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Abstract This paper presents numerical solutions of the linear and nonlinear Fokker—Planck par-
tial differential equations [FPPDEs] with space and time fractional derivatives through analytical
solutions. These are treated by two analytical methods, namely, fractional reduced differential
transform method [FRDTM] and fractional variational iteration method [FVIM] followed by some
examples. Numerical results obtained by both FRDTM and FVIM are compared with some exist-
ing methods in the literature. This comparison shows the supremacy of FRDTM over FVIM and
existing methods in terms of accuracy, simplicity and reliability.
© 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. Thisis an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The Fokker—Planck equation was first introduced by Fokker
and Planck to describe the Brownian motion of particles
(Risken, 1989), that is, it expresses the change of probability
of a random function in space and time, hence it is used to
explain solute transport. Phenomena such as anomalous diffu-

* Corresponding author. Tel.: +91 9790618865.
E-mail addresses: mathsaran@gmail.com  (A.
nmagi2000(@gmail.com (N. Magesh).

Saravanan),

Peer review under responsibility of King Saud University.

FLSEVIER Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.jksus.2015.01.003

sion, continuous random walk, wave propagation, polymeric
networks, charge carrier transport in amorphous semiconduc-
tors, DNA and RNA polymerases, the motion of ribosomes
along mRNA and pattern formation are modeled by FPPDEs
with space and time fractional derivatives (see Heinsalu et al.,
2006; Yang et al., 2009; Zhuang et al., 2006/07 and references
therein). These applications of FPPDE with space and time
fractional derivatives have attracted us to make a study on it.

In the present investigation, we consider the numerical solu-
tion of FPPDE with space and time fractional derivatives of
the form:

o*u o° 0%
o —WA(X, t,u) +WB(X’ tou)|u(x, 1), t>0,
0<o, <, (1)

subject to the initial condition,
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= g(x), (2)

where o and f are parameters describing the order of the frac-
tional time and space derivatives, respectively (see Yan, 2013).
The function u(x, ¢) is assumed to be a causal function of time
and space. It is interesting to note that for « = 1 and f = 1, the
fractional equation reduces to the classical FPPDE.

Qualitative properties like stability and convergence of (1)
have been studied by the Yang et al. (2010). Various existing
analytical and numerical methods have been used to solve
(1) Garg and Manohar, 2011; Odibat and Momani, 2007,
Ray and Gupta, 2014; Vanani and Aminataei, 2012; Yan,
2013; Yang et al., 2009; Yildrim, 2010. However, these analy-
tical and numerical methods are not simple to apply and need
tedious works and knowledge.

The differential transform method [DTM] is an analytical
method which was first proposed by Zhou (1986) and its main
applications therein are to solve both linear and nonlinear initial
value problems in electric circuit analysis. Later, DTM has been
used to solve partial differential equations (Soltanalizadeh,
2011; Soltanalizadeh and Yildirim, 2012). Another analytical
version of DTM is the reduced differential transform method
[RDTM]. Recently, the RDTM has been shown to be effective
and reliable for handling linear and nonlinear partial differential
equations and integral equations (one can refer Abazari and
Kiligman, 2013; Abazari and Soltanalizadeh, 2013; Saravanan
and Magesh, 2013). This method has been developed by
Keskin and Oturanc (2010) to solve the fractional partial differ-
ential equations with some modifications and it is named as frac-
tional reduced differential transform method [FRDTM].
FRDTM has been successfully applied to solve many types of
fractional partial differential equations (Gupta, 2011; Ray,
2013; Sohail and Mohyud-Din, 2012) and higher dimensional
problems too (Srivastava et al., 2014). This literature survey
shows that FRDTM has been used to solve the time fractional
derivative problems but not on both space and time fractional
derivatives. Here, we are the first to propose FRDTM for solv-
ing space and time fractional partial differential equations of the
type (1).

