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People raise redwood, and mahogany will last a lifetime. In China, there have always been the sayings of
‘‘sleeping Pterocarpus indicus Willd. and sitting on Dalbergia cochinchinensi”. Among them, the health of
mahogany furniture is rarely scientifically and systematically elaborated. Therefore, the active ingredi-
ents in the Pterocarpus santalinus extract were analyzed in detail by using advanced detection techniques,
and it was found that 54 active ingredients were detected in the Pterocarpus santalinus extract. Mainly
include alkanes, phenols, alcohols, terpenes (alkenes), and acids. In the Pterocarpus santalinus extract,
the majority components of Pterocarpus santalinus are healthy and abundant; the main representative
of the active ingredient were .alpha.-Bisabolol, Squalene, cedrol, Propanoic acid, 2-methyl-, 3-hydroxy-
2,2,4-trimethylpentyl ester, P-Cresol, (-) - Spathulenol and Heptacosane. It also has potential application
prospects in the fields of bio-energy, bio-medicine, cosmetics, skin care products, and spices. The study of
the chemical composition of Pterocarpus santalinus provides a scientific basis for the development and
utilization of the plant.
� 2020 Published by Elsevier B.V. on behalf of King Saud University. This is anopen access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Pterocarpus santalinus belongs to the butterfly-shaped red san-
dalwood flowers, classified as rosewood mahogany, are medium
arbor, found mainly in India, has deep and white stripes, and is
slightly fragrant. Because of the pterocarpin, it is soluble in alcohol
and ether; wood chips in the alcohol were orange, and the fingers
dipped in alcohol or water and wood friction was red (Anuradha
and Pullaiah, 1999; Manjunatha, 2006).

The chemical composition of wood is complex and diverse—
mainly consisting of carbohydrates, phenols, terpenes, fatty acids,
etc.—which can also be divided into fiber hemicellulose, lignin,
and extract (Esteves et al., 2008). The chemical composition of dif-
ferent woods is varied, but the chemical composition of the same
wood is usually more fixed. This chemical composition affects
the physical mechanics, natural durability, color, smell, and taste
of the wood, as well as its processing and utilization (Esteves and
Pereira, 2009; Mohareb et al., 2012). Wood moisture absorption
is mainly due to the presence of hydrophilic and free hydroxyl
groups on the cellulose (Endo et al., 2016; Peng et al., 2018). Lignin
is a kind of complex aromatic substance; the chemical structure of
lignin and wood species has an important impact on the color of
the wood (Huang et al., 2016; Wang et al., 2015). Experimental
results from Zhang Shuangyan et al. (2013) show that the content
of lignin and a single fiber elastic modulus positively correlated
with a higher cellulose content and fiber tensile strength. Hemicel-
lulose and lignin as a bonding material and hard solid material give
the wood elasticity and compressive strength (Esteves et al., 2008;
Fidêncio, 2011; Shen et al., 2017). In addition to the three elements,
wood also contains certain types and quantities of extracts, such as
volatile oils, resins, and other phenolic compounds (Aydemir et al.,
2011; Tumen et al., 2010). The wood has a different color, which is
associated with the cell cavity, whether the cell wall is filled or
deposited extract. Some species contain natural pigments, such
as flavonoids and ketones, etc.; the heartwood was red because
the redwood heartwood contains redwood pigment, while the
mahogany contains magenta hematoxylin pigment, so that red-
wood was red. Balaban (2004) studied the phenolic compounds
of sapwood and heartwood by GC–MS. Arias et al. (2012) also
detected and analyzed lignin heat transfer decomposition of the
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material by GC–MS of pyrolysis pine at different high
temperatures.

