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In this study, artificial neural networks were employed to predict thermal conductivity of polyacryloni-
trile (PAN) electrospun nanocomposite fibers embedded with multiwalled carbon nanotubes (MWCNTs)
and Nickel Zinc ferrites [(Ni0.6Zn0.4) Fe2O4]. The prey predator algorithm was used to train the neural
networks to find the best models. This is the first paper on the application of multilayer perception neural
network (MLPNN) with the prey predator algorithm for the prediction of thermal conductivity of PAN
Electrospun nanocomposites. The method of nonlinear regression was used to minimize the error distri-
bution between the experimental data and the predicted results. Both MWCNTs and Nickel Zinc ferrites
were used in different weight proportions. The predicted ANN responses were analyzed statistically using
z-test and error functions for both nanoinclusions. The predicted ANN responses for PAN Electrospun
nanocomposite fibers were compared with the experimental data and were found in good agreement.
� 2018 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the field of nanotechnology, nanocomposites having at least
one dimension in nanometer range have been extensively investi-
gated for their wide range of applications, low-cost, ease in pro-
cessability, good adhesion to substrate and excellent
physicochemical properties (Zhang et al., 2009; Khan et al.,
2016). Polyacrylonitrile (PAN) is the widely used polymer in differ-
ent industries such as tissue engineering, wound dressing, pro-
tected clothing, filtration and biomedical applications (Kirecci
et al., 2012). PAN fibers are widely used in weaving carpet, blankets
and are also used in housing instead of asbestos (Farsani et al.,
2009). PAN is the main precursor for carbon fibers; therefore, it
is studied extensively due to its commercial importance in the pro-
duction of high-performance carbon fibers. PAN fibers possess sev-
eral advantages such as high melting temperature (317–330 �C),
large yield of carbon fibers and high degree of molecular orienta-
tion (Saufi and Ismail, 2002). The glass transition temperature of
PAN is between 85 and 95 �C. PAN is around 34% crystalline
thermoplastic non-soluble polymer. Generally, crystalline poly-
mers have higher thermal conductivities than non-crystalline
(amorphous) polymers since the thermal energy can be easily
transmitted along the chains of polymers than between the mole-
cules (Ajayan et al., 1994). The thermal conductivity of polymer is
found to increase with the square root of molecular weight
(O’connell, 2006). Due to outstanding properties, carbon nanotubes
can be used as ideal filler materials in polymer nanocomposites
(Ajayan et al., 1994; O’connell, 2006; Harris, 2004;
Moniruzzaman and Winey, 2006).

The micro filler materials deteriorate the properties of
nanocomposites and result in phase separation due to micro-
sized dimensions of filler materials. The phase separation creates
interface deficiency and results in establishing most critical place,
where void is formed. Therefore, it is indispensable to minimize
interface deficiency by replacing micro-fillers with nano-fillers.
Ajayan et al. (1994) first incorporated multiwalled carbon nan-
otubes in polymer matrix to fabricate nanocomposites. Afterwards,
numerous projects and reports have appeared on the use of multi-
walled carbon nanotubes as filler material in the fabrication of
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nanocomposites (O’connell, 2006; Harris, 2004; Moniruzzaman
and Winey, 2006).

Nickel zinc ferrites are important ferrites from technological
point of view. They have high electrical resistivity, good magnetic
permeability, high chemical stability and high mechanical
strength. They have wide applications in data storage devices,
actuators, sensors and targeted drug delivery. Nickel zinc ferrites
have spinal structure and they are semi-conductor materials. These
ferrites have much lower thermal conductivity than multiwalled
carbon nanotubes. Nearly all polymers are non-conducting due to
their low values of thermal conductivities; however, polymers
can be made conductive by embedding nanofillers such as gra-
phene, carbon blacks, CNTs, and other metallic and ceramic struc-
tured nanoinclusions into the polymeric matrices (Norkhairunnisa
et al., 2012). Ni-Zn ferrites possess high thermal conductivity due
to the nature and structure of these nanoparticles. Due to higher
heat conduction, these nanoparticles possess higher vibrational
modes and the ferrite nanoparticles form conductive path (perco-
lation network) way at 4 wt% loading of ferrite nanoparticles,
which are commonly referred to as ‘‘percolation threshold”
(Flaifel et al., 2013). This percolation encourages the phonon con-
duction inside the nanocomposite and increases the thermal con-
ductivity (Gojny et al., 2006). Thermal energy causes atoms to be
displaced from their equilibrium site by a small amount, this
results in lattice vibrations, which is associated to the heat conduc-
tion mechanism in polymeric materials (Hansen and Ho, 1965). In
non-metallic materials, the main heat carriers are phonons. The
phonons vibration and thermal properties are widely pretentious
by the diminution in dimension. The dimensionality of nanomate-
rials determines their phonon density of states thereby affecting
their thermal properties. It has been shown experimentally that
the reduction in dimensions may either stimulate or dampen ther-
mal transport mechanism depending on the system and configura-
tion used in measurements (Balandin et al., 2008; Donadio, 2016).
The significance of reduction in dimensions is the higher surface-
to-volume ratio which helps in transport mechanism (Donadio,
2016).

