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1. Introduction

Kappa distribution is a good choice for model fitting among its
competitors in presence of extreme values. The study of extreme
events like floods, cyclone and heavy rains is necessary in the plan-
ning of water relevant setups, cultivation of crops in agriculture,
climatic conditions, overseeing environmental changes and floods
basic control systems.

Mielke (1973) and Mielke and Johnson (1973) introduced a
class of asymmetric positively skewed distribution, used for
explaining and examining rainfall data and weather modifications
which obtained attention from the hydrologist. This class of distri-
bution was named as the three parameter kappa distribution. Con-
ventionally, the log normal and the gamma distributions are fitted
to precipitation data but these distributions have their own limita-
tions due to non-existence of closed forms of cdfs and quantile
functions. Closed algebraic expressions can be analyzed with the
help of the class of kappa distribution.A random variable X has
the kappa three (KAP-III) distribution with scale parameter > 0
and shape parameters o&6 > 0, if its cumulative distribution
function (cdf) is given by
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The corresponding probability density function is
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Hussain (2015) proposed three extended forms of kappa distri-
bution namely Exponentiated generalized kappa, Kumaraswamy
generalized kappa and McDonald generalized kappa distribution.
He explored different statistical properties, survival properties,
inequality indices and entropies of new extended forms. He used
different methods to estimate the unknown parameters of new
forms. He also checked the efficiency of the proposed models of
kappa distribution with some real life data sets.

The study in hands is extended as follows. In Section 2, we give
a brief introduction of parameter induction in probability distribu-
tions and one of the generated family of distribution i.e. Marshall-
Olkin (MO) distribution. In Section 3, we introduced a new gener-
alization of the kappa distribution, namely, the Marshall-Olkin
Kappa (MOK) distribution. We derived the statistical properties
like quantile function, median, mode, moments, moment generat-
ing function (mgf), characteristic function (cf), mean deviation
from mean and from median and reliability properties i.e. survival
function, hazard rate function (hrf), reversed hazard rate and mean
residual life function of MOK distribution. We give expressions of
inequality measures including Lorenz curve, Bonferroni curve,

F(x) =
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Zenga index, Atkinson index, Pietra index and generalized entropy.
Most famous and useful method i.e. method of maximum likeli-
hood is used to estimate the unknown parameters of MOK distri-
bution. In Section 4, proposed MOK distribution is applied on
two real data sets. Different model selection criterions are used
to compare proposed and existing distributions on the same data
sets. This compatibility is also shown with the help of graphical
representation.

2. Parameter induction in continuous univariate distribution

There is an accelerating trend of inducting shape parameter(s)
to the basic distribution in advancing generated families. Doubt-
lessly the popularity and the utilization of incomplete functions
in generated distributions have attracted the thought of statisti-
cians, mathematicians, researchers, engineers, financial specialists,
demographers and other connected scientists. Diverse explana-
tions for this thought may be

e The computational and diagnostic facilities available through
programming softwares like R (packages), ox5, Python, Matlab,
Maple and Mathematica. With the assistance of these softwares
scientists can easily deal with the issues in calculating incom-
plete functions.

e To analyze the tail properties of distributions more extensively
one can introduce additional shape parameters to the underly-
ing distribution.

e The goodness of fit can be enhanced with addition of shape
parameters.

o Distributions with additional shape parameters performs better
in case of skewed data as compared to the conventional distri-
butions (Pescim et al. 2012).

2.1. General theory of Marshall-Olkin distribution

Marshall and Olkin (1997) presented an elastic semi-parametric
family of distributions. They defined a new survival function FM°(t)
by inducting an extra parameter § > 0 where § was a tilt parame-
ter. They took 6 in the sense of the performance of the hrf of FMO(t)
and the cdf of the baseline distribution. § was reintroduced by
Nanda and Das (2012) due to the reason that the hrf of the newly
introduced distribution is lifted beneath (61) or overhead (0 < 1)
the hrf of the original distribution.

The survival function F°(t) of MO distribution is

oSG 8G(E) 61— G(t)
Fom = - S s6()

p
1-0G(t)  G(t) + oG(1)

where g(t),G(t) and G(t) are the pdf, cdf and the survival function
of the existing distribution respectively with condition —oco <t <
oo, 0>0and d=1-4.

The associated cdf and pdf of MO distribution are

G(t) G(t) G(t)

MO/ B
PO =156 =6 + oc(0) 5+ oG(0) (1)
and

MO\ _ og(t) og(t) -
PO s "o+ ac? 22

Note that for 6 = 1, FMO(t) = G(t)andF™°(t) = G(t).

