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Lindstedt–Poincaré methods for traveling wave

solutions of the nonlinear Klein–Gordon equation
Syed Tauseef Mohyud-Din
a,*, Ahmet Yıldırım

b
, Mustafa Inc

c

a HITEC University Taxila Cantt, Pakistan
b Ege University, Department of Mathematics, 35100 Bornova, _Izmir, Turkey
c Department of Mathematics, Fırat University, Turkey
Received 11 June 2010; accepted 3 August 2010
Available online 10 August 2010
*

E

10

El

Pe

do
KEYWORDS

Klein–Gordon equation;

Homotopy perturbation

method;

modified Lindstedt–Poincaré
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caré method is applied to the search for traveling wave solutions of a variety of Klein–Gordon

equations. The results obtained provide confirmation for the validity of the coupled method.
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1. Introduction

Periodic wave-trains are found in many physical systems and,
they are fundamental solutions related to the elementary solu-
tions in the form of sinusoidal wave-trains in linear theory. In

nonlinear theory, the solutions are no longer sinusoidal, but
periodic solutions may still exist. For this class of periodic
solutions, the main effect of non-linearity becomes visible on
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amplitude dependence in the dispersion relation. This, off
course, leads to a new qualitative behavior, not merely to the

correction of the dispersion relation in linear case. In this arti-
cle, we will consider after Whitham (1965) nonlinear, Klein–
Gordon, equation governed by

utt � uxx þ V0ðuÞ ¼ 0; ð1Þ

where V(u) is any nonlinear potential function which yields
oscillatory solutions and V0(u) is chosen as the derivative of

a potential energy. Klein–Gordon equation is not only a useful
model but also arises in variety of physical situations (Knobel,
2000; Shen, 1994). It is worth to note that the dispersion

relation of a periodic wave-train in (1) is dependent on its
amplitude. For this class of problems with waves of small
amplitude, perturbation methods based on small amplitude

expansions infer the existence of the periodic wave-trains
(Nayfeh, 1973). However, the perturbation methods, in princi-
ple, works only for the nonlinear problems with small param-

eters. In addition, analytical solution obtained by the
perturbation method has a little range of validity in most cases.
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Consequently, new approximate-analytical techniques are

considered necessary. For example, the sine-Gordon and the
double sine-Gordon equations, the sinh-Gordon equation
and the double sinh-Gordon equations were investigated by

using the standard tanh method (Malfliet,1992, 1996a,b; Waz-
waz, 2005). Sirendaoreji and Sun Jiong (2002) applied a direct
method for solving Sinh-Gordon type equation. Fu et al.
(2004) have obtained exact solutions for double and triple

sinh-Gordon equations. Wazwaz (2005) obtained traveling
wave solutions for combined and double combined sine-co-
sine-Gordon equations by the variable separated ODE

method.
More recently, Lim et al. (2001), by coupling linearization

of Klein–Gordon equation with the method of harmonic bal-

ance, established two general analytical approximate formulas
for the dispersion relation which depends on the amplitude of
the wave train. In this paper, we will be coupling He’s homot-

opy perturbation method (He, 2000; Özis� and Yıldırım, 2006)
and modified Lindstedt–Poincaré method (He, 2002a,b, 2006;
Özis� and Yıldırım, 2007, 2006; Liu, 2005) to obtain the peri-
odic wave-trains in (1) and will use three examples to illustrate

the applicability and the effectiveness of the proposed method.
For latest developments in this field, the reader is referred to
see (He et al., 2006; Noor and Mohyud-Din, 2008; Mohyud-

Din et al., 2009a,b,c,d, 2010 Mohyud-Din, 2009; Mohyud-
Din and Noor, 2007, 2009; Abdou, 2010a,,, 2009 Abdou
et al., in press; El-Wakil and Abdou, 2008, 2010; El-Wakil

et al., in press; He, 1999) and the references therein.

2. Brief concept of coupling of homotopy perturbation and

modified Lindstedt–Poincaré methods

Recognizing He’s homotopy perturbation method; the homot-
opy with and imbedding parameter p 2 [0,1] is constructed, and

the imbedding parameter is considered as a ‘‘small parameter’’,
so the method is called homotopy perturbation method and is
proceed as the standard perturbation method but taking the

full advantage of the traditional perturbation methods and
the homotopy techniques. The main merit of the homotopy
perturbation method is that the perturbation equation can be

easily constructed (therefore is problem dependent) by homot-
opy in topology and the initial approximation can also be freely
selected. On the other hand, in He’s modified Lindstedt–Poin-

caré method the coefficient of the second term, i.e., u is also ex-
panded into a series besides the assumed solution. For further
reading, refer to the comprehensive book by He et al. (2006)
and the references therein. To our view, if He’s modified Lind-

stedt–Poincaré method is applicable to the perturbed equation
constructed by He’s homotopy perturbation method then the
obtained solution would be exceedingly accurate and may pos-

sibly be applicable to wide range of physical systems. For better
illustration of coupled method of He’s homotopy perturbation
method and modified Lindstedt–Poincaré method, and making

the underlying idea clear, we demonstrate three examples. By
doing so, we will try to validate the applicability, accuracy
and effectiveness of the proposed method.