The thermal conductivity is very sensitive to linear extent of
polymeric molecules thus linear polymer have higher thermal con-
ductivity due to lesser interface between the molecules of the poly-
mer chain (Hansen and Ho, 1965; Slade and Jenkins, 1970). In
MWCNTs based nanocomposites, phonons have to travel through
the matrix phase, which is insulating. Thermal conductivity of
insulators is due to the dispersive lattice vibrations or phonon
interactions. This lattice vibrations influence the thermal conduc-
tivity in nanomaterials. However, lattice vibration causes higher
interfacial thermal resistance between nanotubes. The phonon-
phonon coupling transfer energy from high-frequency mode to
low-frequency mode within the nanotubes (O’connell, 2006).

ANNs offer the advantage of demonstrating complex input-
output relationships and is wonderful when used for presenting
data classification, signal processing and functional approximation
(Hamadneh et al., 2012). Hassoun (1995) defined concepts for
majority of ANNs analysis. Hassan et al. (2009) employed ANNs
concepts in calculating porosity, density and hardness of compos-
ite materials. Some studies have indicated that by applying ANNs
concepts, the research in material science and technology has
invigorated (Sumpter and Noid, 1996; Giri Dev et al., 2009). Khan
et al. (2017) employed ANNs in Prediction of thermal conductivity
of polyvinylpyrrolidone (PVP) electrospun nanocomposite fibers.

The above literature reveals that no researcher studied ANN
modeling and statistical analysis of thermal conductivity of PAN
Electrospun nanocomposite fibers. The main objective of this study
was to investigate the effects of nanoinclusions such as Ni-Zn fer-
rite and MWCNTs on thermal conductivity of PAN Electrospun
nanocomposite fibers using ANN modeling and statistical analysis.
For this purpose, a neural network approach was used to predict
the thermal conductivity of PAN Electrospun nanocomposite fibers
as function of weight% of MWCNTs and Ni-Zn ferrites. Experiments
were performed on PAN nanocomposite fibers. In developing the
ANN model, several configurations were considered. Optimal neu-
ral network was selected with two input neurons, several hidden
neurons in one hidden layer, and two output neurons for each
nanoinclusion. Prey predator algorithm (PPA) is a new algorithm
developed for handling a complex optimization applications in
engineering, transportation, management, economics, artificial
intelligence, and decision science, etc (Hamadneh et al., 2013;
Tilahun et al., 2016). It is inspired by the interaction between a
predator and prey of animals in the ecosystem (Tilahun and Ong,
2015). The neural networks were trained using PPA to evaluate
several neural networks parameters. Predicted thermal conductiv-
ity values obtained from neural networks models were examined
statistically and compared with actual values obtained from exper-
iments. Several error functions were also used to check the good-
ness of fit of the models.
2. Experimental

2.1. Materials

Following materials were selected for the experiment:

1. Polyacrylonitrile polymer (molecular weight = 150,000 g/mole)
2. Dimethylformamide (DMF) and
3. Multiwalled carbon nanotubes (D ¼ 140 nm and L ¼ 7 mm)
4. Ni-Zn ferrite (0.6/0.4 ratio).