Marshall-Olkin generalizations of different distributions exist in
the literature. Some of them are mentioned in our manuscript.
Cordeiro and Lemonte (2013) studied the mathematical properties
and applications of the Marshall-Olkin extended (MOE) weibull
distribution. Other examples include MOE pareto distribution

(Alice and Jose, 2003), MOE gamma distribution (Ristic et al.,
2007), MOE lomax distribution (Ghitany et al., 2007a), MOE wei-
bull distribution and its application to censored data (Ghitany
et al., 2007b), MOE normal distribution (Garcia et al., 2010), MOE
lindley distribution (Ghitany et al., 2012), MOE fréchet distribution
(Krishna et al., 2013), and MOE birnbaum-saunders distribution
(Lemonte, 2013). General properties of the MOE family of distribu-
tions were studied recently by Barreto-Souza et al. (2013) and
Cordeiro et al. (2014).

3. Marshall-Olkin Kappa (MOK) distribution

Consider the cdf and pdf of kappa distribution from (1.1) and
(1.2) then applying the (2.1) and (2.2), we have the Marshall-
Olkin Kappa distribution with cdf and pdf given in (3.1) and (3.2)

1 -1

o

o
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o0
X
()
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Saf (x -1 P ANE
fMOK(x>:670<ﬁ) (4 67) > (3.2)

B

with «, 8,0, > 0, where f is scale parameter and o, fandé are shape
parameters. So, we can refer it as MOK (a, 8,0, ).

+(1-9)

An important use fulid entity is

(x+a)"= (—l)k<n+:7 ! )x"a*”*" (3:3)
k=0

(3.2) can be more simplified with the help of identity in (3.3) in this
form

put = E () 5) |

3.1. Sub models of MOK distribution

(i) In case 6 =1 in (3.2), the MOK distribution reduces to KAP-
III distribution.

(ii) If 6 = 6 =1 in (3.2), the MOK distribution reduces to KAP-II
distribution.

Graphical representation of pdf and cdf for various values of
parameters chosen arbitrary are provided in Figs. 3.1 and 3.2
respectively.

Some important findings from graphs in Fig. 3.1 are

e The density function of MOK distribution tends to normal distri-
bution as the value of § increases, while the values of o, § and 0
are kept constant. Similar pattern is seen with increase in value
of p for fixed values of «, 0, 5.

e o being the shape parameter changes the shape of density func-
tion for fixed values of 8,0, 5. Increase in o« makes the density
function more leptokurtic. Similar behavior is found for increase
in 0, by fixing the values of o, pandd.

From Fig. 3.2, graphs of the cdf of MOK distribution satisfy the
following properties.

e Fuyox(X) goes to 0 as x gets smaller
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Fig. 3.1. Graphs of the pdf of MOK distribution.
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e Converselylimy ... Fyox (x) = 1
e Fok(X) is non-decreasing.

Theorem 3.1. The mode of the MOK distribution is the solution of the

equation
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Fig. 3.2. Graphs of the cdf of MOK distribution.

[5 (- 5)yﬂ [(0 — 1) (o +y)y 0 — o+ 1)y%] —2001-48)=0

withy = (ﬁ) *

(3.5)
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Proof. Taking first derivative of the logarithm of (3.2), we have

0()0(()—11
) 01 (u+1\9(5)  j
selogfoo =1 - (47)
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19
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1-0)L(%r+1) " 44
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Equating to zero and simplifying, we get

[6+ (1= a4 [(0 - Der+yy"-

of
— 0 withy = <%>

Hence, the solution of above equation provides the mode value(s) of
the MOK distribution.

It is important to mention that for § = 1 the above equation
provides the mode of the KAP-III distribution. O

-2

0 oo + 1)y%] ~20(1-49)

3.2. Quantiles and moments

The gth quantile of the MOK distribution is

O!/f“o 7Y
X = where 0 <p <1 3.6

The median, first and third quartiles of MOK distribution are

Median (x) = for (1+%> 71} 3
Q; = poe (H%) —1} ’ (3.7)

1
Q; = poam <1+5) —1}

The rth moment of MOK random variable X with pdf given in
(3.4)is

Ho= Y Wi o / U - U] U
k=0
Using beta function,

k+1 r r
= Zwkﬁocw (a +@,1—@),r—1,2,3,4 (38)

x fo yu 1 Y]b—ldy
is the beta function. From (3.8), the first four moments, mean, vari-
ance and standard deviation can be obtained.