The fractional variational iteration method [FVIM] was
first proposed by Wu and Lee (2010). This technique is based
on the modified Riemann—Liouville derivative. Recently, there
are many interesting works that have been considered to solve
various fractional differential equations (Elbeleze et al., 2013;
Faraz et al., 2011; Song et al., 2013; Wu and Lee, 2010). A
correction functional is constructed by the general Lagrange
multiplier which can be found optimally through the
variational theory. However, the general Lagrange multiplier
cannot be identified directly by using integration by parts as
in classical variational iteration method. To get this Lagrange
multiplier, we need to use fractional integration by parts
J2 e (x)v(x) (dx)” = a[u(x)v(x)]2 — [7 u(x)v*(x)(dx)*, which is
mysterious to non mathematicians and it requires the complete
knowledge of variational theory. Further, it leads to compli-
cated computation and more time is consumed. But such a
type of complicated computation will not occur in FRDTM.
Inspiration behind the proposed FRDTM is to exhibit a solu-
tion scheme which is easy to understand. It is interesting to
note that both FRDTM and FVIM provide the analytical
solutions. Here, in this paper, the numerical solutions are
obtained through the analytical solution. To show the
supremacy of FRDTM over the other existing methods in

u(x,0)

the literature, the numerical results are compared for assessing
the accuracy, simplicity and reliability.

2. Preliminaries

2.1. Fractional reduced differential transform method

In this section, we give some basic definitions and properties of
the FRDTM which are used further in this paper.

Definition 1. Keskin and Oturanc (2010) Let u(x,7) be an
analytic function that is continuously differentiable with
respect to time ¢ and space x in the domain of interest then,
1 o

= |—u(x,t 3
(ko + 1) [81""“ ul, )} o 3)

where o is a parameter describing the order of the time frac-
tional derivative in the Caputo sense and the t-dimensional
spectrum function Uy (x) is the transformed function.

The differential inverse transform of Uy(x) is defined as,

u(x, 1) ZU 4)

The fundamental theorems of the FRDTM are derived
from the fractional power series and the generalized Taylor
series and they are given in the Table 1 (see Keskin and
Oturanc, 2010 as follows:)

Uk(x)

Further information about fractional derivatives and its
properties can be found in Jumarie (2009) and Odibat and
Momani (2007).

3. Description of the methods

In this section, we give the solution procedure of FRDTM and
FVIM to solve (1).
(a) Fractional reduced differential transform method:
Applying the reduced differential transform on both sides
of (1) and (2), we obtain,

RDT{ax ] = RDT{ aa/’ﬂ A(x, 1, u)u(x, z)}

or
2
+RDT{§ T B(x, t,u)u(x, t)]7 (5)
RDTu(x,0)] = RDT[g(x)]. (6)

Using the fundamental Theorems 5, 6 and 7 in Table 1 on (5)
and (6), we get the recurrence relations as,

Table 1 Fundamental theorems of the FRDTM

S. No Original function Transformed function

1 w(x, ) =u(x, 1) £v(x,1)  Wi(x) = Ur(x) £ Vi(x)

2 w(x, 1) = cu(x, 1) Wi (x) = cUi(x)(c is constant)
3 w(x, 1) = x"¢" Wi(x) = x"d(ka — n)

4 w(x, 1) = x"1"u(x, 1) Wie(x) = X" Ugy—n(x)

5 wix, 1) = dm (u(x, 1)) Wi(x) = i”“m” Uksn()

6 w(x, 1) = u(x, )v(x, 1) Wi(x) = 35 U (x) Vi r (%)

7 wix, 1) = & (u(x, 1)) Wi(x) = & (Uk(x))
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T(ko+ o+ 1 of fiad
w i (x) = *WFI\'(X) +WG1<(X)7 (7

where Uy (x), Fi(x) and Gi(x) are the transformed functions of
u(x, ), A(x,t,u) u(x,t) and B(x,t,u)u(x, t), respectively.

Uo(x) = g(x). (8)
From the Iterative calculations mentioned above (7), we get
the inverse transform coefficients of #*, k = 0,1,2,.... as

UL(x) = (), Us(x) = 1, (), Us(%) = ma(x) .. 9)

By substituting (8) and (9) in (4), we get the series solution.
When we take o = 1 = f5, the series solution becomes exact
solution. One can get the approximate solution by truncating
the terms in the series solution.

(b) Fractional variational iteration method:

To solve (1) by means of FVIM, rewrite it in the form,

du [ o
T + {w/l(x, tu)— mB(x, t, u)} u(x, 1) =0. (10)
We can construct a correction functional for (10) as,
1
Uy (X, l) = u,,(x, [) +m
t . 80{ aﬁ' 62ﬂ B .
X /0 Als) {8 uy, + (OxﬁA —WB)un(x,s)] (ds)*,

(11)
where A is the general Lagrange multiplier, which can be iden-
tified optimally through variational theory. The function
uy(x, t) is a restricted variation which means i, (x,7) = 0. By
making the above functional stationary,

— Sy + ﬁ /0 2s) {5—; un(x,s)} @), (12)

By using fractional integration by parts, we may obtain,

5ul1+1 (X, t)

J=—1. (13)

From (11) and (13), we get the following iteration formula,

un+l(x7[) :M,,(X, [) - F(OC+ 1)

‘ro o 9 .
X /0 {@UN(X,S) + (WA - WB) M,1()C7S):| (dS) .

