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The parameters, reliability, and hazard rate functions of the Unit-Lindley distribution based on adaptive
Type-II progressive censored sample are estimated using both non-Bayesian and Bayesian inference
methods in this study. The Newton–Raphson method is used to obtain the maximum likelihood and max-
imum product of spacing estimators of unknown values in point estimation. On the basis of observable
Fisher information data, estimated confidence ranges for unknown parameters and reliability character-
istics are created using the delta approach and the frequentist estimators’ asymptotic normality approx-
imation. To approximate confidence intervals, two bootstrap approaches are utilized. Using an
independent gamma density prior, a Bayesian estimator for the squared-error loss is derived. The
Metropolis–Hastings algorithm is proposed to approximate the Bayesian estimates and also to create
the associated highest posterior density credible intervals. Extensive Monte Carlo simulation tests are
carried out to evaluate the performance of the developed approaches. For selecting the optimum progres-
sive censoring scheme, several optimality criteria are offered. A practical case based on COVID-19 data is
used to demonstrate the applicability of the presented methodologies in real-life COVID-19 scenarios.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction The one-parameter of New unit-Lindley (NUL) distribution was
The life test finishes when the necessary effective sample is
reached, thanks to adaptive Type-II progressive censoring. It also
assures that the parametric inference and total duration test are
both improved. Because many new goods have a long lifetime
due to high manufacturing accuracy, obtaining failures is difficult
with this high manufacturing technology, so we apply a censor
scheme to decrease costs and time in lifetime studies. As a result,
we require a suitable distribution capable of simulating failure
times from censored experiments in this setting. As a result, we
chose a really intriguing distribution for this investigation.
originally proposed byMazucheli et al. (2019) by using transforma-
tion to the traditional Lindley distribution. But let’s say that the life-
time random variable X of a certain test item complies with UL hð Þ.
We can use the following well known (CDF) abbreviations (CDF) is
uesd for the cumulative distribution function, and (PDF) is used for
probability density function, in the same way we express reliability
function by RF, and the hazard rate function can be abbreviated by
(HRF), and reversed HRF can be expressed by the abbreviation
(RHRF), at different times t, are each supplied, are follows:

f x; hð Þ ¼ h2

x3 hþ 1ð Þ e
�h1�x

x ; 0 < x < 1; h > 0; ð1Þ

F x; hð Þ ¼ hþ x
x 1þ hð Þ e

�h1�x
x ; 0 < x < 1; h > 0; ð2Þ

R t; hð Þ ¼ 1� hþ t
t 1þ hð Þ e

�h1�t
t ; 0 < t < 1; h > 0; ð3Þ

hr t; hð Þ ¼ t�2h2

t 1þ hð Þeh1�t
t � hþ tð Þ ; 0 < t < 1; h > 0; ð4Þ

and
rhr t; hð Þ ¼ h2

t2 hþtð Þ ; 0 < t < 1; h > 0: ð5Þ
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Also, Mazucheli et al. (2019) introduced the regression model of the
NUL distribution as an alternative model of the unit-Lindley and
beta regression. UL was discussed by Mazucheli et al. (2020) and
is helpful for data processing in the [0,1] range. It has a few intrigu-
ing characteristics, such belonging to the exponential family and
having closed form expressions for the moments. Nadarajah and
Chan (2020) derived closed form expressions moments and incom-
plete moments of UL distribution. Irshad et al. (2021) considered an
exponential version of UL distribution. Biswas and Chakraborty
(2021) estimated the R = P (Y < X) for unit-Lindley distribution:
inference with an application in public health. Furthermore, the
NUL distribution has superior features in many practical scenarios
and can be used to fit survival data when compared to these lifes-
pan distributions. As a result, the NUL distribution may be a useful
alternative for analysing skewed data that resembles these skewed
distributions. Fig. 1 displays many representations of the NUL dis-
tribution’s density function as well as its failure rate function. using
certain predetermined values within a set of the parameter called h.

In the context of censoring mechanisms, in recent few years,
several works considered various statistical inferences of the
unknown Lindley parameters. Goel and Krishna (2020) developed
the progressive type-II (PCS-T2) random censoring scheme with
Lindley failure and censoring time distributions. Hafez et al.
(2020) discussed Lindley distribution with accelerated life tests.
Developments ofWeibull distribution are discussed inmany papers
(Aslam et al., 2011; Aslam et al., 2017). For more reading about dis-
tribution theory see (Lin et al., 2021 (2021).; Zhou et al., 2021;
Alsuhabi et al., 2022; Wang et al., 2022; Alkhairy et al., 2022).

The lifetime of some products has greatly increased as a result of
improvements in digital transformation and industrial design and
technology. Even with progressive filtering, the duration test takes
a long time in this case, and there are occasionally no (or few) fail-
ures during the test. Ng et al. (2009) offered adaptive Type-II pro-
gressive censoring algorithms as a result (APCS-T2). We propose
(Balakrishnan and Cramer, 2014) for more information on how
prevalent this censoring method has grown in survival analysis
and reliability research. Briefly, the APCS-T2 is stated as: Assume
progressive censoring, effective sample size of m < nð Þ, and n inde-
pendent and identical units R1;R2; . . . ;Rmð Þ, threshold time pointT-
such that T 2 0;1ð Þ, are predetermined at the beginning of the
Fig. 1. Plots of the density and hazard ra
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experiment. According to (Ng et al., 2009), the APCS-T2 is a test that
permits Ri; i ¼ 1;2; . . . ;m to change in the test and allows the
experiment time to slightly exceed the stated period T. Because of
this modification, the experimenter will be able to call off the study
after the desired number of representative samples has been col-
lected. Let X1:m:n;R1ð Þ; X2m:n;R2ð Þ; . . . ; Xm:m:n;Rmð Þð Þ be a PCS-T2. If
Xm:m:n < T , then the experiment terminates at Xm:m:n, which is just
the usual PCS-T2. Otherwise, if Xd:m:n < T < Xdþ1:m:n, for
d ¼ 1;2; . . . ;m� 1, (where dstands the number of the failures that
take place before T) then the units sill under observation without
any removals during the test, i.e., set Ri ¼ 0 for
i ¼ dþ 1; . . . ;m� 1 and then removed the remaining surviving

items at the time of observed mth failure, i.e., R�
m ¼ n�m�Pd

i¼1Ri.
However, let x ¼ X1:m:n;R1ð Þ; . . . ; Xd:m:n;Rdð Þ; Xdþ1m:n;Rdþ1ð Þ; . . . ;f
Xm:m:n;Rmð Þg were an adaptive sample that is progressively Type-II
censored and follows a continuous population, then the joint likeli-
hood function of the APCS-T2 would look like this: where h is inter-
preted to imply as below:

L hjxð Þ ¼ Ad

Ym
i¼1

f xi:m:n; hð Þ
Yd
i¼1

F xi:m:n; hð Þ� �Ri F xm:m:n; hð Þ� �R�m ; ð6Þ

where Ad represents the constant used F xi:m:n; hð Þ ¼ 1� F xi:m:n; hð Þ
and R�

m ¼ n�m�Pd
i¼1Ri.

In addition to the conventional likelihood function (LF) of
APCS-T2 that is detailed in the previous sentence, the maximum
product of spacing (MPS) technique is also taken into considera-
tion to be a competitive way in (6). Cheng and Amin (1983)
and Ranneby (1984) separately introduced and explored the PS
technique as an alternate strategy for estimating parameter(s)
of continuous univariate distributions. The maximum product
spacing estimators methods (MPSEs) is comprehensively studied
considering several cases as in Refs. (Anatolyev and Kosenok,
2005; Alshenawy et al., 2020; Alshenawy et al., 2021;
Almetwally et al., 2023).

The APCS-T2 utilising the maximum PS approach, S �ð Þ, can be
defined as follows, according to (Almetwally et al., 2019;
Almetwally et al., 2020; El-Sherpieny et al., 2020; Ahmad et al.,
2022):
te functions of the NUL distribution.
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S hjxð Þ ¼ Bd

Ymþ1

i¼1

F xi:m:n; hð Þ � F xi�1:m:n; hð Þ½ �
Yd
i¼1

F xi:m:n; hð Þ� �Ri F xm:m:n; hð Þ� �R�m
ð7Þ

where Bd represents the constant used, F x0:m:n; hð Þ � 0 and
F xmþ1:m:n; hð Þ � 1. Henceforward, we’ll use xi instead of xi:m:n for sim-
plify notations. A schematic illustration of the APCS-T2 is depicted
in Fig. 2.