MOK distribution has the following moment generating func-
tion and characteristic function

where U=1-(1+%)"",Z= (5>M and B(a,b) =

o0 tr ,
M(t) = E(e™) = ;7ur

o=t e e (k+1 T r

_”{2::0—'Wkﬁ B<T @71—@> (3.9)

(3.10)

3.3. Mean deviation
The amount of variability in a distribution can be measured up
to some extent with the help of totality of deviations about the

mean and about the median.

Lemma. If X ~ MOK(«, 8, 0,5) then fo"xf(x)dx is given as

X e k+1 1 1
— W_] P P
/0 xf(x)dx = poc E WkBU( oc +ot(9’l oc@) (3.11)

k=0

where By(a,b) = f U'[1-UP'dU is the incomplete beta

function.

Proof.

X 00 ae
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k
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Substituting Z = (%)y and simplifying, we get
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The Mean deviation about mean and Mean deviation about
median can be obtained by

d1(x )—Z{IuF( ) — / xf(x )dx} and 6, (x)
M
= E(x) + 2MF(M) — M — 2 / xf(x)dx
Jo

respectively, where pu is the mean of MOK obtained from (3.8) by
putting r =1, M is the median can be taken from (3.7) and use
above lemma to solve [!'xf(x)dx and [}" xf(x)dx

Hence, we get

51(x) = 2 {uF(u) — oS WiBy (";1 TS —%)} (3.12)

k=0
and

55(x) = E(x) + 2MF(M) — M
— 2B 1> Wiy, <k 11 l)

, (3.13)
— o0 o0

|

3.4. Reliability properties

Let ¢t be a life time random variable follows MOK («, 8, 0, ) dis-
tribution. The hazard rate function of MOK distribution, expressed
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below, is upside-down shaped. Fig. 3.3 shows the graphical repre-
sentation of the hrf.

_let)

) o)
[l {5{(514,“}%(15) 1} 5+(15)<0£?;;>; ’

The survival function S(t), cumulative hazard rate function H(t)
and reversed hazard rate function r(t) are, respectively, specified as

1 ~14 1

o

S(ty=[1+ [o] —2_+1] =0

(7

H(t)= | h(t)dt = —InS(t)
0 % »
——n|1-[6d-2 41% +(1-0)
(5
and
_f(
r(t) = o)

B0 (= 07) e )

- L |6 1
“(15)(“?();““)1]

3.5. Mean residual life function

+(1-0)

In many fields like biomedical science, insurance and industrial
reliability, mean residual life function is an imperative considera-
tion. It can be obtained through the expression below

m(t) = 5(1_0 {E(t) - /Ot tf(t)dt} —t
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Fig. 3.3. Graph of the hrf of MOK distribution.

Mean residual life function of MOK distribution is given as

YW H{B( + 45,1 —5) —Bu( + 5.1 - 3))
1 -1
1- {5{()“} +(15)]
B

3.6. Inequality measures

m(t) —t

Inequality measures play key role in many fields like economics
to study income and poverty, demography, insurance and medi-
cine. Some are discussed in this study.

3.6.1 An American economist Lorenz (1905) developed a graph-
ical diagram of wealth distribution called Lorenz curve. Lorenz
index is defined as

Lp) = [ oo

The Lorenz curve is the plot of Lorenz index L(p) verses x, given
below is the Lorenz index for MOK distribution.

_ B S WiBy (5 4+ 55,1 — )
- 0o 1
YicoWipoor B 4 55,1 - 55)

af ?

L(p)

On the diagram perfect equality of wealth distribution is
depicted by a straight diagonal line and a line lies under it shows
the true wealth distribution. The difference between two above
stated lines is actually the inequality of wealth distribution.

3.6.2 A measure of income inequality was projected by
Bonferroni (1930), founded on partial means, that is needed when
the main source of income inequality is the occurrence of units
whose income is much beneath those of others. The Bonferroni
index can be determined through the relation

BCp) = 1)

The Bonferroni curve is the plot of Bonferroni index B((p) verses
x, and this index for MOK distribution is as

1
3

1 oo
BCp) = |0 -2 +1 b 41— g | B WiBu (S 5y 1 5
0 00 1

o) SEoWepa B 1)

3.6.3 The Zenga index denoted by Z was suggested by Zenga
(1984). It measures the disparity between the poorest p * 100%
of the population and the wealthier outstanding (1 — p) « 100%
part of the population by looking at the mean salaries of these
two disjoint and comprehensive subpopulations. Zenga index for
MOK distribution is as follows