(14)

When we start with the initial approximation uy(x, ) = g(x),
then we can determine the approximations of u,(x,#),n > 1
Finally, we approximate the solution as,

u(x,t) = limu,(x, 1). (15)

n—oo

4. Illustrative examples

Two different examples are considered in this section, to show
the effectiveness of RDTM.

Example 1. Consider, the linear space-time fractional
Fokker—Planck partial differential equation (Yan, 2013),

Ou o rux " fux?

55 = 5w (6) t o (E) >0, x>0,
0<af<I, (16)

with the initial condition,

u(x,0) = x*. (17)

Case (i): FRDTM: By taking the reduced differential trans-
form on both sides of (16) and (17) and then applying appro-
priate results given in Table 1, the following recurrence
relations are obtained,

[(ko+a+1) -1
WUHI(X)— 6 Ox ﬁ(‘CUk(Y))
1
+Em(x Uk(x)), (18)
Up(x) = x7. (19)

From the Iterative calculations mentioned above (18), we get
the inverse transform coefficients of #* where k =0,1,2,.. ..
as,

1 2x4-2F i—F
Ui(x) = (1 + ) (1"(5 —2p) a r- ﬂ))7
- | —F(6 2ﬂ) 5-38 (5 ﬁ)x4—2/3
Y= i) {3r(5 26)T(6-36) " 6T (4~ HI(5—2f)

(7 —28)x—4
6I(5—28)T(7—4p)

r6—px>
12 (4 — Q)T (6—3B))’

+

(20)

Substituting (19) and (20) in (4), we get the series solution as,

I 2% P
e, ) =+ <1+a>< G- 25) F(4fﬁ))ﬁ
—T(6 — 2p)x>
T 3T(5 — 28)T(6 — 3p)
( /M B T
6F(4 ﬁ)F(S 2ﬁ) 6F(5 — 2/})1"(7 — 4[3)
(6 )x5 3[3

12F 4—BI(6—3p)
Case (ii): FVIM:

According to the formula (14), the iteration formula of (16)
is given by,

Upy1(x, 1) = uy(x, 1)

e /. [
((;9/3/f (xt,(x,5)) — % %fﬁ (xzun()@s)))} (ds)".

(22)

Taking initial approximation as uy(x, t) = x2, we get the fol-
lowing approximations,

5 1 X3P
o) =X Ry (F(4—ﬁ)

x4
TTG- zﬁ))’ ’
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1 3-p 2x5% N
w0 =%~ (rp = am)!
[ r6— 2/3 5-3p
) 305 — —3p)
5 _ ﬁ 4-2f (6 _ /;)X5—3/£

T T4 — A5 —2p) T 12T (4 — BT (6 - 3p)

— (7 zﬁ) 64 :|[29c
6I'(5—2B)I(7 —4p)

(23)

and so on, in the same manner the rest of the components of
the iteration formula (22) can be obtained.
When o = ff =1, Egs. (21) and (23) are reduced to

u(x t)—x2<l+[+(%)2+ )—‘czeé
X, 1) =  RICTRREEREE =x’e,

which is the exact solution of (16).

Table 2 shows the comparison of exact solutions with the
approximate solutions of different methods ADM, VIM,
HWM, ILTM, FVIM and FRDTM for various values of x
and ¢ when o = f§ = 1. Given numerical results of ADM, VIM

and HWM in Table 2 have been taken from Ray and Gupta
(2014) and the numerical results of ILTM, FVIM and
FRDTM have been constructed for first three terms of the
analytical solution by using the Matlab version 1.0.0.1. It is
found that the solutions obtained by the present method are
better than the ADM, VIM, HWM, ILTM and coincide with
FVIM as well as exact solution. Accuracy wise, FRDTM
shows better performance over the other techniques.

ADM uses complicated Adomian polynomial and noise
term phenomena, VIM involves estimation of the Lagrange
multiplier and noise term phenomena, HWM involves reduc-
tion of fractional PDE to system of equations added com-
plexity to the respective techniques while such complexities are
not occured in the solution procedure of FRDTM. It shows
the simplicity of FRDTM.