Many papers discussed different points of COVID-19 data using
several methods, such as: amma-distributed variables by Aslam
et al. (2021), neutrosophic statistics by Sherwani et al. (2021),
repetitive sampling under indeterminacy by Rao and Aslam
(2021), and modeling to Factor Productivity of the United Kingdom
by Alyami et al. (2022).

To our knowledge, no work has been published on applying
adaptive Type-II progressive hybrid censoring to infer the NUL dis-
tribution’s model parameters and/or reliability traits, such as R and
HRF, which is more significant in a range of real-world contexts. As
a result, in this study, we will exclusively focus on both classical
and Bayesian estimating methodologies to generate point and
interval estimates of unknown model parameters, as well as some
life parameters of the HD under APCS-T2, such as RF and HRF. In
this paper, LF and MPS procedures, as well as the Bayesian estimate
method, are applied. We estimated the (ACIs) of the NUL parame-
ter are produced using the delta approach.

Using independent gamma priors, the likelihood function under
squared-error loss (SEL) produces the Bayes estimate of the
unknown parameter. The Bayes estimators and related credible
ranges cannot be solved analytically, hence Markov chain Monte
Carlo (MCMC) techniques are employed to create samples from
the relevant posterior density functions. Finding the optimum cen-
sorship scheme from a collection of all conceivable removal pat-
terns that provide a plethora of information about the unknown
model parameter in issue is one of the most challenging tasks in
dependability research. This is one of the most difficult aspects of
the research process. One real data set of COVID-19 is investigated
to illustrate the suggested methodologies’ application to real-
world phenomena and to highlight the NUL distribution’s superior-
ity. Finally, we formulate some particular suggestions based on the
numerical data.

The remainder of the work in the paper is structured as follows:
The traditional estimate of an unknowable parameter, in addition
to the features of dependability, is presented here in Section 2. In
Section 3, we begin the process of developing the Bayesian esti-
mate based on the SEL function utilising each of the provided fre-
Fig. 2. Schematic illustration of Type-II
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quentist functions. In Section 4, The most optimal ideas for
progressive censorship are discussed here. Section 5 presents the
simulated findings. In Section 6 an optimal censoring strategy is
also suggested along with a real data analysis that, which is offered
for demonstrative purposes. Finally, we include the paper’s main
findings in Section 7.

2. Classical inference

Using data collected using the suggested censoring approach,
this section will employ the LF and MPS procedures to generate
point and interval estimators for the unknown parameters, as well
as the reliability aspects of the NUL distribution. Prior to proceed-
ing, let us assume that X1 < � � � < Xd < T < Xdþ1 < � � � < Xm is an
APCS-T2 censored order statistics of size m < nð Þ with censoring

scheme R1; . . . ;Rd;0; . . . ;0;n�m�Pd
i¼1Ri from NUL hð Þ.

2.1. Maximum likelihood estimator

Without taking into account any additive constants, (2) and (1)
are substituted into the likelihood function (6) to produce

L hjxð Þ / h2m

hþ 1ð Þm n xm; hð Þð ÞR�me
�h

Xm
i¼1

1�xi
xi Ym

i¼1

x�3
i

Yd
i¼1

n xi; hð Þð ÞRi ; ð8Þ

where n t; hð Þ ¼ 1� hþt
t 1þhð Þ e

�h1�t
t .

The related log-likelihood function for (8) is ‘ �ð Þ ¼ log L �ð Þ.

‘ hjdð Þ ¼ 2m ln hð Þ �m ln hþ 1ð Þ þ R�
m ln n xm; hð Þð Þ � h

Xm
i¼1

1� xi
xi

� 3
Xm
i¼1

ln xð Þ þ Ri

Xd
i¼1

ln n xi; hð Þð Þ: ð9Þ

Differentiating (9) partially with respect to the parameter h
then equate (10) to zero, as below we can get the equation:

@‘

@h
¼ 2m

h
� m
hþ 1

þ R�
m
n0 xm; hð Þ
n xm; hð Þ �

Xm
i¼1

1� xi
xi

þ Ri

Xd
i¼1

n0 xi; hð Þ
n xi; hð Þ ; ð10Þ

where n0h t; hð Þ ¼ 1�t
t

hþt
t 1þhð Þ � 1�tð Þ

t 1þhð Þ2
h i

e�h1�t
t .

As it seems, from (10), analytic solution of MLE of h is not avail-
able. As a result, the ”maxLik” package may be used numerically to
create an iterative Newton Raphson (NR) approach to get the
desired MLE ĥ for any given data set. Once the maximum likelihood
adaptive progressively censoring.
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estimate of h calculated, the MLE of the reliability indices RF tð Þ (3)
and HRF tð Þ(4) at any mission time 0 < t < 0 can be easily derived
using the invariance property of MLE ĥ as

bR tð Þ ¼ 1� ĥþ t

t 1þ ĥ
� � e�ĥ1�t

t ; 0 < t < 0; and ĥr tð Þ

¼ t�2ĥ2

t 1þ ĥ
� �

eĥ1�t
t � ĥþ t

� � ; 0 < t < 0:
2.2. Maximum product of spacings estimators

Substituting (2) and (1) into (7), the product of spacings (7)
becomes

S hjxð Þ / n xm; hð Þ½ �R�m
Ymþ1

i¼1

hþ xi
xi 1þ hð Þ e

�h
1�xi
xi � hþ xi�1

xi�1 1þ hð Þ e
�h

1�xi�1
xi�1

� �Yd
i¼1

n xi; hð Þð ÞRi :

ð11Þ

From (11), the MPSE bh of h, may be accomplished by raising the
value of the log-PS function in the following, s �ð Þ / log S �ð Þ, as
s hjxð Þ / R�

m ln n xm; hð Þ½ �

þ
Xmþ1

i¼1

ln
hþ xi

xi 1þ hð Þ e
�h

1�xi
xi � hþ xi�1

xi�1 1þ hð Þ e
�h

1�xi�1
xi�1

� �

þ Ri

Xd
i¼1

ln n xi; hð Þð Þ: ð12Þ

Differentiating (12) partially in respect of h , we have two non-
linear equation that must be solved simultaneously to obtain

respective bh as

@s
@h

¼ R�
m
n0 xm; hð Þ
n xm; hð Þ þ

Xmþ1

i¼1

n0 xi�1; hð Þ � n0 xi; hð Þ
hþxi

xi 1þhð Þ e
�h

1�xi
xi � hþxi�1

xi�1 1þhð Þ e
�h

1�xi�1
xi�1

þ Ri

Xd
i¼1

n0 xi; hð Þ
n xi; hð Þ ; ð13Þ

The MPSE lacks an explicit form, just like the MLE. As a result,
the NR approach is employed to quantitatively determine the
MPSE from (13) for a simulation or particular datasets. Cheng
and Amin (1983) proved that MPSE is a superior method of estima-
tion. Since the MPSE possess the invariance principle similar to the

MLE, the MPSE cRF tð Þ and bh tð Þ of RF tð Þ and HRF tð Þ can be easily
obtained by replacing the unknown parameters h in (10) by theirbh, respectively, as
bR tð Þ ¼ 1�

bh þ t

t 1þ bh� � e�bh1�t
t ; 0 < t < 0; and chr tð Þ

¼ t�2bh2

t 1þ bh� �
ebh1�t

t � bh þ t
� � ; 0 < t < 0:
2.3. Asymptotic confidence intervals

In this section we used the Fisher’s information matrix
I hð Þ ¼ E � @2‘ hjxð Þ� 	

=@h2
� �

to get the ACIs. The asymptotic variance

covariance (VarCov) matrix of the MLE ĥ can be produced by
inverting I hð Þ and removing Ewith replacing h by their MLE ĥ, as
shown in Lawless (Lawless, 2003). This is due to the fact that
obtaining exact results to Fisher’s expectation is a time-
consuming process. Also, (Anatolyev and Kosenok, 2005) stated
4

that the MLE x̂ and MPSE bx are asymptotically analogous, in fact,bx ¼ x̂þ o n�1=2
� 	

.