In order to scientifically and systematically explain the maho-
gany in depth, so that people can have a clearer understanding of
the way of redwood health; at the same time, studying the chem-
ical composition of wood can provide a basis for the processing and
utilization of wood. Therefore, sandalwood was used as the
research object, and the organic solvent extracts were analyzed
by advanced detection methods (such as FT-IR, TG, GC–MS,
PY-GC–MS, and TDS-GC–MS). The molecular composition of
sandalwood extract was deeply analyzed through comparative
analysis, and the prospect of resource utilization was prospected
(Mi et al., 2019).
Fig. 1. FT-IR spectra of samples B0, B1, B2, and B3.
2. Material and methods

Extraction methods: Samples were crushed into 40–60 mesh
powder by a crusher. Then, dry 10%, take 10 g (accuracy: 0.1 mg)
of dried Pterocarpus santalinu sample, put into distillation bottles,
add 300 mL (accuracy: 1 mL) of ethanol, ethanol/benzene (1:1),
and methanol/ethanol (1:1) solvent was used to extract, respec-
tively. The extraction were named B1, B2, and B3 samples. The
mixture of reagents was extracted for 5 h at 85 �C, then the solid
powder was named B1-1, B2-2, and B3-3 samples, respectively.

To determine the functional groups and chemical bonding pre-
sent in the extract of the Pterocarpus santalinu, FT-IR analysis was
conducted with a FT-IR spectrophotometer (Thermo Fisher Scien-
tific iS100) at 4000–400 cm�1. FT-IR test sample was prepared by
mixing the sample with KBr in a ratio of 1:100. The instrument
records infrared molecular absorption, infrared spectrum acquisi-
tion, spectral smoothing and baseline correction. Infrared spec-
troscopy usually takes wave (r) as abscissa to indicate the
position of absorption peak, and vertical axis transmittance to indi-
cate absorption intensity (Jiang et al., 2017; Peng et al., 2014; Xue
et al., 2014).

The chemical components present in the samples were
determined by a GC–MS (Agilent 7890B-5977A). The column used
was elastic quartz capillary column named HP-5MS
(30 m � 250 lm � 0.25 lm). High purity helium (1 mL/min) was
used as the carrier gas and the split ratio was 2:1. The GC oven
was started at 50 �C, and heated to 250 �C (ramping rate = 8 �C/
min), and then further heated up to 280 �C (ramping rate = 5 �C/
min). For the MS, compounds in the mass range of 30–600 amu
were detected. Meanwhile, the ionization voltage and current were
70 eV and 150 lA EI, respectively. The quadrupole and the ion
source temperature were set at 150 �C and 230 �C, respectively.

Fast pyrolysis of Pterocarpus santalinu were performed and ana-
lyzed via thermogravimetry (TG), and pyrolysis/GC–MS (Py/GC–
MS). The performance of the four samples were investigated and
compared. The thermogravimetric analyzer (TGA) is used to study
the thermal stability and composition of materials. For TG analysis,
4–7 mg of the samples were analyzed using TGA Q50 V20.8 Build
34. Instruments to determine the thermal decomposition of the
samples. The sample was from 30 �C to 250 �C under nitrogen flow
(60 mL/min) with two different ramping rates of 5 �C/min. Py/GC–
MS (CDS5200-trace1310 ISQ) equipped with TR-5MS capillary col-
umn (30 m � 0.25 mm � 0.25 lm) was used during Py/GC–MS test.
The sample was from 30 �C to 500 �C (ramping rate = 20 �C/ms)
under inert helium flow (50 mL/min) for 15 s, before the product
sample was subjected to GC. The GC was operated under split
mode with split ratio of 60:1. The GC oven was started at 40 �C
(holding time = 2 min), heated to 120 �C (ramping rate = 5 �C/min),
and then further increased to 200 �C (ramping rate = 10 �C/min,
holding time = 15 min. For the MS, the ion source [electron ioniza-
tion (EI)] temperature and scanning range were set at 280 �C and
28–500 amu. TD/GC–MS: First, the sample was from 30 �C to
100 �C (ramping rate = 10 �C/min, retained for 5 min), then
100 �C–200 �C (ramping rate = 10 �C/min, retained for 0 min)
(Peng et al., 2012).