Example 3.1. Consider the Klein–Gordon equation governed

by

utt � a2uxx þ c2u ¼ bu3 ð2Þ
We first connect the independent variables x and t (Malfliet,

1992, 1996a,b) into one wave variable by

n ¼ x� ct: ð3Þ

Substituting the transformation (3) into Eq. (2) gives

u00 þ c2

ðc2 � a2Þ u�
b

ðc2 � a2Þ u
3 ¼ 0; ðc2 – a2Þ ð4Þ

where prime denotes differentiation with respect to n. Physical
considerations show that Eq. (4) has a periodic solution. In or-
der to look for the periodic solution, we construct the follow-

ing homotopy:

u00 þ c2

ðc2 � a2Þ u�
b

ðc2 � a2Þ pu
3 ¼ 0; ð5Þ

It is apparent that when p = 0, (5) reduces to linear equation

and when p = 1, it becomes the original nonlinear one. There-
fore, the embedding parameter p monotonically increases from
zero to unit as the linear operator is continuously deformed to
the nonlinear problem given. We assume that the periodic

solution to Eq. (5) may be written as a power series in p:

u ¼ u0 þ pu1 þ p2u2 þ � � � ð6Þ

If higher order approximate solution is required, the He’s

modified Lindstedt–Poincaré method can be applied. Hence,
we expand the coefficient of the linear term into a series of p:

c2

ðc2 � a2Þ ¼ x2 þ px1 þ p2x2 þ � � � ð7Þ

Substituting (6) and (7) into Eq. (5), and processing as the
standard perturbation method, we have:

u000 þ x2u0 ¼ 0; ð8Þ

u001 þ x2u1 þ x1u0 �
b

ðc2 � a2Þ u
3
0 ¼ 0 ð9Þ

The initial approximation u0 can be freely chosen, hereby we
set

u0 ¼ A cosxn; ð10Þ

which satisfies the Eq. (8). The substitution of (10) in (9) yields

u001 þ x2u1 þ x1A cosxn� b
ðc2 � a2ÞA

3 cos3 xn ¼ 0 ð11Þ

or

u001 þ x2u1 þ A cosxn x1 �
3bA2

4ðc2 � a2Þ

� �
� bA3

4ðc2 � a2Þ
� cos 3xn

¼ 0 ð12Þ

No secular term in u1 requires that

x1 ¼
3bA2

4ðc2 � a2Þ : ð13Þ

Eq. (12) becomes

u001 þ x2u1 �
bA3

4ðc2 � a2Þ cos 3xn ¼ 0 ð14Þ

We write down its special solution:

u1 ¼ �
bA3

32x2ðc2 � a2Þ ðcos 3xn� cosxnÞ ð15Þ
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Setting p= 1, in (7) gives

c2

ðc2 � a2Þ ¼ x2 þ 3bA2

4ðc2 � a2Þ : ð16Þ

Hence, the frequency is:

x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c2 � 3bA2

4ðc2 � a2Þ

s
: ð17Þ

If the first-order approximate solution is adequate, setting

p = 1, we have

u ¼ u0 þ u1

¼ A cosxn� bA3

32x2ðc2 � a2Þ ðcos 3xn� cosxnÞ ð18Þ

which is the solution of Klein–Gordon equation in (2).

Example 3.2. As a second example, consider the sine-Gordon

equation governed by

utt � kuxx þ 2a sin u ¼ 0 ð19Þ

Using the transformation (3), Eq. (19) gives:

ðc2 � kÞu00 þ 2a sin u ¼ 0: ð20Þ

Approximating sin u ffi u� u3

6
, Eq. (20) reduces to:

u00 þ 2a
ðc2 � kÞ u� u3

6

� �
¼ 0; ðc2 – kÞ ð21Þ

We, in this case, construct the homotopy in the form:

u00 þ 2a
ðc2 � kÞ u� p

a
3ðc2 � kÞ u

3 ¼ 0: ð22Þ

Supposing the solution in the form of (6) and if the coefficient
of second term of (22) can be expressed as

2a
ðc2 � kÞ ¼ x2 þ px1 þ p2x2 þ � � � ð23Þ

respectively, and substituting (6) and (23) into (22), collecting

terms of the same powers of p, we have

u000 þ x2u0 ¼ 0; ð24Þ

u001 þ x2u1 þ x1u0 �
a

3ðc2 � kÞ u
3
0 ¼ 0 ð25Þ

We start initial approximation with u0 = Acosxn, as in Exam-
ple 1, hence Eq. (25) yields

u001 þ x2u1 þ x1A cosxn� a
3ðc2 � kÞ ðA cosxnÞ3 ¼ 0: ð26Þ

Making simplification, we obtain:

u001 þ x2u1 þ A cosxn w1 �
aA2

4ðc2 � kÞ

� �
� aA3

12ðc2 � kÞ cos 3xn ¼ 0:

ð27Þ

Again, elimination of the secular terms requires

x1 ¼
aA2

4ðc2 � kÞ ð28Þ

and Eq. (27) reduces to

u001 þ x2u1 �
aA3

12ðc2 � kÞ cos 3xn ¼ 0: ð29Þ
We obtain a particular solution of Eq. (29), which reads

u1 ¼ �
aA3

96x2ðc2 � kÞ ðcos 3xn� cosxnÞ ð30Þ

Setting p= 1, in (23) gives

2a
ðc2 � kÞ ¼ x2 þ aA2

4ðc2 � kÞ ð31Þ

and therefore, the frequency is

x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8a� aA2

4ðc2 � kÞ

s
ð32Þ

If, for example, first-order approximate solution is adequate,
setting p = 1, we have

u ¼ u0 þ u1 ¼ A cosxn� aA3

96x2ðc2 � kÞ ðcos 3xn� cosxnÞ

ð33Þ

which is the solution of the sine-Gordon equation in (19).

Example 3.3. Consider, now, combined sine-cosine-Gordon
equation:

utt � kuxx þ a sin uþ b cos u ¼ 0 ð34Þ

Using the transformation (3) again, Eq. (34) gives

ðc2 � kÞu00 þ a sin uþ b cos u ¼ 0: ð35Þ

Approximating the above equation by sin u ffi u� u3

6
and

cos u ffi 1� u2

2
, we obtain following equation:

u00 þ a
ðc2 � kÞ u� u3

6

� �
þ b
ðc2 � kÞ 1� u2

2

� �
¼ 0; ðc2 – kÞ

ð36Þ

We, in a similar manner, construct the homotopy in the form:

u00 þ a
ðc2 � kÞ uþ p

b
ðc2 � kÞ �

b
2ðc2 � kÞ u

2 � a
6ðc2 � kÞ u

3

� �
¼ 0:

ð37Þ
Supposing the solution in the form of (6) and if the coefficient
of second term of (37) can be expressed as

a
ðc2 � kÞ ¼ x2 þ px1 þ p2x2 þ � � � ð38Þ

respectively, and substituting (6) and (38) into (37), collecting
terms of the same powers of p, we have

u000 þ x2u0 ¼ 0; ð39Þ

u001 þ x2u1 þ x1u0 þ
b

ðc2 � kÞ �
b

2ðc2 � kÞ u
2
0

�
ð40Þ

� a
6ðc2 � kÞ u

3
0

�
¼ 0: ð41Þ

We start initial approximation, again, with u0 = Acosxn, as in
Examples 2 and 3, hence (41) yields

u001 þ x2u1 þ x1A cosxn

þ b
ðc2 � kÞ �

b
2ðc2 � kÞ ðA cosxnÞ2 � a

6ðc2 � kÞ ðA cosxnÞ3
� �
¼ 0:

ð42Þ
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Making simplification, we obtain:

u001 þ x2u1 þ A cosxn x1 �
aA2

8ðc2 � kÞ

� �
þ 4b� bA2

4ðc2 � kÞ

� �

� bA2

4ðc2 � kÞ cos 2xn� aA3

24ðc2 � kÞ cos 3xn ¼ 0 ð43Þ

No secular term in u1 requires that

x1 ¼
aA2

4ðc2 � kÞ and A ¼ 2

and (43) reduces to

u001 þ x2u1 �
bA2

4ðc2 � kÞ cos 2xn� aA3

24ðc2 � kÞ cos 3xn ¼ 0 ð44Þ

We obtain a particular solution of Eq. (44), which reads

u1 ¼ �
16bA2 þ aA3

192x2ðc2 � kÞ cosxnþ bA2

12x2ðc2 � kÞ cos 2xn

þ aA3

192x2ðc2 � kÞ cos 3xn ð45Þ

Setting p= 1, in (38) gives

a
ðc2 � kÞ ¼ x2 þ aA2

8ðc2 � kÞ ð46Þ

and the frequency is

x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8a� aA2

8ðc2 � kÞ

s
ð47Þ

If, for example, first-order approximate solution is adequate,

setting p = 1, we have

u ¼ u0 þ u1

¼ A cosxn� 16bA2 þ aA3

192x2ðc2 � kÞ cosxnþ bA2

12x2ðc2 � kÞ

� cos 2xnþ aA3

192x2ðc2 � kÞ cos 3xn . . . ð48Þ
3. Conclusion

In this paper, coupling of He’s homotopy perturbation and

modified Lindstedt–Poincaré methods is applied to solve a
variety of Klein–Gordon equations. The advantage of the ap-
proach is that it does not need a small parameter in the phys-

ical system, leading to wide application in nonlinear wave
equations. Moreover, the method is capable of significantly
minimizing the size of computational labor compared to

other existing techniques. The obtained results are entirely
new.
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