The approximate VarCov matrix, I�1 ĥ
� �

, can be expressed so

easily as follows:

I�1 ĥ
� �

¼ � ‘11½ ��1
ĥ ¼ r̂ĥĥ

� �
: ð14Þ

In a similar manner, by finding the derivative of (12) at their

MPSE bh, the approximate V-C matrix, I�1 bh� �
, is provided through

the following equation

I�1 bh� �
¼ � s11½ ��1bh ¼ brbhbhh i

: ð15Þ

The Fisher’s element as in (14) and (15) are obtained and pro-
vided as following:

@2‘

@h2
¼ �2m

h2
� �m

hþ 1ð Þ2
þ R�

m
n00 xm; hð Þn xm; hð Þ � n02 xm; hð Þ

n2 xm; hð Þ

þ Ri

Xd
i¼1

n00 xm; hð Þn xm; hð Þ � n02 xm; hð Þ
n2 xm; hð Þ ; ð16Þ

and

@2s
@h2

¼ R�
m

n00 xm ;hð Þn xm ;hð Þ�n02 xm ;hð Þ
n2 xm ;hð Þ þ

Xmþ1

i¼1

g xi ;hð Þ n00 xi�1 ;hð Þ�n00 xi ;hð Þ½ �
hþxi

xi 1þhð Þe
�h

1�xi
xi � hþxi�1

xi�1 1þhð Þe
�h

1�xi�1
xi�1

h i2
þ
Xmþ1

i¼1

n0 xi�1 ;hð Þ�n0 xi ;hð Þ½ �2
g xi ;hð Þ½ �2 þ Ri

Xd
i¼1

n00 xi ;hð Þn xi ;hð Þ�n02 xi ;hð Þ
n2 xi ;hð Þ ;

ð17Þ

where g xi; hð Þ ¼ hþxi
xi 1þhð Þ e

�h
1�xi
xi � hþxi�1

xi�1 1þhð Þ e
�h

1�xi�1
xi�1 .

The estimated variances of R tð Þ and hr tð Þ must be obtained
before the ACIs of R tð Þ and hr tð Þ can be constructed. The delta
approach is the most statistically efficient method for constructing
confidence intervals in practice. This approach is more beneficial
and simple to apply than the empirically-driven bootstrap
approach, which should only be used as a last resort when the Tay-
lor series approximation is empirically inaccurate see (Greene,
2000). However, based on the asymptotic normality of the MLEs
of the reliability parameters of life R tð Þ and h tð Þ, we havebR tð Þ � N bR tð Þ;r2bR tð Þ


 �
and ĥr tð Þ � N ĥr tð Þ;r2

ĥ tð Þ

� �
. According to the

delta method, from (14), the ACIs for R tð Þ and hr tð Þ can be con-
structed using the corresponding normality, respectively as

r̂2bR tð Þ
¼ DR tð Þ I

�1 hð ÞDT
R tð Þ

h i
j ĥð Þ; and r̂2

ĥr tð Þ ¼ Dhr tð Þ I
�1 hð ÞDT

hr tð Þ
h i

j ĥð Þ;

where DR tð Þ and Dh tð Þ are the gradient of R tð Þ and hr tð Þ obtained at ĥ
as

DR tð Þ ¼ @R tð Þ=@h½ �; and Dhr tð Þ ¼ @hr tð Þ=@h½ �:
Hence, using the concept of large sample theory for MLE x̂ ofx,

the 100 1� cð Þ% two-sided ACIs for the unknown parameter h;R tð Þ
or hr tð Þ is given by

x̂� zc=2
ffiffiffiffiffiffiffi
r̂2
x̂

q
;

where r̂2
x̂ is the estimated variance of x̂, and zc=2 is the percentile of

the standard normal distribution with upper probability c=2ð Þ � th.

In a similar pattern, from (15), the associated variance of bR tð Þ
and chr tð Þ obtained at their MPSE bh can be easily approximated
and then the 100 1� cð Þ% ACIs of x using their MPSE bx can be
easily constructed.
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3. Bayesian estimators

Bayesian inference has risen to prominence in a variety of sec-
tors, including but not limited to engineering, biology, clinical
medicine, and so on. Its capacity to use prior information in the
analysis makes it particularly valuable in dependability studies,
where one of the major obstacles is data availability. The reliability
parameters R tð Þ and hr tð Þ, as well as the Bayes estimates and
related credible intervals of the model parameter h, are developed
in this section.

3.1. Prior information and loss function

Using independent gamma priors is an easy approach that can
result in findings with more explicit posterior density expressions
because the gamma distribution can have a range of shapes based
on its parameter values. As a result, we investigated the gamma
density prior, which is more adjustable in terms of altering support
for the NUL distribution parameter than more difficult prior distri-
butions. As a result, it is believed that the NUL parameter h has
independent gamma PDFs in the form of Gamma a; bð Þ. The joint
prior density of h then changes

p hð Þ / ha�1e�bh; h > 0; ð18Þ
where the hyper-parameters a; b are selected to reflect prior infor-
mation regarding the unknown parameter h, and they are believed
to be known and non-negative.

The choice of the symmetric loss function is a key issue in Baye-
sian analysis, according to the literature. The most often employed
symmetric loss function in this study for estimating the considered
unknown quantities is the SEL function, L �ð Þ, which is defined as:

L h; ~h
� �

¼ ~h� h
� �2

; ð19Þ

where ~h being an estimate of h. Under (19), objective estimate ~h is
given by the posterior mean of h. However, any other loss function
can be easily incorporated.

3.2. Posterior analysis by LF

We can easily express the posterior PDF pL �ð Þ of h as shown
below

pL hjxð Þ ¼ K�1
1 p hð ÞL hjxð Þ; ð20Þ

where K1 ¼ R1
0 pL hjxð Þdh is the normalizing constant.

The joint posterior PDF of h is obtained by substituting (8) and
(18) into (20) as follows

pL hjxð Þ ¼ K�1
1

	 h2mþa�1

hþ 1ð Þm n xm; hð Þð ÞR�me
�h bþ

Xm
i¼1

1�xi
xi

 !
Ym
i¼1

x�3
i

Yd
i¼1

n xi; hð Þð ÞRi :

ð21Þ
The posterior expectation of h is the Bayes estimator for func-

tion of h under SEL function (19). Therefore, the marginal posterior
distribution for h must be acquired in order to develop these esti-
mations. In spite of this, it is plainly evident that it is not possible
to get exact representations for the marginal PDF for unknown
parameter h as a consequence of unstated mathematical terms of
(21). We found a very flexible solution which is the MCMC
approaches. In addition, in order to get the Bayesian estimates as
well as the credible intervals that accompany them.

It is abundantly clear that the posterior distribution of h is inca-
pable of being analytically converted to any well-known distribu-
5

tion, and as a result, it is not possible to sample it immediately
using approaches that are commonplace. Therefore, it is suggested
to simulate samples from (21) using the Metropolis Hastings (MH)
algorithm with normal proposal distributions. Theta’s conditional
PDFs’ diagram plot demonstrates how this distribution behaves
similarly to the normal distribution.

As expect, similar to the case of Bayesian inference using LF
approach, the posterior distribution (21) of h, is very hard to be
represented using a specific known distribution. In order to
approximate the Bayes estimates estimate of h;R tð Þ; and hr(t), we
thus consider using MCMC simulation technique.

The MH technique is a very useful MCMC strategy since it can
generate random samples from a posterior density distribution
with an independent proposal distribution, as well as calculate
Bayes estimates and generate HPD credible intervals. Furthermore,
this technique provides an easy-to-apply chain form of the Baye-
sian estimate from a practical standpoint. Please see (Gelman
et al., 2004 and Lynch, 2007) for further information on this algo-
rithm. The procedures that are outlined below need to be carried
out in order to successfully produce random samples by using
the assist MH algorithm.

Algorithm 1. We used the MH algorithm generate failure times
that follows the NUL distribution to estimate the NUL parameter:

Step 1: Start with initial guess h 0ð Þ
� �

¼ ĥ
� �

.