In the laboratory, Ni-Zn ferrite nanoparticles (21.5 nm) were
prepared by means of co-precipitation technique (Khan et al.,
2010). In this process, Ni-, Zn-, and Fe-sulfates (NiSO4, ZnSO4,
and Fe2 (SO4)3) were first dissolved in deionized (DI) water, and
heated to 80 �C for 2–3 h. Sodium Hydroxide was then included
drop by drop in the solution to initiate chemical reaction to form
ferrites. After around 2 h of agitation under magnetic stirrer, the
nickel zinc ferrites (Ni0.6Zn0.4Fe2O4) were slowly formed and began
to precipitate. After washing with DI water several times to remove
all residual sulfates, fine ferrite (nanosize) particles were produced.
The ferrite sample was then dried at room temperature.
Crystallinity of a polymers influence the properties of polymers,
especially their thermal properties. That is why crystalline ferrite
nanoparticles were embedded in PAN polymer and their results
were compared with MWCNTs. The atomic force micrograph
showed the particle size of approximately 21.5 nm.
2.2. Method

Different wt% of MWCNTs (0%, 0.5%, 1%, 2% and 4%) and
Ni0.6Zn0.4Fe2O4 (0%, 1%, 2%, 4%, 8% and 16%) were separately
dispersed in DMF solvent and sonicated for 30 min, and then
calculated amount of PAN powder was added to the solution. The
solution was then stirred on a hot plate at 60 �C at approximately
700 rpm for around 12 h to make a homogeneous blend of PAN
polymeric solution. The well-dispersed solution was electrospun
to generate nanocomposite fibers.

The polymeric solutions containing different wt% of MWCNTs
and ferrite particles (Ni0.6Zn0.4Fe2O4) were shifted to a 10 ml plas-
tic syringe which is connected to a capillary tube having an inside
diameter of 0.5 mm and fitted with syringe pump. A platinum elec-
trode having 0.25 mm diameter was connected between syringe
and high DC supply. The applied voltage (spinning voltage), pump
speed and the distance between capillary tube and collector screen
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were maintained at 25 kV, 1 ml/hr. and 25 cm, respectively. The
collector screen was grounded. After the electrospinning process
continued for several hours, the electrospun fibers were collected
on a grounded screen and dried in an oven at 60 �C for 6 to 8 h
to remove all residual solvents. Conventional fiber forming tech-
niques produces fibers with the diameter within the range of 2–
10 microns, while electrospinning produces fibers in nano range.
Electrospinning has gained tremendous attention in the last dec-
ade due to colossal interest in the new emerging field of nanotech-
nology. With the help of electrostatic field, fine nanosized
continuous polymeric fibers are generated without the help of
mechanical or shearing forces, which are necessary in conventional
fiber forming processes. Electrospinning utilizes high electrical
field that is applied to the polymeric solution to provide an electro-
static force that stretch the fiber jet to nanosize on a collector
screen, placed at some distance from the syringe pump (Khan
et al., 2010). When the electrostatic field is applied and its magni-
tude increases to an extent where the electrostatic forces surpasses
the surface tension of the polymeric solution, a jet emerges, which
travels linearly for 1–2 cm distance and then experiences a looping
or chaotic pattern, which is commonly referred to as ‘‘bending
Instability” of the electrified jet (Khanlou et al., 2014). This bending
instability stretches the jet thousands of time (plastic deformation)
resulting in very thin fibers. Fig. 1 shows the experimental setup of
an electrospinning process. The experimental procedure and data,
in detail, has been reported elsewhere (Khan et al., 2013). The
experimental arrangement for thermal conductivity testing is
depicted in Fig. 2.

2.3. Artificial neural networks

ANNs are computational models which are constructed to
employ inspiration from the functional aspects of biological neural
network (Hamadneh et al., 2013; Rakhshandehroo et al., 2012).
ANNs are composed of countless neurons known as processing
units, which are generally categorized in a series of input, hidden
and output layers. Multilayer perception (MLP) is termed as archi-
tecture of ANNs (Yeung et al., 2016; Mefoued, 2013). Several algo-
rithms are available to train ANNs. Prey predator algorithm was
Fig. 1. Experimental setup of a
found to be the most effective algorithm to be used in this study.
Each neuron possesses three unique characteristics in the network.
These include: a non-linear output, more layers of hidden neurons
and high connectivity of network. A structure of the MLPNN is
shown in Fig. 3 (Yeung et al., 2016; Mefoued, 2013).