Z=1
w }
e Gt - [efggee ) -9

k=0
1 -17-1
é{ﬁle} +(]7§)} :|
®

3.6.4 Atkinson (1970) proposed an index ranges from O to 1
where 0 means an equal wealth distribution. Mathematically
Atkinson index can be defined as

k=0

[u — o1 Zkau (CE S %)] {1 -

1

it =1 { [ xearw

Atkinson index for MOK distribution is given by
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1
{ka:owkﬁF 1B (il 4 1o 1 —lx;(f)}l’
Boer 1SR WiB( + 5.1 = )
3.6.5 Pietra (1915) offered an index, known as Schutz index or

half of the relative mean deviation. Pietra index is defined as
MDx

1 o %
Pe=gp | Ik mdF(o =
Expression for the Pietra index Px for MOK distribution is
[IUF( ) — poc Dy OWkBU(k+1 a0 1 _ﬁ)]
S oW B+ 55,1~ )

AF((‘)/,ﬁ) =1-

X =

3.7. Generalized entropy (GE)

Variation of the uncertainty can be measured for a random vari-
able through entropy. The generalized entropy (GE) index, sug-
gested by Cowell (1980) and Shorrocks (1980) is

, 1 o
0.~ G '}

where p), is the wth moment about origin.
The GE for MOK distribution can be obtained as below
1 Zk owkﬁw(x;‘)’ 1B(k+1 4o o 1 _%)

GEF(H/vw): 3]
OO =1 | (SioWepodh 1B+ 45,1 - 3)

3.8. Order statistics

In many areas of statistical theory and applications, order statis-
tics have significant role. Consider Xi,...,X, is a random sample
from a population with the MOK («, §,0,5) distribution. Let X;,
denote the ith order statistics then its pdf is given as

Finlt) = ﬁ(’n_,.)!ﬂxmx)i” {1 Fpoy™

Inserting pdf and cdf of Kappa distribution and simplifying we get

s (6

 j=0 k=0
k 1 (1-j-0)

fln( ):

3.9. Estimation of parameters

Section given below considers the famous and most useful
method for estimating the parameters o, 8,0 and 6 of MOK distri-
bution. Let X ~ MOK(a, ,6,6) distribution. We estimate these

parameters with the help of method of maximum likelihood. Con-
sider the log-likelihood function ¢ = L(®)

¢ = nlog(éa6) — nlogp + (0 — ])ilog (’ﬁ)
i=1

ﬁ
() %eele+ ()]

n -0l *%
“2% gl o+ (1) |a(X) 41
;Og{ ( )[“(ﬁ> }

Partially differentiating ¢ with respect to o, 8, 0andé and then
equate to zero,
We have four equations as

%‘5‘<°‘§1>i{ e (5)
s (5)]
B O L OO
Tlova-afa@) ] a1 e ()]

)]s

[t

Hence, the MLEs of «, 8, fands for MOK distribution can be obtained
by solving above equations. This task can be successfully done with
any statistical package for example R.

4. Application of the MOK distribution

A comparison of proposed MOK distribution has been made
with the Exponentiated generalized kappa distribution, Kumaras-
wamy generalized kappa distribution, McDonald generalized
kappa distribution, two parameters kappa and three parameters
kappa distribution with the help of data sets given in Sections
4.1 and 4.2.