Step 2: Set j ¼ 1.
Step 3: Generate h� from (21) with normal distributions

N ĥ;rĥĥ

� �
, as

(a) Calculate h1 ¼ pL h�jxð Þ
pL h j�1ð Þjxð Þ.

(b) Obtain Q h ¼ min 1; h1f g.
(c) Generate sample variates u1 and u2 from the uniform

U 0;1ð Þ distribution.
(d) If u1 6 Qh, set h

jð Þ ¼ h�, else set h jð Þ ¼ h j�1ð Þ.
Step 4: Compute the RF (3) and HRF (4), for a given distinct

time 0 < t < 1, as

R jð Þ tð Þ ¼ 1� h jð Þ þ t

t 1þ h jð Þ
� � e�h jð Þ1�t

t ;

and

hr jð Þ tð Þ ¼ t�2h jð Þ2

t 1þ h jð Þ
� �

eh jð Þ1�t
t � h jð Þ þ t

� � :

Step 5: Set j ¼ jþ 1.
Step 6: Redo steps 2–5 for N times to collect N draws of

h;R tð Þ and hr tð Þ as

x jð Þ ¼ h jð Þ;R jð Þ tð Þ;h jð Þ tð Þ
� �

; j ¼ 1;2; . . . ;N:

Now, to construct the HPD credible interval of h or the
reliability characteristics R tð Þ and hr tð Þ, the associated

simulated MCMC variates x jð Þ ¼ h jð Þ;R jð Þ tð Þ;h jð Þ tð Þ
� �

for

j ¼ N0 þ 1; . . . ;N must be ordered as
x N0þ1ð Þ;x N0þ2ð Þ; . . . ;x Nð Þ.
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So by refering to (Chen and Shao, 1999), We can easily obtain
the credible interval.

x j�ð Þ;x j�þ 1�cð Þ N�N0ð Þð Þ
� �

;

where j� is selected in such a way that

x j�þ 1�cð Þ N�N0ð Þf gð Þ �x j�ð Þ ¼ min
16j6c N�N0ð Þ

x jþ 1�cð Þ N�N0ð Þf gð Þ �x jð Þ
� 	

; j�

¼ N0 þ 1;N0 þ 2; . . . ;N:
4. Optimum progressive censoring plans

When samples are acquired via censoring, we need an optimal
plane, the preceding sections dealt with estimation methods of
some lifetime parameters of NUL hð Þ. As an experimenter, you
may want to choose the ‘optimal’ censoring scheme from the set
of all possible options so that you may get the most out of your
research. Choosing the best censoring strategy has been discussed
in a variety of contexts in the past. However, a variety of optimality
criteria and results on optimal censoring systems have been pre-
sented, see (Balakrishnan and Aggarwala, 2000).

Following (Ng et al., 2004), when the values of n(total test
units), m(effective sample) and T is the time where the experiment
is terminated, we can determine the optimal censoring design
(R1;R2; . . . ;Rm where

Pm
i¼1Ri ¼ n�m) under generalized Type-II

progressively hybrid censored NUL model. several authors worked
Table 1
Results of simulation using classical and Bayesian methods, when the value of h ¼ 0:5 n =

h=0.5 MLE

m scheme T BS ME LCONF

20 I 0.5 h 0.0133 0.0057 0.2908
R Tð Þ 0.0073 0.0016 0.1561
hr Tð Þ �0.0255 0.0233 0.5900

0.8 h 0.0075 0.0048 0.2705
R Tð Þ 0.0013 0.0001 0.0387
hr Tð Þ �0.0058 0.0031 0.2169

II 0.5 h 0.0109 0.0064 0.3102
R Tð Þ 0.0060 0.0018 0.1662
hr Tð Þ �0.0203 0.0260 0.6279

0.8 h 0.0102 0.0056 0.2911
R Tð Þ 0.0018 0.0001 0.0417
hr Tð Þ �0.0080 0.0036 0.2334

III 0.5 h 0.0078 0.0048 0.2709
R Tð Þ 0.0044 0.0014 0.1454
hr Tð Þ �0.0144 0.0200 0.5513

0.8 h 0.0122 0.0055 0.2879
R Tð Þ 0.0020 0.0001 0.0415
hr Tð Þ �0.0097 0.0036 0.2306

25 I 0.5 h 0.0094 0.0048 0.2703
R Tð Þ 0.0052 0.0014 0.1452
hr Tð Þ �0.0177 0.0199 0.5485

0.8 h 0.0106 0.0051 0.2775
R Tð Þ 0.0018 0.0001 0.0401
hr Tð Þ �0.0083 0.0033 0.2223

II 0.5 h 0.0094 0.0048 0.2703
R Tð Þ 0.0052 0.0014 0.1452
hr Tð Þ �0.0177 0.0199 0.5485

0.8 h 0.0106 0.0051 0.2775
R Tð Þ 0.0018 0.0001 0.0401
hr Tð Þ �0.0083 0.0033 0.2223

III 0.5 h 0.0030 0.0050 0.2781
R Tð Þ 0.0018 0.0014 0.1491
hr Tð Þ �0.0045 0.0208 0.5653

0.8 h 0.0064 0.0048 0.2719
R Tð Þ 0.0012 0.0001 0.0390
hr Tð Þ �0.0050 0.0031 0.2180
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on the optimality planes, see for example, (Pradhan and Kundu,
2013). However, in order to develop the optimal PCS-T2 plan, many
regularly utilised factors are taken into account, as mentioned in
Table 5.

Regarding to criteria OA, our goal is minimization the determi-
nant and trace of the VarCov matrix, while our goal regarding to
criterion OCis maximization the main diagonal elements of the
Fisher’s matrix I hð Þ, with respect to MLE ĥ, respectively. OAis

Minimize I�1 ĥ
� �� �

and OC is Maximize I ĥ
� �� �

.

With reference to the OAcriterion, the goal that we have set for
ourselves is to reduce the value of the VarCov matrices I�1 ûð Þ with
respect to MLEs û and MPSEs bu, respectively. In a similar vein, in
terms of the criteria OC, improve the Fisher informationmatrices as
much as possible I ûð Þ and I bu� 	

with respect to MLEs û and MPSEsbu, respectively. The censoring plan that has been optimised to
offer the most information corresponds to the optimality criteria
that have the lowest value for the OAoptimality criterion and the
greatest value for the OCoptimality criterion.
5. Generating simulated data data for estimation purpose

In this part we made a simulation experiment to asses the var-
ious estimation techniques, on the basis of adaptive Type-II pro-
gressive samples collected using a variety of methods for
censoring.
30.

MPS Bayesiam

BS ME LCONF BS ME LCONF

�0.0042 0.0051 0.2974 0.0144 0.0019 0.1528
�0.0020 0.0015 0.1594 0.0078 0.0006 0.0824
0.0102 0.0213 0.5356 �0.0290 0.0080 0.3107
�0.0097 0.0045 0.2772 0.0078 0.0018 0.1557
�0.0011 0.0001 0.0391 0.0012 0.0000 0.0220
0.0079 0.0029 0.1951 �0.0062 0.0012 0.1251
�0.0106 0.0058 0.3184 0.0156 0.0025 0.1654
�0.0054 0.0017 0.1703 0.0085 0.0007 0.0891
0.0236 0.0244 0.5616 �0.0312 0.0101 0.3369
�0.0114 0.0051 0.2987 0.0098 0.0025 0.1864
�0.0013 0.0001 0.0420 0.0015 0.0001 0.0265
0.0093 0.0033 0.2052 �0.0078 0.0016 0.1496
�0.0112 0.0045 0.2794 0.0114 0.0016 0.1426
�0.0058 0.0013 0.1496 0.0062 0.0005 0.0768
0.0245 0.0191 0.4943 �0.0230 0.0066 0.2912
�0.0070 0.0050 0.2948 0.0116 0.0024 0.1748
�0.0007 0.0001 0.0419 0.0018 0.0001 0.0249
0.0058 0.0032 0.2056 �0.0092 0.0015 0.1403
�0.0077 0.0045 0.2778 0.0118 0.0017 0.1397
�0.0040 0.0013 0.1489 0.0064 0.0005 0.0753
0.0172 0.0187 0.4970 �0.0237 0.0068 0.2850
�0.0066 0.0047 0.2847 0.0082 0.0019 0.1558
�0.0007 0.0001 0.0405 0.0013 0.0000 0.0222
0.0055 0.0030 0.2008 �0.0065 0.0012 0.1251
�0.0077 0.0045 0.2778 0.0118 0.0017 0.1397
�0.0040 0.0013 0.1489 0.0064 0.0005 0.0753
0.0172 0.0187 0.4970 �0.0237 0.0068 0.2850
�0.0066 0.0047 0.2847 0.0082 0.0019 0.1558
�0.0007 0.0001 0.0405 0.0013 0.0000 0.0222
0.0055 0.0030 0.2008 �0.0065 0.0012 0.1251
�0.0146 0.0049 0.2854 0.0089 0.0016 0.1370
�0.0076 0.0014 0.1528 0.0049 0.0005 0.0738
0.0314 0.0205 0.5118 �0.0178 0.0065 0.2801
�0.0113 0.0046 0.2794 0.0080 0.0021 0.1679
�0.0013 0.0001 0.0395 0.0013 0.0000 0.0239
0.0092 0.0030 0.1960 �0.0064 0.0014 0.1348



