L490 amino acid residues in domain 2 via the
Oxaborole tRNA-trapping (OBORT) mechanism, where it forms a
covalent adduct that links Oxaborole and the terminal ribose of
the tRNA. It is likely that when aaRS is inhibited in bacteria, it leads
to a buildup of uncharged tRNA. That will lead to the induction of
the relA gene, exerting a negative feedback on RNA polymerase.
The relA gene is accountable for guanosine tetrapeptides and pen-
tapeptide biosynthesis. High energy activities like macromolecule
biosynthesis will be downregulated. Ultimately, the bacterial
growth will be inhibited and the pathogen’s virulence will be
attenuated in vivo (Hurdle et al., 2005). In drug-likeness assess-
ment, Irinotecan has shown better physiological and pharmacolog-
ical properties in comparison to Lipinski’s principles. Interestingly,
Irinotecan showed a good absorption score (0.55) as equivalent to
GSK656. The absorption property defines drug transport proper-
ties. Besides, Irinotecan has also shown ideal molecular bonding
characteristics like rotatable bonds (6), H-bond acceptors (8), bond
donors (1), and iLogP (4.95).
Fig. 6. Analysis of the Docetaxel H-bond and torsional angel over a 100 ns simulation per
compound with the protein. B) Heatmap of the LueS-Docetaxel H-bonds over 100 ns. C)
The rotational energy barrier as a function of bond rotation angle is typically represented
space of Docetaxel during the simulation period, and the histogram represents the tors
period.
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One of the anti-tuberculosis drugs under consideration is
GSK070, a protein synthesis inhibitor. It inhibits MTB LeuRS with
an MIC90 = 0.08 lM (GSK656) and is currently undergoing preclin-
ical studies (Shetye et al., 2020). Gudzera et al. (2016) discovered
MTB-LeuRS inhibitors derived from 5-phenylamino-2H–[1,2,4]
triazin-3-one (Gudzera et al., 2016).The inhibitory activity of those
inhibitors against pathogenic MTB LeuRS is 10-fold more selective
than against the human enzyme (Gudzera et al., 2016). In 2016,
(Palencia et al., 2016) synthesized a 3- aminomethyl-4-halogenben
zoxaborole exhibiting potent in vitro MTB-LeuRS inhibition. It can
also kill the H37Rv strain of MTB in vitro. Further structural mod-
ifications to improve pharmacokinetics properties and oral
bioavailability resulted in the development of GSK656
(GSK3036656), which has submicromolar MTB-LeuRS inhibitory
activity with excellent in vitro growth inhibition activity, and an
effective anti-MTB in vivo in a mouse MTB model (ED99 = 0.4 m
g/kg) (Li et al., 2017). Similar to first line anti-MTB drugs,
GSK656 has an ideal molecular weight (257.48 g/mol), low PSA
(53.71 A2), and clogD7.4 (-0.4) values. GSK656 is the first aaRS
inhibitor in phase IIa clinical trials to be used systemically against
MTB (ClinicalTrials.gov Identifier: NCT03557281) (Tenero et al.,
2019). It should be noted that the anti-Leu-RS activity results of
Irinotecan obtained through computational molecular screening
can only show the effective binding and inhibitor stability. How-
ever, further laboratory studies are vital in validating and compar-
ing the biological activities, toxicities, and therapeutic indexes of
GSK656 and Irinotecan to establish their anti MTB inhibitors.

In summary, we screened 136 FDA approved natural sec-
ondary metabolite compounds against the M.tuberculosis infec-
tion. The best inhibitory compounds (Docetaxel, Reserpine, and
Irinotecan) demonstrated robust binding with anti-Leu RS. Deep
molecular docking has shown that Irinotecan interacts with
leucyl-tRNA synthetase through an oxaborole tRNA-trapping
(OBORT) mechanism, downregulating high energy demanding
biological mechanisms including biosynthesis of nucleic acids,
proteins, and lipids, eventually inhibiting the bacterial growth
and attenuating the pathogen’s virulence. The multidirectional
computational screening methods used in this study once again
establish the potential of knowledge-based screening approaches
in the repurposing of naturally occurring natural compounds for
treating TB infection. This study also recommends implementing
highly efficient computational protocols for discovering novel
anti-MTB compounds. However, we sincerely admit that our
findings are unable to elucidate complex drug metabolism and
toxicity reactions occurring inside the human body. Our findings
pave the way to testing novel MTB proteasome inhibitors in
experimental conditions in the quest of finding novel inhibitors
to combat pathogenic TB infections.
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iod. A) The 35 ionic interactions formed during the simulation by natural Docetaxel
the 2D structure of Docetaxel stable interaction with protein during simulation. D)
in simulation graphs. The radial plots denote the 18 torsional angels’ conformation

ional energy profile of the LeuRS- Docetaxel complex during the 100 ns simulation
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Fig. 7. Analysis of the LeuRS-Irinotecan H-bond and torsion angle over a 100 ns simulation period. A) The 49 ionic interactions formed during the simulation by natural
Irinotecan compound with the LeuRS protein. B) Heatmap of the LueRS- Irinotecan H-bonds over 100 ns. C) The 2D structure of Irinotecan shows stable interaction with the
protein during the entire simulation. D) The radial plots denote the 7 torsion angels’ conformation space of Irinotecan during the simulation period, and the histogram
represents the torsional energy profile of the LeuRS- Irinotecan complex during the 100 ns simulation period.
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