3. Results and discussion

3.1. Analysis of FT-IR

The infrared spectrum of Pterocarpus santalinus was analyzed.
Fig. 1 shows the infrared contrast spectra of the Pterocarpus santali-
nus and the three extracts. The absorption peak in infrared spec-
trum is the stretching vibration of free hydroxyl above
3400 cm�1. The broad peak is an intermolecular association
absorption peak near 3400 cm�1. The absorption peak is the
stretching vibration of the saturated C–H bond at 3000–
2750 cm�1. The absorption peak at 1800–1580 cm�1 was attribu-
ted to the C=O stretching vibration. The absorption peak at
1480–1300 cm�1 is mostly CH2 and CH3 bending vibration absorp-
tion. The absorption peaks near 1450 cm�1 and 1350 cm�1 are CH2

stretching vibration and CH3 stretching vibration, respectively. The
absorption peak is mainly caused by C–C stretching vibration, C–O
stretching vibration, and C–H bending vibration at 1300–650 cm�1

(Huang et al., 2008; Müller et al., 2009; Yao et al., 2010). The
absorption peaks of cellulose (2948 cm�1), hemicellulose
(1730 cm�1), and lignin (1739 cm�1, 1611 cm�1, 1501 cm�1, and
812 cm�1) in the chemical composition of sandalwood were
slightly weakened, indicating that part of it underwent hydrolysis
(Honyet al., 2000; Wen et al., 2014). From the FTIR analysis, it was
determined that the main chemical components of Pterocarpus
santalinus extracts are phenols, alcohols, ethers, fatty acids,
ketones, polysaccharides, and fatty acids (Fig. 2).

3.2. Analysis of TGA and DTG

Fig. 3, presents the thermogravimetric (TG) and derivative ther-
mogravimetric (DTG) curves. From the figure, the changes in mass
loss rate of the samples can be elucidated. T1wt%, T5wt% and T10wt%

for weight loss of 1 wt%, 5 wt% and 10 wt%, respectively (Mathi
et al., 2016). T1wt%, T5wt% and T10wt% are 34 �C, 75 �C and 224 �C,
respectively. TGA is divided into two stages: water evaporates
mainly at low temperature, while the other is the high temperature
phase of coke through aerobic combustion. Between 50 and 250 �C,
Pterocarpus santalinus thermo-gravimetric is only approximately



Fig. 2. FT-IR spectra of samples B0, B1-1, B2-2, and B3-3.

Fig. 3. TGA and DTG thermal curves of Pterocarpus santalinus.
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13% and thermal weightlessness is less, this phenomenon shows
that Pterocarpus santalinus thermal stability is better. Moreover,
the TGA and DTG tests showed that at 250 �C below, only a small
amount of hemicellulose, cellulose and lignin pyrolysis was found
in Pterocarpus santalinus, showing good thermal stability. Overall,
Pterocarpus santalinus has better thermal stability.

3.3. Analysis of GC–MS

The total ion chromatograms and component distribution
obtained from GC–MS analysis of the AB wood waste in the form
of extracts are shown in Figs. 4–6.