Table 2
Results of simulation using classical and Bayesian methods, when the value of h ¼ 0:5 n = 100.

n = 100 h=0.5 MLE MPS Bayesiam

m scheme T BS ME LCONF BS ME LCONF BS ME LCONF

70 I 0.5 h 0.00349 0.00143 0.14787 �0.00359 0.00139 0.15264 0.00385 0.00038 0.07383
R Tð Þ 0.00194 0.00042 0.07964 �0.00187 0.00040 0.08213 0.00209 0.00011 0.03982
hr Tð Þ �0.00668 0.00599 0.30241 0.00781 0.00585 0.28389 �0.00778 0.00161 0.15104

0.8 h 0.00278 0.00141 0.14699 �0.00415 0.00138 0.15181 0.00296 0.00044 0.07739
R Tð Þ 0.00047 0.00003 0.02083 �0.00050 0.00003 0.02139 0.00044 0.00001 0.01097
hr Tð Þ �0.00218 0.00091 0.11803 0.00338 0.00089 0.11084 �0.00236 0.00028 0.06215

II 0.5 h 0.00300 0.00184 0.16766 �0.00606 0.00179 0.17317 0.00470 0.00055 0.08472
R Tð Þ 0.00169 0.00053 0.09026 �0.00318 0.00052 0.09310 0.00255 0.00016 0.04566
hr Tð Þ �0.00556 0.00767 0.34271 0.01301 0.00753 0.31784 �0.00946 0.00229 0.17348

0.8 h 0.00225 0.00181 0.16649 �0.00675 0.00178 0.17248 0.00441 0.00062 0.09191
R Tð Þ 0.00042 0.00004 0.02358 �0.00084 0.00004 0.02424 0.00066 0.00001 0.01303
hr Tð Þ �0.00175 0.00117 0.13370 0.00548 0.00115 0.12413 �0.00352 0.00040 0.07380

III 0.5 h 0.00392 0.00166 0.15888 �0.00393 0.00160 0.16407 0.00460 0.00047 0.08006
R Tð Þ 0.00218 0.00048 0.08554 �0.00204 0.00046 0.08823 0.00250 0.00014 0.04317
hr Tð Þ �0.00750 0.00692 0.32482 0.00857 0.00674 0.30415 �0.00929 0.00195 0.16383

0.8 h 0.00184 0.00164 0.15867 �0.00601 0.00162 0.16388 0.00305 0.00053 0.08443
R Tð Þ 0.00036 0.00003 0.02250 �0.00075 0.00003 0.02309 0.00046 0.00001 0.01195
hr Tð Þ �0.00143 0.00106 0.12740 0.00488 0.00105 0.11906 �0.00244 0.00034 0.06781

90 I 0.5 h 0.00464 0.00148 0.14987 �0.00234 0.00142 0.15464 0.00451 0.00043 0.07379
R Tð Þ 0.00256 0.00043 0.08074 �0.00120 0.00041 0.08324 0.00245 0.00012 0.03978
hr Tð Þ �0.00903 0.00617 0.30613 0.00526 0.00597 0.28802 �0.00911 0.00177 0.15107

0.8 h 0.00285 0.00140 0.14608 �0.00402 0.00137 0.15114 0.00311 0.00043 0.07831
R Tð Þ 0.00048 0.00003 0.02071 �0.00048 0.00003 0.02131 0.00046 0.00001 0.01104
hr Tð Þ �0.00224 0.00090 0.11730 0.00327 0.00088 0.11039 �0.00249 0.00028 0.06292

II 0.5 h 0.00386 0.00149 0.15070 �0.00364 0.00144 0.15579 0.00435 0.00042 0.07727
R Tð Þ 0.00214 0.00043 0.08117 �0.00189 0.00042 0.08381 0.00236 0.00012 0.04168
hr Tð Þ �0.00743 0.00623 0.30827 0.00793 0.00607 0.28872 �0.00879 0.00176 0.15806

0.8 h 0.00456 0.00153 0.15211 �0.00297 0.00146 0.15708 0.00465 0.00044 0.07958
R Tð Þ 0.11349 0.00033 0.26225 0.11016 0.00032 0.26037 0.11339 0.00010 0.17294
hr Tð Þ �1.74988 0.00496 3.91412 �1.73674 0.00477 3.88490 �1.75003 0.00142 2.41465

III 0.5 h 0.00532 0.00151 0.15090 �0.00189 0.00144 0.15585 0.00495 0.00044 0.07746
R Tð Þ 0.00292 0.00044 0.08130 �0.00096 0.00042 0.08389 0.00268 0.00013 0.04178
hr Tð Þ �0.01042 0.00628 0.30816 0.00435 0.00604 0.28948 �0.01000 0.00183 0.15840

0.8 h 0.00515 0.00150 0.15050 �0.00206 0.00143 0.15537 0.00408 0.00047 0.08238
R Tð Þ 0.00081 0.00003 0.02139 �0.00021 0.00003 0.02195 0.00060 0.00001 0.01169
hr Tð Þ �0.00409 0.00097 0.12082 0.00170 0.00092 0.11322 �0.00327 0.00030 0.06615
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5.1. Simulation purpose

Several simulation experiments were carried out to evaluate the
performance of various item parameter estimation methodologies
based on different schemes. The majority of studies, on the other
hand, concentrated on likelihood estimation, product spacing,
and Bayesian estimation. In addition, simulation research com-
pares the efficacy of likelihood and product spacing estimation
approaches to traditional estimation methods. Furthermore, sam-
ple size, censored adaptive time (t), censored progressive size
(m), and censored sample schemes are all changed in a methodical
manner. For the simulated data sets, the multiple methods indi-
cated in Sections 2 and 3 were employed to estimate model param-
eters. To acquire the appropriate MLE and MPS, the iterative NR
approach can be numerically implemented using the’maxLik’ pack-
age. Using an approximation normal distribution, the asymptotic
confidence intervals were calculated. The MH method was used
in order to generate Bayesian estimators that were dependent on
the gamma prior.

For each predicted model parameter, the Bias (BS), mean
square error (ME), and length of confidence intervals (LCONF)
were calculated. The results of several schemes for estimating
point parameters are shown in Tables 1–4. Table 5 illustrate
the results of various strategies for optimal censoring scheme.
Tables 1–4 present the findings, which include some intriguing
data.
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5.2. Simulation design

For the NUL model, a censored sample was generated in the
simulation research. We modified six items in the simulation.

1. Two levels, n = 30 and 100, were produced by manipulating the
sample size (n) of the entire sample.

2. We used two levels, the first one when m = 20, and 25 when
n = 30, and the second one is whenm = 70, and 90 when n = 100.

3. The time of the censored adaptive (T) sample where d < m was
manipulated as 0.5 and 0.8.

4. The true value of h is changed as h ¼ 0:5 and h ¼ 2 .
5. Three schemes of censored sample were considered simulated

as follows:
Scheme I: Ri ¼ 0; i –m;Rm ¼ n�m.
Scheme II: Ri ¼ 0; i – 1;R1 ¼ n�m.
Scheme III: R1 ¼ n�m

2 ;Ri ¼ 0; i– 1;m;Rm ¼ n�m
2 .