In Vanani and Aminataei (2012), the authors took seven
iterations to show the ability of their method but here we
consider only first three iterations. It shows the rate of
convergence, constancy and reliability of the FRDTM. In
addition, Tables 3 and 4 are given for further reference.

Table 2 Comparison of numerical results obtained by ADM, VIM, HWM, ILTM, FVIM, FRDTM with the exact solution of the

linear FPPDE at various points of x and # when a = f§ = 1.

t X ADM VIM HWM ILTM FVIM FRDTM EXACT
0.2 0.25 0.069062 0.069062 0.0689468 0.0693 0.0691 0.0691 0.0691
0.50 0.276259 0.27625 0.274611 0.2771 0.2763 0.2763 0.2763
0.75 0.621563 0.621563 0.619337 0.6234 0.6216 0.6216 0.6217
0.4 0.25 7.63E—02 7.63E—02 0.0753937 0.0771 0.0762 0.0762 0.0763
0.5 0.305 0.305 0.299222 0.3083 0.305 0.305 0.3054
0.75 0.68625 0.68625 0.676175 0.6938 0.6863 0.6863 0.687
0.6 0.25 0.084062 0.084063 0.0818405 0.0859 0.0841 0.0841 0.0844
0.50 3.36E—01 3.36E—01 0.323833 0.3438 0.3362 0.3362 0.3375
0.75 0.756562 0.756562 0.733012 0.7734 0.7566 0.7566 0.7593

Table 3 Absolute errors between the solution obtained by ADM, VIM, HWM, ILTM, FVIM, FRDTM and the exact solution of the

linear FPPDE.

‘ x E 12 b E° 2 d E Eq f
0.2 0.25 3.8E—-05 3.8E—05 0.0001532 0.0002 0 0
0.50 4.1E-05 SE-05 0.001689 0.0008 0 0
0.75 0.000137 0.000137 0.002363 0.0017 1E—04 1E—04
0.4 0.25 SE—-05 SE—-05 0.0009063 0.0008 0.0001 0.0001
0.5 0.0004 0.0004 0.006178 0.0029 0.0004 0.0004
0.75 0.00075 0.00075 0.010825 0.0068 0.0007 0.0007
0.6 0.25 0.000338 0.000337 0.0025595 0.0015 0.0003 0.0003
0.50 0.00125 0.00125 0.013667 0.0063 0.0013 0.0013
0.75 0.002738 0.002738 0.026288 0.0141 0.0027 0.0027
4 |Exact — ADM|.
® |Exact — VIM|.
¢ |Exact — HWM]|.
4 |Exact — ILTM].
¢ |Exact — FVIM]|.

" |Exact — FRDTM].
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Table 4 Comparison of numerical results obtained by ADM, VIM, OTM, HWM, ILTM, FVIM with FRDTM solution of the linear

FPPDE at various points of x and ¢.

(o, B) t X ADM VIM OTM HWM ILTM FVIM FRDTM
(0.5,0.5) 0.2 0.25 0.06044 0.06111 0.061929 0.0601168 0.0605 0.0604 0.0604
0.50 0.244329 0.24618 0.248365 0.244247 0.2446 0.2443 0.2443
0.75 0.559866 0.56056 0.562348 0.559936 0.5609 0.5599 0.5599
0.4 0.25 5.96E—02 6.00E—02 6.14E—02 0.0591215 0.0597 0.0596 0.0596
0.5 0.242066 0.24303 0.246833 0.241821 0.2426 0.2421 0.2421
0.75 0.558992 0.55902 0.562276 0.558771 0.5611 0.559 0.559
0.6 0.25 0.059004 0.05898 0.060883 0.0583544 0.0591 0.059 0.059
0.50 2.40E—01 2.40E—01 2.45E—-01 0.239941 0.2411 0.2404 0.2404
0.75 0.558407 0.55777 0.562273 0.557834 0.5615 0.5584 0.5584
(0.75,0.75) 0.2 0.25 0.063002 0.062922 0.06292 0.0633685 0.0631 0.063 0.063
0.50 0.258161 0.256856 0.256782 0.256326 0.2587 0.2582 0.2582
0.75 0.592855 0.58779 0.588104 0.595415 0.5946 0.5929 0.5929
0.4 0.25 6.33E—02 6.33E—02 6.33E-02 0.063968 0.0636 0.0634 0.0634
0.5 0.264157 0.262868 0.262916 0.260722 0.2658 0.2642 0.2642
0.75 0.615589 0.610213 0.611786 0.618446 0.6205 0.6156 0.6156
0.6 0.25 0.063713 0.063642 0.063669 0.0644986 0.0641 0.0637 0.0637
0.50 2.70E—01 2.69E—01 2.69E—01 0.264632 0.2726 0.2697 0.2697
0.75 0.636878 0.631709 0.634637 0.639038 0.6458 0.6369 0.6369