There is a total of 56 chemical components being identified
from the 76 peaks generated by GC–MS analysis of B1 extracts.
The results show that the content of more substances are as fol-
lows: 2-Naphthalenemethanol, 2-Naphthalenemethanol,
decahydro-.alpha.,.alpha.,4a-trimethyl-8-methylene-, [2R-(2.alph
a.,4a.alpha.,8a.beta.)]- (23.7%), .alpha.-Bisabolol (11.32%), Alloaro-
madendrene oxide-(1) (5.51%), 2-Propen-1-ol, 3-(2,6,6-trimethyl-
1-cyclohexen-1-yl)- (13.44%), Estra-1,3,5(10)-trien-17.beta.-ol
(5.3%), cis-Z-.alpha.-Bisabolene epoxide (6.78%), cis-Z-.alpha.-
Bisabolene epoxide (45.01%), 1-Heptatriacotanol (6.08%), 9,12-
Octadecadienoic acid (Z,Z)- (5.08%), Oleic Acid (5.36%), 9-
Octadecenamide, (Z)- (6.81%), Heptacosane (10.67%), and Squalene
(10.5%). The results show that 56 chemical components being iden-
tified from the 76 peaks generated by GC–MS analysis of B2
extracts. The show that the content of more substances are as fol-
lows: .alpha.-Bisabolol (14.18%), Alloaromadendrene oxide-(1)
(6.81%), (1R,4aR,7R,8aR)-7-(2-Hydroxypropan-2-yl)-1,4a-dimethyl
decahydronaphthalen-1-ol (6.01%), Isospathulenol (11.23%),
2-Propen-1-ol, 3-(2,6,6-trimethyl-1-cyclohexen-1-yl)- (15.04%),
2,4-Dimethyl-5,6-dimethoxy-8-aminoquinoline (10.45%), Isoaro-
madendrene epoxide (8.81%), cis-Z-.alpha.-Bisabolene epoxide
(50.02%), 2H-1-benzopyran-2-one, and 7-hydroxy-3-(4-
methoxyphenyl)- (21.69%). The results show that 57 chemical con-
stituents were identified in B3. The content of more substances are
as follows: 2-Naphthalenemethanol, 1,2,3,4,4a,5,6,7-octahydro-.al
pha.,.alpha.,4a,8-tetramethyl-, (2R-cis)- (7.18%), .alpha.-Bisabolol
(14.71%), Alloaromadendrene oxide-(1) (7.3%), (1R,4aR,7R,8aR)-7-
(2-Hydroxypropan-2-yl)-1,4a-dimethyldecahydronaphthalen-1-ol
(6.62%), (-)-Spathulenol (100%), Isospathulenol (10.53%), 2-Propen-
1-ol, 3-(2,6,6-trimethyl-1-cyclohexen-1-yl)- (15.54%), 2,4-Dime
thyl-5,6-dimethoxy-8-aminoquinoline (9.02%), cis-Z-.alpha.-
Bisabolene epoxide (8.15%), Ledene oxide-(I) (22.5%), and 10,11-D
ihydro-10-hydroxy-2,3,6-trimethoxydibenz(b,f)oxepin (5.23%)
(Fig. 7).

3.4. Analysis of TDS-GC–MS

According to the results of TDS-GC–MS analysis, 48 chemical
constituents were identified in 58 peaks of Pterocarpus santalinus
volatiles. The results show that the components are: Naphthalene,
1,2,4a,5,8,8a-hexahydro-4,7-dimethyl-1-(1-methylethyl)-,(1.alpha.
,4a.beta.,8a.alpha.)-(.+/-.)- (18.26%), 2-((2R,4aR,8aS)-4a-Methyl-
8-methylenedecahydronaphthalen-2-yl)prop-2-en-1-ol (11.48%),
Benzene, 1,2,3-trimethoxy-5-(2-propenyl)- (40.97%), cis-Z-.alpha.-
Bisabolene epoxide (11.25%), 2-Naphthalenemethanol, .alpha.-
Bisabolol (60.04%), 6-Isopropenyl-4,8a-dimethyl-1,2,3,5,6,7,8,
8a-octahydro-naphthalen-2-ol (27.31%), 2-((2R,4aR,8aS)-4a-Methyl-
8-methylenedecahydronaphthalen-2-yl)prop-2-en-1-ol (12.42%),
6-Isopropenyl-4,8a-dimethyl-1,2,3,5,6,7,8,8a-octahydro-naphthalen-
2-ol (24.85%), and 4-(2,2,6-Trimethyl-7-oxabicyclo[4.1.0]hept-4-en-
1-yl)pent-3-en-2-one (11.43%) (Fig. 8).