The activation function in the hidden layer is assumed to be the
sigmoid function, which can be given by Eq. (1):

Y ¼ 1
1þ e�x

ð1Þ

Optimization and validation are two important areas in artifi-
cial neural network in order to build networks that are efficient
and fast with a suitable function. Training methods are useful for
the neural networks to improve their performance. We have
used the sum of squared error (SSE) as an objective function to test
the performance of the neural networks (Mefoued, 2013). It is
given by

SSE ¼
X

ðActual output � target outputÞ2 ð2Þ
We have used prey predator algorithm as neural learning algo-

rithm to estimate the parameters which are the input and the out-
put weights in the neural models.

OutputðykÞ ¼
Xm
j¼1

Xn
i¼1

wjk

Xs

k¼1

w0
ki

1
1þ e�xj

ð3Þ

where,
n: Number of hidden nouns
m: Number of input data
s: Number of input neurons
k: Number of output neurons
wjk: Input weight which is between the input neuron j and hid-
den neuron k
w0

ki: Output weight which is between the hidden neuron k and
output neuron i

The optimum values of input and output weights are displayed
in Table 1.
n electrospinning process.



Fig. 2. Experimental arrangement of thermal conductivity measurement.
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2.4. Prey predator algorithm

Prey predator algorithm is one of the new swarm based meta-
heuristic algorithm (Tilahun and Ong, 2015). The algorithm has
been found to be effective while applied to different problems,
Table 1
The model’ parameters for PAN with different wt% of MWCNTs.

Model parameters PAN with MWCNTs PAN with Ni-Zn Ferrites

w0
11 0.6419 0.6369

w0
21 0.2370 0.0734

w0
31 1.0189 0.0704

w0
41 0.6528 0.9491

w0
51 �0.1338 �0.0413

w0
61 0.8800 0.1471
including neural networks, weight minimization of a speed redu-
cer, bi-level problem model of electric market, parameter setting
of grinding process, and single frequency bus timetabling
(Tilahun and Ong, 2015). It has also been modified to suit combina-
torial optimization problems like travel salesman problem, and
exam timetabling problem (Tilahun et al., 2016). Comparative
study shows that its performance is well and also it is a generalized
swarm based algorithm where firefly algorithms, particle swarm
optimization algorithm, gravitational search algorithm and ran-
dom search are the special cases of this algorithm (Tilahun and
Ong, 2014; Tilahun et al., 2017; Hamadneh et al., 2013). In PPA, a
randomly generated solution sets will be categorized into three
categories, the predator, with worst performance of all, the best
prey, with the best performance of all, and the rest as ordinary prey
(Tilahun and Ong, 2015). The best prey in the other hand does only
a local search for exploitation purpose. The main steps of the prey
predictor algorithm for training experimental data are explained in
Hamadneh et al. (2013), Tilahun and Ong (2015).
3. Statistical analysis

To examine experimental and predicted responses, several sta-
tistical tests and error functions are available. The most common
statistical tests include z-test (for large samples to test means),
F-test (to test variances) and Chi-square test, whereas error func-
tions include Nonlinear Chi-square test (v2), the sum of the
squares of the errors (SSE), the average relative error (ARE), the
sum of the absolute errors (EABS), the hybrid fractional error func-
tion (HYBRID) (Kumar et al., 2008; Triola, 2006).
Model parameters PAN with MWCNTs PAN with Ni-Zn Ferrites

w11 0.5580 0.0558
w12 0.4261 0.0463
w13 �0.0842 0.0793
w14 �0.0185 0.0199
w15 1.5041 0.7546
w16 0.0437 0.0971



Table 2
Statistical results of z-test for both nanoinclusions.

wt%. MWCNTs Experimental K wt%. Ni-Zn Ferrites Experimental k

Mean 6.322 0.181 7.912134 0.043785
Variance 30.809 3.52E�03 25.01985 2.98E�05
Observations 54 54 58 58
Hypothesized Mean Difference 0 0
Z-value 8.130 11.980
P(Z<=z) one-tail 0.000 0.000
Z Critical one-tail 1.645 1.645
P(Z<=z) two-tail 0.000 0.000
Z Critical two-tail 1.960

Table 3
Results of error functions for each inclusion.