6. These two different groups of parameter values each have their
own set of elective hyperparameters, which assign values to
those hyperparameters.

5.3. Simulation outcome observations

The accuracy of the estimators are increased with the size of the
used sample grows. Also, we can observe that the estimates are



Table 3
Results of simulation using classical and Bayesian methods, when the value of h ¼ 2 n = 30.

n = 30 h=2 MLE MPS Bayesiam

m scheme T BS ME LCONF BS ME LCONF BS ME LCONF

20 I 0.5 h 0.07811 0.10605 1.23993 �0.00859 0.09023 1.26431 0.06006 0.05093 0.83788
R Tð Þ 0.00758 0.00358 0.23264 �0.00985 0.00379 0.25589 0.00830 0.00177 0.16227
hr Tð Þ �0.06057 0.11204 1.29111 0.03368 0.10788 1.18714 �0.05438 0.05564 0.90109

0.8 h 0.04013 0.10076 1.23494 �0.04288 0.09235 1.26292 �0.00378 0.02248 0.59113
R Tð Þ 0.00516 0.00244 0.19283 �0.00798 0.00233 0.19986 �0.00088 0.00057 0.09436
hr Tð Þ �0.02511 0.04886 0.86131 0.03326 0.04583 0.77103 0.00340 0.01120 0.41716

II 0.5 h 0.04543 0.11946 1.34381 �0.05941 0.10767 1.37049 0.04215 0.05750 0.88786
R Tð Þ �0.00069 0.00456 0.26486 �0.02253 0.00536 0.29510 0.00392 0.00208 0.17544
hr Tð Þ �0.01998 0.13372 1.43204 0.09606 0.14067 1.30589 �0.03242 0.06400 0.96101

0.8 h 0.03818 0.12130 1.35774 �0.06554 0.11077 1.38348 �0.00757 0.02323 0.58820
R Tð Þ 0.00459 0.00293 0.21163 �0.01181 0.00282 0.21936 �0.00149 0.00060 0.09392
hr Tð Þ �0.02307 0.05875 0.94628 0.04986 0.05527 0.82809 0.00610 0.01161 0.41517

III 0.5 h 0.06349 0.09776 1.20070 �0.03060 0.08554 1.23486 0.05213 0.05195 0.80928
R Tð Þ 0.00495 0.00365 0.23616 �0.01434 0.00405 0.26257 0.00649 0.00187 0.16325
hr Tð Þ �0.04594 0.10948 1.28511 0.05756 0.10960 1.17510 �0.04512 0.05791 0.88730

0.8 h 0.04310 0.11262 1.30524 �0.05084 0.10145 1.32711 �0.00546 0.02381 0.60574
R Tð Þ 0.00548 0.00269 0.20230 �0.00936 0.00254 0.20923 �0.00117 0.00061 0.09660
hr Tð Þ �0.02683 0.05417 0.90676 0.03918 0.05019 0.79912 0.00463 0.01187 0.42726

25 I 0.5 h 0.05821 0.10630 1.25818 �0.02679 0.09329 1.27835 0.04564 0.04725 0.80986
R Tð Þ 0.00343 0.00361 0.23541 �0.01393 0.00398 0.25880 0.00555 0.00168 0.16271
hr Tð Þ �0.03821 0.11147 1.30085 0.05493 0.11150 1.19864 �0.03906 0.05229 0.88696

0.8 h 0.05003 0.10048 1.22760 �0.03430 0.09041 1.25590 0.00327 0.02452 0.58620
R Tð Þ 0.00675 0.00243 0.19148 �0.00659 0.00228 0.19862 0.00022 0.00062 0.09356
hr Tð Þ �0.03211 0.04863 0.85566 0.02714 0.04479 0.76395 �0.00152 0.01221 0.41366

II 0.5 h 0.05392 0.11166 1.29405 �0.03940 0.09923 1.31972 0.04825 0.05616 0.81585
R Tð Þ 0.00181 0.00409 0.25096 �0.01740 0.00463 0.27747 0.00538 0.00195 0.16193
hr Tð Þ �0.03160 0.12324 1.37199 0.07110 0.12576 1.26060 �0.03972 0.06103 0.88742

0.8 h 0.02950 0.09872 1.22879 �0.06142 0.09152 1.25458 0.00426 0.02716 0.61283
R Tð Þ 0.00349 0.00241 0.19239 �0.01093 0.00234 0.19936 0.00035 0.00070 0.09793
hr Tð Þ �0.01766 0.04803 0.85815 0.04633 0.04570 0.75581 �0.00213 0.01356 0.43278

III 0.5 h 0.02358 0.09729 1.21984 �0.06352 0.09121 1.24510 0.03533 0.04641 0.79062
R Tð Þ �0.00364 0.00400 0.24752 �0.02199 0.00465 0.27159 0.00342 0.00171 0.15936
hr Tð Þ �0.00080 0.11469 1.32819 0.09642 0.12185 1.21858 �0.02762 0.05229 0.87280

0.8 h 0.02447 0.08881 1.16483 �0.06217 0.08354 1.19365 �0.00210 0.02254 0.57255
R Tð Þ 0.00281 0.00219 0.18301 �0.01095 0.00214 0.19015 �0.00061 0.00058 0.09146
hr Tð Þ �0.01443 0.04341 0.81522 0.04660 0.04185 0.72020 0.00221 0.01124 0.40421

Table 4
Point and interval estimation for different estimation methods: h ¼ 2 n = 100.

n = 100 h=2 MLE MPS Bayesiam

m scheme T BS ME LCONF BS ME LCONF BS ME L.CI

70 I 0.5 h 0.01368 0.02543 0.62308 �0.02003 0.02472 0.64530 0.01778 0.00955 0.36295
R Tð Þ 0.00057 0.00108 0.12894 �0.00652 0.00115 0.13741 0.00288 0.00039 0.07579
hr Tð Þ �0.00860 0.03133 0.69343 0.02929 0.03197 0.65386 �0.01749 0.01165 0.40709

0.8 h 0.01333 0.02639 0.63498 �0.02046 0.02560 0.65618 �0.00026 0.01130 0.41902
R Tð Þ 0.00181 0.00066 0.10080 �0.00359 0.00065 0.10474 �0.00018 0.00029 0.06677
hr Tð Þ �0.00857 0.01304 0.44665 0.01528 0.01277 0.41536 0.00055 0.00562 0.29536

II 0.5 h 0.02336 0.03730 0.75297 �0.02148 0.03511 0.77595 0.02491 0.01491 0.45041
R Tð Þ 0.00155 0.00155 0.15456 �0.00780 0.00164 0.16553 0.00390 0.00061 0.09278
hr Tð Þ �0.01636 0.04524 0.83286 0.03374 0.04546 0.77671 �0.02410 0.01804 0.50106

0.8 h �0.00523 0.04657 0.84920 �0.04835 0.04688 0.87392 0.00413 0.01535 0.47562
R Tð Þ �0.00141 0.00117 0.13441 �0.00831 0.00120 0.13925 0.00047 0.00039 0.07608
hr Tð Þ 0.00519 0.02299 0.59652 0.03566 0.02342 0.55537 �0.00243 0.00763 0.33598

III 0.5 h 0.01622 0.02970 0.67292 �0.02190 0.02857 0.69541 0.02174 0.01122 0.39453
R Tð Þ 0.00072 0.00125 0.13876 �0.00728 0.00133 0.14825 0.00356 0.00046 0.08106
hr Tð Þ �0.01032 0.03641 0.74724 0.03246 0.03703 0.70107 �0.02151 0.01357 0.44048

0.8 h 0.01952 0.03071 0.68305 �0.01913 0.02934 0.70621 0.00059 0.01257 0.42289
R Tð Þ 0.00274 0.00077 0.10850 �0.00342 0.00075 0.11285 �0.00006 0.00032 0.06759
hr Tð Þ �0.01280 0.01518 0.48064 0.01446 0.01466 0.44419 �0.00001 0.00626 0.29856