3.5. Analysis of Py-GC–MS

The results of Py-GC–MS show that 50 compounds were
identified in Pterocarpus santalinus, and the peak area accounted
for 47.54% of the total peak area, of which the content was higher:
Carbamic acid, monoammonium salt (5.14%), Acetone (3.52%),
Glycolaldehyde dimer (5.03%), Acetic acid (3.92%), Phenol,
2-methoxy- (5.02%), Creosol (5.35%), m-Guaiacol (5.77%),
2-Methoxy-4-vinylphenol (5.87%), Phenol, 2,6-dimethoxy-
(3.65%), and trans-Isoeugenol (3.76%).

3.6. Analysis of function

Pterocarpus santalinus is a high-end, expensive furniture mate-
rial. Pterocarpus santalinus and Pterocarpus santalinus products
have a certain human health function. The Py-GC–MS, TDS-GC–
MS, and GC–MS techniques were used to analyze the Pterocarpus
santalinus, obtaining the related compounds. Through literature
analysis found that the .alpha.-Bisabolol has anti-inflammatory,
antispasmodic, and antiulcer effects, though it also has increased
skin defense ability and reduce skin tension. Furthermore, the .
alpha.-Bisabolol can efficiently inhibit the human dendritic cell
pro-inflammatory activity (Marongiu et al., 2014). Squalene can
inhibit the body to absorb cholesterol, which has the function of
lowering cholesterol (Smeriglio et al., 2016).

Moreover, the cedrol is a sesquiterpene compound, which is an
important component of wood flavor and sandalwood. Not only



Fig. 4. Total ion chromatograms of Pterocarpus santalinus which were extracted by ethanol.

Fig. 5. Total ion chromatograms of Pterocarpus santalinus which were extracted by ethanol/benzene (1:2).

Fig. 6. Total ion chromatograms of Pterocarpus santalinus which were extracted by ethanol/benzene (1:1).
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that, but it can also be used as a disinfectant, which has the effect
of inhibiting human lung cancer cells (Dayawansa et al., 2003). To
continue, (-) - Spathulenol has an immune effect (Ziaei et al., 2011).
Heptacosane is key in banana leaf volatile oil. Pterocarpus santali-
nus mainly contains unsaturated fatty acids, phytosterols, and
polyphenols, which can be used as an antioxidant, anti-aging, low-
ering blood pressure, improving memory, and other effects. In gen-
eral, most of the ingredients of sandalwood are healthy and rich,
indicating that it contains natural healthy ingredients in terms of
health and is a treasure of human health care.
4. Conclusion

In the TG, FTIR, TDS-GC–MS, Py-GC–MS, and GC–MS test, 117
active ingredients were identified in Pterocarpus santalinus extract.
The main chemical components of Pterocarpus santalinus extracts
are phenols, alcohols, ethers, ketones, polysaccharides and fatty
acids, some of which can be used in high-end perfumes, cosmetics,
food and biomedical products. It can be observed from the above
studies that the effective components in Pterocarpus santalinus
are antibacterial, antitumor, and insecticidal activity, of which



Fig. 7. Total ion chromatograms of Pterocarpus santalinus by TDS-GC–MS.

Fig. 8. Total ion chromatograms of Pterocarpus santalinus by Py-GC–MS.
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the .alpha.-Bisabolol has anti-inflammatory, antispasmodic, and
antiulcer effects, while also having increased skin defense ability
and reduced skin tension. Squalene can inhibit the body to absorb
cholesterol, ultimately lowering cholesterol. The cedrol is a
sesquiterpene compound, which is an important component of
wood flavor and sandalwood. It can also be used as a disinfectant,
which has the effect of inhibiting human lung cancer cells, indicat-
ing that it contains natural healthy ingredients in terms of health
and is a treasure of human health care.
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