Example 2. Consider,

the nonlinear space-time fractional

Fokker—Planck partial differential equation (Yan, 2013;
Yang et al., 2009),

o B 2 26
% = aax/; <4u %) %(Hz), 1>0,
x>0, 0<o,f<1, (24)
with the initial condition,
u(x,0) = (25)

Substituting (27) and (28) in (4), we get the series solution as,

u(x,t) =x

Z_,’_ a)
T+ 2 [r

1 3-8
i+ {* r
1 184

(5-2p)

506 T(6—2f)x"

24x1- 2 i
5-28) r<4—ﬂ>)}’
r'(5— B)x*3
r'(5-2p)
48T°(6 — B)x*~

3B

3 T(4—BI(6-23p)
4407 = 2p)x Y ][h
F@-pra—-4p) =

[(5=2p)1(6 - 3p)

(29)

Case (i): FRDTM:

By taking the reduced differential transform on both sides
of (24) and (25) and then applying appropriate results given in
Table 1, the following recurrence relations are obtained.

I'ka+a+1) k
WUk+I(X) 8‘Cﬁ< ZU/‘I Uk £ x))

aZﬁ k
Yz/; <ZU/€| Uk kl ))
Ll ol

+3 55 (T (x),

(26)

Up(x) = x°. (27)

From the Iterative calculations mentioned above (26), we get
the inverse transform coefficients of #* where k = 0, 1,2, .. .as,

1 a 24x!-F 22
U =iy {* ﬂ(r(s -2p) T(4- ﬁ))y
o —184 (5 p)x*¥
U2(X) = r(l + 205) l:F(S — 2ﬁ) F(S - Zﬁ)

506 T(6—2p)x"3%
T3 TA-pr6-3p)
| MAT(7 - 2B)x Y }

T AL(7—46)

481°(6 — x>
(5= 2B)T(6 - 3p)

(28)

Case (ii): FVIM:

According to the formula (14), the iteration formula of (24)
is given by,

1
[(a+1)

"To” (M xu, o, .
“f LT*W( . _T> ~ o (“n)} (ds’"

(30)

Upi1 (X, 0) = uy(x, 1) —

Taking initial approximation as uy(x, f) = x, we get the fol-
lowing approximations,

N 1 22x3°F 24x4 p

u(x,1) = x _F(l o) (F(4—ﬁ) - F(5—2ﬁ)) '
1 22x3F 24x% p

uy(x, 1) :xz_F(lJrOt) <F(4*ﬁ) _1“(572[5))

1 —506I°(5 — f)x*2
T T(1+20) [3r(5 —2B)T(4—B)
184T°(6 — 28)x°~% N 441(6 — B)x>3#
L(6-38I(5-2p) T(4-pI(6—3p)
_ABL(T—2p)x } n | ATQa+1)
L(5—2B)I(7—4p) [C(e+ DT (30 + 1)

{ 484T(6 — 28)x5 3

5760°(8 — 4p)x75F
[T(5—2B)’T(8 — 5B)

[T(4—B)T(6—3p)
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10561 (7 — 3) x4 1210(7 — 28)x5-4F
CTA—PBT(5—2HT(7—4B) [L(4— )T (7—4p)
1441(9 — 4p) x5~ 2641(8 — 38)x7-%F s
[C(-2B)'T(9—-68) TM@—=-HIG-2/TE8-58)|
(31)

and so on, in the same manner the rest of the components of
the iteration formula (22) can be obtained.

It is noticed that the coefficient of #** in (31) is not exact
one. This noise term occurred while calculating u»(x, 7). So,
we have to take this term in to the next approximation to
get the exact one, which leads to repeated calculations. Due
to this, it consumes more time to converge. This kind of disad-
vantages did not appear while using FRDTM. The values of
o= =1 is the only case for which we know the exact solu-

tion u(x, 1) = x%¢".