90 I 0.5 h 0.01595 0.02683 0.63940 �0.01800 0.02593 0.66155 0.02048 0.00971 0.36610
R Tð Þ 0.00094 0.00110 0.13017 �0.00618 0.00116 0.13877 0.00344 0.00039 0.07527
hr Tð Þ �0.01081 0.03240 0.70467 0.02731 0.03289 0.66510 �0.02050 0.01170 0.40713

0.8 h 0.00625 0.02552 0.62607 �0.02743 0.02529 0.64808 0.00005 0.01099 0.40932
R Tð Þ 0.00069 0.00065 0.09966 �0.00470 0.00065 0.10370 �0.00013 0.00028 0.06544
hr Tð Þ �0.00359 0.01266 0.44105 0.02019 0.01266 0.41039 0.00032 0.00547 0.28906

II 0.5 h 0.00669 0.02905 0.66824 �0.02981 0.02879 0.69192 0.02096 0.01105 0.39218
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Table 4 (continued)

n = 100 h=2 MLE MPS Bayesiam

m scheme T BS ME LCONF BS ME LCONF BS ME L.CI

R Tð Þ �0.00125 0.00127 0.13949 �0.00898 0.00138 0.14897 0.00341 0.00045 0.07988
hr Tð Þ 0.00028 0.03620 0.74653 0.04145 0.03779 0.70404 �0.02068 0.01345 0.43381

0.8 h 0.04285 0.01456 0.46032 0.00511 0.01288 0.50041 �0.00629 0.01706 0.53974
R Tð Þ 0.00668 0.00037 0.07322 0.00066 0.00033 0.07997 �0.00122 0.00043 0.08564
hr Tð Þ �0.02980 0.00720 0.32404 �0.00319 0.00642 0.30005 0.00499 0.00843 0.37952

III 0.5 h 0.00976 0.02581 0.62896 �0.02525 0.02534 0.65147 0.01796 0.01008 0.37859
R Tð Þ �0.00030 0.00110 0.13028 �0.00769 0.00119 0.13909 0.00287 0.00041 0.07714
hr Tð Þ �0.00407 0.03188 0.70009 0.03536 0.03292 0.65855 �0.01755 0.01217 0.42086

0.8 h 0.02542 0.03124 0.68598 �0.01001 0.02954 0.70832 0.00296 0.01177 0.41113
R Tð Þ 0.00368 0.00078 0.10850 �0.00197 0.00075 0.11265 0.00033 0.00030 0.06560
hr Tð Þ �0.01695 0.01536 0.48149 0.00802 0.01466 0.44884 �0.00171 0.00586 0.28998

Table 5
Optimal censoring schemes: h ¼ 0:5.

h 0.5 2

MLE MPS MLE MPS

n m scheme T OA OC OA OC OA OB OA OB

30 20 I 0.5 0.0048 225.7908 0.0045 243.9068 0.0968 11.4770 0.0881 12.5959
0.8 0.0047 229.6864 0.0044 247.9647 0.0931 11.9890 0.0848 13.1381

II 0.5 0.0063 176.5038 0.0056 196.2457 0.1219 9.3657 0.1069 10.6403
0.8 0.0062 176.3355 0.0056 196.1297 0.1208 9.4740 0.1060 10.7555

III 0.5 0.0053 203.7151 0.0049 222.6259 0.1070 10.3663 0.0960 11.5435
0.8 0.0054 200.9505 0.0050 219.6044 0.1055 10.6952 0.0946 11.9081

25 I 0.5 0.0049 223.3205 0.0045 242.2051 0.0943 11.8159 0.0859 12.9588
0.8 0.0049 219.6029 0.0045 238.1382 0.0934 11.9265 0.0851 13.0775

II 0.5 0.0047 229.8023 0.0043 247.9950 0.1062 10.6007 0.0953 11.7915
0.8 0.0047 229.2013 0.0044 247.3693 0.1030 10.8290 0.0925 12.0370

III 0.5 0.0049 223.3205 0.0045 242.2051 0.0963 11.6089 0.0871 12.8119
0.8 0.0049 219.6029 0.0045 238.1382 0.0961 11.5097 0.0869 12.6964

100 70 I 0.5 0.001363 751.6687 0.0013 775.5172 0.0264 38.9621 0.0255 40.4475
0.8 0.001359 753.7221 0.0013 777.3200 0.0264 39.0039 0.0255 40.4942

II 0.5 0.001822 567.1312 0.0017 592.1566 0.0358 29.2234 0.0339 30.8144
0.8 0.001813 569.0676 0.0017 594.1779 0.0346 30.5052 0.0328 32.1412

III 0.5 0.001557 660.2465 0.0015 684.3431 0.0302 34.2304 0.0289 35.7577
0.8 0.001545 665.5071 0.0015 689.8785 0.0304 34.0902 0.0291 35.6245

90 I 0.5 0.001359 754.1792 0.0013 777.7722 0.0264 39.0655 0.0254 40.5605
0.8 0.001348 759.2773 0.0013 782.8261 0.0261 39.4680 0.0251 40.9778

II 0.5 0.001480 692.6544 0.0014 716.5519 0.0285 36.2596 0.0274 37.7977
0.8 0.001485 690.7716 0.0014 714.6820 0.0295 34.3695 0.0283 35.8470

III 0.5 0.001423 720.3284 0.001378 743.8884 0.0274 37.6821 0.0263 39.1925
0.8 0.001422 720.8488 0.001377 744.4365 0.0279 37.1577 0.0268 38.6517

Table 6
MLE, MPS, and Bayesian estimation with SE and different measures of fit.

scheme T estimates SE R(0.5) hr(0.5) OA OC

Compelete 0.5 MLE 0.6703 0.1009 0.2832 3.8877 0.0102 98.2152
MPS 0.6311 0.0950 0.2621 3.9644 0.0090 110.9182

Bayesian 0.6784 0.1001 0.2875 3.8721
I MLE 0.6720 0.1013 0.2841 3.8845 0.0103 97.4508

MPS 0.6324 0.0953 0.2621 3.9644 0.0091 110.1131
Bayesian 0.6750 0.0983 0.2857 3.8787

0.8 MLE 0.6720 0.1013 0.0697 6.3973 0.0103 97.4508
MPS 0.6324 0.0953 0.0636 6.4287 0.0091 110.1131

Bayesian 0.6750 0.0983 0.0702 6.3950
II 0.5 MLE 0.7120 0.1174 0.3053 3.8074 0.0138 72.5456

MPS 0.6629 0.1094 0.2792 3.9022 0.0120 83.5013
Bayesian 0.7132 0.1171 0.3059 3.8052

0.8 MLE 0.6301 0.1029 0.0632 6.4306 0.0106 94.4318
MPS 0.5898 0.0961 0.0571 6.4626 0.0092 108.3555

Bayesian 0.6369 0.1023 0.0642 6.4252
III 0.5 MLE 0.6451 0.1010 0.2697 3.9368 0.0102 98.0148

MPS 0.6059 0.0947 0.2485 4.0142 0.0090 111.5282
Bayesian 0.6496 0.0991 0.2721 3.9282

0.8 MLE 0.6942 0.1092 0.0732 6.3798 0.0119 83.8348
MPS 0.6504 0.1024 0.0663 6.4145 0.0105 95.3477

Bayesian 0.6965 0.1057 0.0736 6.3780
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Fig. 4. The trace plots and marginal posterior probability density function of the parameter.

Fig. 3. Estimated cdf, pdf and PP plot for NUL distribution.
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consistent, where the relation between ME and the sample size is
opposite in all situations, means the ME decreases with sample size
increases. It noted that, the Bayes estimates of MPS have the lowest
ME in the vast majority of situations from the comparison among
several estimates. The L-CI for estimates approaches 0 as ngrows,
suggesting that the CI is the shortest. The ME and BS for the param-
eters, survival function, and hazard rate function decrease as the
value of T grows. The ME of the MLE is smaller than the ME of
MPS for the survival function; however, the ME of MPS is smaller
than MLE.
6. Real-life applications

We fit the NUL distribution by using COVID-19 data and we
using this model to chose the optimal censoring scheme to com-
pute the reliability and hazard rate by different methods. The data
set of COVID-19 collected from France that takes 24 days, in the
period from October 1 to October 24, 2021.