Error Functions PAN Polymers

MWCNTs Ni-Zn Ferrites

RMSD 0.0293 0.000684
SSE 0.0455 2.67E�05
ARE 1.65E+01 1.24E+00
EABS 1.3098 0.03042
Chi-square 2.85E�01 6.40E�04
HYBRID 5.39E�01 1.12E�03
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3.1. Hypothesis testing

The experimental data for each nanoinclusion was assessed sta-
tistically by z-test, which can be employed to test large samples
ðn > 30Þ (Triola, 2006). Appropriate standard errors enable us to
judge whether the difference happens to be substantial or not at
certain confidence levels. To examine our experimental results sta-
tistically, we define a null hypothesis Ho by assuming that the
addition of nanoinclusions (MWCNTs or Ni-Zn Ferrites) in PAN
polymers has no effect on thermal conductivity k which is compa-
rable to test Ho : D ¼ 0. An alternative hypothesis will show that
the addition of nanoinclusions (MWCNTs or Ni-Zn Ferrites) is effec-
tive and has significant effects on thermal conductivity k. The level
of significance is assumed to be 0.05. For n > 30,

z ¼ X1 � X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
1

n1
þ r2

2
n1

q ð4Þ

where X1; X1 are the means and r1; r2 are the standard deviations
of each population respectively and are given by

X1 ¼ RX1i
n1

; r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðX1i�X1Þ

2

n1�1

r

X2 ¼ RX2i
n2

; r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðX2i�X2Þ

2

n2�1

r

The results of z-test for both nanoinclusions are reported in Sec-
tion 4 Table 2). The comparison of statistical results demonstrate
that p < 0:05 in both cases, therefore, we reject our null hypothesis
and conclude that the addition of MWCNTs and Ni-Zn ferrites has
significant effect on thermal conductivity.

3.2. Error functions

In addition to the sum of squared error function which is men-
tioned above, the following error functions are used in this study to
determine the best fit between experimental and ANN predicted
results.

3.2.1. The average relative error (ARE)
This error function minimizes the fractional error distribution

across the entire concentration range (Kumar et al., 2008). It is
given by:

ARE ¼ 100
n

R
kexp t � kpred

kexp t

����
����

where kexp t is the experimentally measured thermal conductivity
and kpred is the thermal conductivity predicted by ANN.

3.2.2. The sum of the absolute errors (EABS)
This approach is similar to the ‘‘ERRSQ” function and it gives a

better fit as the magnitude of the errors increase. It is given by
Kumar et al. (2008):
EABS ¼ Rjkexp t � kpredj
3.2.3. Nonlinear chi-square test
This statistical tool is necessary for the best fit of experimental

data. The value of chi-square is given by Triola (2006):

v2 ¼ R
ðkexp t � kpredÞ2

kexp t
3.2.4. The hybrid fractional error function (HYBRID)
This function is used to improve ERRSQ fit at low wt% nanoin-

clusion concentrations. It considers both the number of data points
and the number of parameters. The expression of this error func-
tion is given by Kumar et al. (2008):

HYBRID ¼ 100
n� p

R
ðkexp t � kpredÞ2

kexp t

The results of these error functions are reported in Table 3 for
each nanoinclusion. The comparison of error function reveals that
ANN predictions are much better for Ni-Zn Ferrites than MWCNTs.

4. Results and discussion

This study is divided into three steps. The first step is to find
thermal conductivity of PAN Electrospun nanocomposite fibers
values for different values of weight% of MWCNTs and Ni-Zn fer-
rites. Multilayer perceptron neural network is trained using prey
predator algorithm in order to build neural network models
(NNM), as shown in Fig. 4. In NNM, the inputs are weight% of
MWCNTs and Ni-Zn ferrites. The output of NNM is the correspond-
ing value of thermal conductivity of PAN Electrospun nanocompos-
ite fibers. Accordingly, no need once again to go back to step one;
because in step two, the NNs are trained based on step one. As a
result, the NNMs can be used to find the corresponding values of
thermal conductivity of PAN Electrospun nanocomposite fibers
for different values of weight% of MWCNTs and Ni-Zn ferrites.

The architecture of the neural networks which we used is two
input neurons- one hidden layer with several neurons, and two
output neurons. The trial and error method was employed to select
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Fig. 4. Structure of training MLPNN using prey predator algorithm.
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the best number of the hidden neurons. We used PPA in the
training process to determine the input weights and output
weights to minimize the error of the neural networks. The consid-
ered PPA applied in this study has 100 local search directions, with
120 solutions and 9 predators. The MATLAB software has been
used to implement the PPA and ANNs.