Tables 5 and 6 show the comparison of exact solutions with
the approximate solutions of different methods HPTM, ADM,
VIM, ILTM, FVIM and FRDTM for various values of x and ¢
when o = f = 1. Given numerical results of HPTM, ADM and
VIM in Tables 5 and 6 have been taken from Yang et al. (2009)
and the numerical results of ILTM, FVIM and FRDTM have
been constructed for first three terms of the analytical solution
by using the Matlab version 1.0.0.1. Also from Table 6, it is
found that the solutions obtained by the present method are
better than the HPTM, ADM, VIM, ILTM, FVIM and iden-
tical with the exact solution. It shows the better accuracy of the
FRDTM.

Now for non-linear FPPDE, HPTM which is a hybrid
method involving Laplace transform and homotopy perturba-
tion methods, ADM uses complicated Adomian polynomial
and noise term phenomena and VIM involves estimation of

Table 5 Comparison of numerical results obtained by HPTM, ADM, VIM, ILTM, FVIM, FRDTM with the exact solution of the

non linear FPPDE at various points of x and  when o = ff = 1.

t X HPTM ADM VIM ILTM FVIM FRDTM EXACT
0.06 0.25 0.066367 0.066367 0.066363 0.0663 0.0662 0.0664 0.0664
0.50 0.265468 0.265468 0.26545 0.2654 0.2653 0.2655 0.2655
0.75 0.597303 0.597303 0.597262 0.5972 0.5971 0.5973 0.5973
1 1.06197 1.06197 1.0618 1.0617 1.0617 1.0618 1.0618
0.2 0.25 0.076417 7.64E—02 7.63E—02 0.0761 0.0761 0.0762 0.0763
0.5 0.305667 0.305667 0.305 0.3048 0.305 0.305 0.3054
0.75 0.68775 0.68775 0.68625 0.6862 0.686 0.6863 0.687
1 1.22267 1.22267 1.22 1.219 1.219 1.22 1.2214
0.4 0.25 0.093833 0.093833 0.0925 0.0923 0.0924 0.0925 0.093239
0.50 0.37533 3.75E-01 3.70E-01 0.368 0.367 0.37 0.373
0.75 0.8445 8.45E—-01 8.33E—01 0.8321 0.8319 0.8325 0.8392
1 1.50133 1.50133 1.48 1.478 1.477 1.48 1.4918

Table 6 Absolute errors between the solution obtained by HPTM, ADM, VIM, ILTM, FVIM, FRDTM and the exact solution of the

non-linear FPPDE.

i x E® E® E5¢ E° Es¢ E¢"
0.2 0.25 3.3E-05 3.3E—05 3.7E—05 0 0 0
0.50 3.2E—05 3.2E—05 5E—05 0 0 0
0.75 3E—06 3E—06 3.8E—05 0 0 0
1 0.00017 0.00017 0 0 0 0
0.4 0.25 0.000117 0.000116 5E—05 0.0001 0.0001 0.0001
0.5 0.000267 0.000267 0.0004 0.0004 0.0004 0.0004
0.75 0.00075 0.00075 0.00075 0.0007 0.0007 0.0007
1 0.00127 0.00127 0.0014 0.0014 0.0014 0.0014
0.6 0.25 0.000594 0.000594 0.000739 0.000739 0.000739 0.000739
0.50 0.00233 0.00233 0.003 0.003 0.003 0.003
0.75 0.0053 0.0053 0.0067 0.0067 0.0067 0.0067
1 0.00953 0.00953 0.0118 0.0118 0.0118 0.0118

* |Exact — HPTM]|.

® |Exact — ADM]|.

¢ |Exact — VIM]|.

4 |Exact — ILTM].

¢ |Exact — FVIM]|.

" |Exact — FRDTM].
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the Lagrange multiplier and noise term phenomena which
added complexity to the respective techniques while such com-
plexities are not occured in the solution procedure of FRDTM.
It shows the simplicity of the FRDTM.

In Yang et al. (2009), the author has mentioned that the
VIM took fifteen iterations but here we consider only first
three iterations. Also, from Table 6 we can see the rate of con-
vergence, constancy and reliability of the FRDTM.

5. Conclusions

We have applied FRDTM and FVIM to solve the linear and
nonlinear FPPDEs with space and time fractional derivatives.
Numerical solution has been obtained through analytical solu-
tion. Comparison has been made with FVIM and the existing
methods in the literature and it reveals that FRDTM over-
comes the complexity like noise term phenomena, calculation
of complicated Lagrange multiplier and redundant calcula-
tions. It has been shown that FRDTM is far better than FVIM
and the existing methods by means of accuracy, simplicity and
reliability.
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