Goodness of fit is generally decided utilizing a likelihood ratio
approach. We used two goodness of fit criterions Cramer-Von
Mises W* statistic and Anderson-Darling A statistic along with
minimum value of the log likelihood function ¢().
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Table 4.1
MLEs for stream flow amounts.
Distribution o B 0 S a b
K2 10.7420 312.1797 - - - -
(5.9393) (46.5958)
K3 0.0457 161.5442 56.7357 - - -
(0.2369) (15.9801) (287.0343)
McGK 0.1951 24.1709 4.3609 0.0024 42.7565 7.5042
(0.5998) (53.9753) (13.2095) (23.2242) (99.1328) (20.1226)
KGK 0.1678 17.3661 7.2191 - 37.6739 4.8300
(1.0243) (219.7929) (44.7869) (563.6182) (9.7572)
EGK 0.0264 42,6137 34.2247 - 3.2326 79.3117
(0.0118) (39.2628) (145.7587) (19.3128) (102.2513)
MOK 0.0626 129.8663 50.1215 2.9310 - -
(0.1406) (34.1181) (111.7535) (3.7595)
(Standard errors in parenthesis).
Table 4.2
MLE:s for failure times of mechanical components.
Distribution o B 0 B a b
K2 17868.2697 4.66187 - - - -
(13831.0322) (0.0015)
K3 17060.1568 46624 1.3066 - - -
(4510.9833) (0.0012) (0.1427)
McGK 29.1913 4.6808 34.1854 0.0274 0.0473 1.3184
(176.2242) (0.0823) (78.5917) (0.1189) (0.1089) (0.2988)
KGK 23.9728 4.6815 34.7390 - 0.0453 1.3333
(125.6004) (0.0806) (112.8132) (0.1473) (0.3046)
EGK 6.0757 5.9738 4.9868 - 11.5468 0.3326
(1.0824) (0.3541) (0.7825) (2.8778) (0.0788)
MOK 6.0909 1.4164 0.7576 15.4506 - -
(5.4648) (0.7806) (0.7299) (30.1753)
(Standard errors in parenthesis).
Table 4.3
Performance indices.
Data Stream flow amounts Failure times of mechanical components
Distribution 00) A" w* o) A" wr
K2 214.1449 1.0876 0.1802 129.3613 1.4302 0.2574
K3 207.0037 0.4919 0.0799 126.2338 1.3418 0.2397
McGK 206.3862 1.4356 0.2222 125.2638 1.5101 0.1786
KGK 206.4671 0.4555 0.0788 125.2886 1.0720 0.1864
EGK 206.8389 0.4761 0.0782 127.3661 0.7816 0.1191
MOK 206.6291 0.4583 0.0774 129.8588 0.6006 0.0802
= Estimated pdfs
Estimated pdfs
5] = 3
— K3
— EGK 3
— KGK S
| McGK
= — MOK g
| 3
B T
= T T Jl T _ T E T T T T T T
0 2 4 6 8 0 100 200 300 400 500
X X
Failure times Stream flow

Fig. 4.1. Graphs of the estimated pdfs for G-Kappa distributions.
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4.1. On stream flow amounts (1000 acre-feet)

Following data set (Mielke and Johnson, 1973) consists of
stream flow amounts (1,000 acre-feet) for 35 years (1936-70) at
the U.S. Geological Survey (USGS) gaging station number 9-3425
for 1st April to 31st August of each year.

192.48, 303.91, 301.26, 135.87, 126.52, 474.25, 297.17, 196.47,
327.64, 261.34, 96.26, 160.52, 314.60, 346.30, 154.44, 111.16,
389.92, 157.93, 126.46, 128.58, 155.62, 400.93, 248.57, 91.27,
238.71, 140.76, 228.28, 104.75, 125.29, 366.22, 192.01, 149.74,
224.58, 242.19, 151.25.

4.2. On failure times of mechanical components

Following data represents the failure times of mechanical com-
ponents obtained from Silva et al. (2015).

0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309,
1.899, 2.610, 3.478, 0.557, 1.911, 2.625, 3.578, 0.943, 1.912,
2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981, 2.661,
3.779, 1.248, 2.010, 2.688, 3.924, 1.281, 2.038, 2.823, 4.035,
1.281, 2.085, 2.890, 4.121, 1.303, 2.089, 2.902, 4.167, 1.432,
2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 4.255, 1.505, 2.154,
2.964, 4.278, 1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103,
4376, 1.615, 2.223, 3.114, 4.449, 1.619, 2.224, 3.117, 4.485,
1.652, 2.229, 3.166, 4.570, 1.652, 2.300, 3.344, 4.602, 1.757,
2.324, 3.376, 4.663

Tables 4.1 and 4.2 present the maximum likelihood estimates of
the parameters of the distributions and their standard errors in
parenthesis. Table 4.3 shows the minimum values of the log likeli-
hood function ¢(-) and performance indices W* and A" for all the
distributions under study on both data sets. It is worth pointing
that MOK distribution has smallest values of W* and A" as com-
pared to the rest distributions. Fig. 4.1 depicts the graphical repre-
sentation of fitness of MOK and other forms of kappa distribution.
It is evident from performance indices and graph that MOK is the
good fit distribution for both data sets so it can be considered that
the proposed model is a good competitive model.

5. Concluding remarks

In this manuscript, we proposed a new generalization of kappa
distribution named as Marshall-Olkin Kappa (MOK) distribution.
Statistical properties i.e. pdf, cdf, mode, median, quantiles,
moments and mean deviations of the new model are derived. Var-
ious reliability properties, inequality measures and generalized
entropy are also studied. Maximum likelihood method is applied
to estimate the unknown parameters of the new model. Two real
life data sets are used to show the competitiveness of proposed
model and finally conclusion has been made that new model
may serve better than other competing models.
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