To train the neural network, we used 50% data as training data.
PPA is executed 50 times with 100 iterations in order to find best
model that has minimum error Fig. 5). As mentioned above, the
error is the difference between the actual values and the predicted
values in training data. In the first experiment, we trained the neu-
ral network with PAN data (wt% of MWCNTs was used as input
data and thermal conductivity as output data). In the next step,
we test the untrained data and confirm the predicted values Fig. 6).
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The best convergence speed of PPA in terms of SSE in MLPNN is
depicted in Fig. 7 with SSE = 0.00149. The corresponding parame-
ters, that represent the best model, are listed in Table 1. Fig. 8 pre-
sents the final comparison between simulated and experimental
values of thermal conductivities for the PAN fibers incorporated
with MWCNTs. It shows smallest dispersion between the two
results. In fact, the correlation has a standard error of 0.013 and
a coefficient of determination of 0.978 which is considered as a
good value for the correlation. It demonstrates that the neural net-
work system gives predictions with a least standard error. For
instance, with 0, 2, 4, 8 and 16 wt% of MWCNTs in PAN fibers,
the thermal conductivity values increase to 0.02, 0.18, 0.20 and
0.26 W/m-K, respectively. It was presumed initially that the
thermal conductivity of PAN nanocomposite fibers would enhance
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0 0.75 1.5 2.25 3 3.75 4.5 5.25 6 6.75 7.5 8.25 9 9.7510.511.2512 12.7513.514.2515 15.7516
0.05

0.075

0.1

0.125

0.15

0.175

0.2

0.225

0.25

0.275

0.3

different wt. % of    MWCNTs

Th
er

m
al

 C
on

du
ct

iv
ity

 (W
/m

-K
)

Actual validity data

Neural Network values

Fig. 6. Validity of actual data with ANN data for PAN with different wt% of MWCNTs.
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Fig. 7. Best performance of prey predator algorithm in terms of sum of squared error for PAN nanocomposites with different wt% of MWCNTs.
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significantly with the addition of MWCNTs. However, the test
results failed to display any drastic improvement in thermal con-
ductivity of PAN nanocomposite fibers even at higher concentra-
tion of MWCNTs, i.e. 16 wt%. The reason for this small-scale
improvement is the presence of air pockets in fiber texture and
interfacial resistance between MWCNTs and polymer matrix. The
other reasons could be the alignment of nanotubes, dispersion
techniques and size of nanotubes.

We repeated the same experiment with PAN data having differ-
ent wt% of Ni-Zn ferrites as input data and the thermal conductiv-
ity as output data and found the best model with minimum error
Fig. 9). We found that the best model has 2 input neurons-6 hidden
neurons- 2output neurons; because of the minimal SSE is equal
0.00014. The comparison between simulated and experimental
results for the PAN fibers incorporated with Ni-Zn ferrites is dis-
played in Fig. 10. The results show that the addition of Ni-Zn fer-
rites to PAN polymer matrix increases the thermal conductivity
of PAN nanocomposite fibers, which is also supported by the statis-
tical analysis Table 2. The experimental data shows that the ther-
mal conductivity values increase up to 4% Ni-Zn ferrite
nanoparticles, and after this concentration, the thermal conductiv-
ity did not show any marked improvement. This may be due to
lower thermal conductivity of Ni-Zn ferrites than MWCNTs. The
other reasons may be nanoparticle size and shape, volume fraction
of nanoinclusions as well as dispersion techniques. Predicted
results are plotted against experimental results in Fig. 11 for
MWCNTs and in Fig. 12 for Ni-Zn ferrites respectively. The correla-
tion coefficient between the experimental data and predicted data
is found to be greater than 0.90 for both cases which is greater than
0.811 (Triola, 2006).
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Fig. 9. The best performance of prey predator algorithm in terms of sum of squared error for PAN with different wt% of Ni-Zn Ferrites.
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5. Conclusions

Multilayer perception neural network (MLPNN) and prey preda-
tor algorithm were employed successfully to predict the thermal
conductivity of PAN nanocomposite fibers embedded with
MWCNTs and Ni-Zn ferrites and the predictions have been vali-
dated statistically using z-test and error functions. Nonlinear
regression analysis was used to minimize the error distribution
between the experimental data and predicted results. The increase
in the thermal conductivity of PAN fibers incorporated with
MWCNTs or Ni-Zn ferrites was not found as per our expectations.
The predicted ANN responses for PAN electrospun nanocomposite
fibers were compared with the experimental data and were found
in good agreement.
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