These are the used data set taking the daily death rate during
the calculations: 0.0740, 0.1190, 0.1344, 0.1926, 0.2232, 0.3140,
0.3243, 0.3393, 0.3563, 0.3706, 0.3843, 0.4164, 0.4482, 0.4578,
0.4616, 0.4755, 0.4917, 0.5045, 0.5069, 0.5325, 0.5625, 0.5972,
0.8057, 0.8078.

Table 6 show the MLE, MPS and Bayeeian estimators with stan-
der error (SE). By referring to Fig. 3, show the fitting by using draw
the estimated cdf, pdf and P-P plot for NUL distribution and we
concluded that the NUL distribution is fit of this data. The Kol-
mogorov–Smirnov (KS) distance and accompanying p-value are
calculated using MLE is 0.22554 and 0.1487 respectively. The data
is fit of this model by using KS test where with a p-value of each
method are more the 0.05 (see Fig. 4).
7. Conclusion remarks

We evaluated the maximum likelihood and Bayes estimators of
unknown parameters using an adaptive Type-II progressive hybrid
censoring scheme. Additionally, we evaluated the reliability and
hazard rate functions of the NUL model.The square error loss func-
tion is used to determine the Bayes estimators. We employed the
M-H algorithm and Monte Carlo Markov Chain methods because
the Bayes estimators aren’t available in closed form. The perfor-
mance of the suggested technique is investigated Monte Carlo sim-
ulation for several points and interval technique. A real data set of
repairable mechanical equipment item sets is investigated to prove
applicability of the presented concept. The obtained results proved
that the suggested approach in the paper is valuable to data ana-
lysts and reliability practitioners. In the future work, we can study
the derivation of Bayes estimates based on truncated independent
normal priors in comparison with the obtained the results in this
paper.
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Acknowledgment

This research received funding support from the NSRF via the
Program Management Unit for Human Resources & Institutional
Development, Research and Innovation, (Grant No. B05F650018).
11
References

Ahmad, H.H., Almetwally, E.M., Ramadan, D.A., 2022. A comparative inference on
reliability estimation for a multi-component stress-strength model under
power Lomax distribution with applications. AIMS Math 7, 18050–18079.

Alkhairy, Ibrahim et al., 2022. A new flexible logarithmic-X family of distributions
with applications to biological systems. Complexity 2022.

Almetwally, E.M., Almongy, H.M., ElSherpieny, E.A., 2019. Adaptive Type-II
progressive censoring schemes based on maximum product spacing with
application of generalized Rayleigh distribution. J. Data Sci. 17 (4), 802–831.

Almetwally, E.M., Almongy, H.M., Rastogi, M.K., Ibrahim, M., 2020. Maximum
product spacing estimation of Weibull distribution under adaptive type-II
progressive censoring schemes. Ann. Data Sci. 7 (2), 257–279.

Almetwally, E.M., Jawa, T.M., Sayed-Ahmed, N., Park, C., Zakarya, M., Dey, S., 2023.
Analysis of unit-Weibull based on progressive type-II censored with optimal
scheme. Alexandria Eng. J. 63 (1), 321–338. https://doi.org/10.1016/j.
aej.2022.07.064.

Alshenawy, R., Al-Alwan, A., Almetwally, E.M., Afify, A.Z., Almongy, H.M., 2020.
Progressive type-II censoring schemes of extended odd Weibull exponential
distribution with applications in medicine and engineering. Mathematics 8
(10), 1679.

Alshenawy, R., Sabry, M.A., Almetwally, E.M., Almongy, H.M., 2021. Product spacing
of stress–strength under progressive hybrid censored for exponentiated-
gumbel distribution. Comput. Mater. Continua 66 (3), 2973–2995.

Alsuhabi, Hassan et al., 2022. A superior extension for the Lomax distribution with
application to Covid-19 infections real data. Alexandria Eng. J. 61 (12), 11077–
11090.

Alyami, S.A., Elbatal, I., Alotaibi, N., Almetwally, E.M., Elgarhy, M., 2022. Modeling to
factor productivity of the United Kingdom Food Chain: using a new lifetime-
generated family of distributions. Sustainability 14 (14), 8942.

Anatolyev, S., Kosenok, G., 2005. An alternative to maximum likelihood based on
spacings. Econometric Theory 21 (2), 472–476.

Aslam, M., Huang, S.R., Chi, H.J., Ahmad, M., Rasool, M., 2011. A reliability sampling
plan based on progressive interval censoring under Pareto distribution of
second kind. Ind. Eng. Manage. Syst. 10 (2), 154–160.

Aslam, M., Arif, O.H., Jun, C.H., 2017. An attribute control chart for a Weibull
distribution under accelerated hybrid censoring. PloS One 12 (3), e0173406.

Aslam, M., Rao, G.S., Saleem, M., Sherwani, R.A.K., Jun, C.H., 2021. Monitoring
mortality caused by COVID-19 using gamma-distributed variables based on
generalized multiple dependent state sampling. Comput. Mathe. Methods Med.
2021.

Balakrishnan, N., Aggarwala, R., 2000. Progressive Censoring Theory, Methods and
Applications. Birkhäuser, Boston, MA.

Balakrishnan, N., Cramer, E., 2014. The Art of Progressive Censoring. Springer,
Birkhäuser, New York.

Biswas, A., Chakraborty, S., 2021. Stress-strength reliability for the unit-lindley
distribution with an application. Calcutta Stat. Assoc. Bull. 73 (1), 7–23.

Chen, M.H., Shao, Q.M., 1999. Monte Carlo estimation of Bayesian credible and HPD
intervals. J. Comput. Graphical Stat. 8, 69–92.

Cheng, R.C.H., Amin, N.A.K., 1983. Estimating parameters in continuous univariate
distributions with a shifted origin. J. Roy. Stat. Soc. B 45 (3), 394–403.

El-Sherpieny, E.S.A., Almetwally, E.M., Muhammed, H.Z., 2020. Progressive Type-II
hybrid censored schemes based on maximum product spacing with application
to Power Lomax distribution. Physica A 553, 124251.

Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B., 2004. Bayesian Data Analysis.
Chapman and Hall/CRC, USA.

Goel, R., Krishna, H., 2020. Progressive type-II random censoring scheme with
Lindley failure and censoring time distributions. Int. J. Agric. Stat. Sci. 16 (1), 23–
34.

Greene, W.H., 2000. Econometric Analysis. Prentice-Hall, NewYork.
Hafez, E.H., Riad, F.H., Mubarak, S.A., Mohamed, M.S., 2020. Study on Lindley

distribution accelerated life tests: Application and numerical simulation.
Symmetry 12 (12), 2080.

Irshad, M.R., D’cruz, V., Maya, R., 2021. The exponentiated unit Lindley distribution:
properties and applications. Ricerche mat. 1–23. https://doi.org/10.1007/
s11587-021-00663-4.

Lawless, J.F., 2003. Statistical Models and Methods For Lifetime Data. John Wiley
and Sons, New Jersey.

Lin, Yushan et al., 2021).. Impact of facebook and newspaper advertising on sales: a
comparative study of online and print media. Comput. Intell. Neurosci..

Lynch, S.M., 2007. Introduction to Applied Bayesian Statistics and Estimation for
Social Scientists. Springer, New York.

Mazucheli, J., Menezes, A.F.B., Chakraborty, S., 2019. On the one parameter unit-
Lindley distribution and its associated regression model for proportion data. J.
Appl. Stat. 46 (4), 700–714.

Mazucheli, J., Bapat, S.R., Menezes, A.F.B., 2020. A new one-parameter unit-Lindley
distribution. Chilean J. Stat. (ChJS) 11 (1), 53–67.

Nadarajah, S., Chan, S., 2020. On moments of the unit Lindley distribution. J. Appl.
Stat. 47 (5), 947–949.

Ng, H.K.T., Chan, P.S., Balakrishnan, N., 2004. Optimal progressive censoring plans
for the Weibull distribution. Technometrics 46, 470–481.

Ng, H.K.T., Kundu, D., Chan, P.S., 2009. Statistical analysis of exponential lifetimes
under an adaptive Type-II progressive censoring scheme. Naval Res. Logist. 56
(8), 687–698.

http://refhub.elsevier.com/S1018-3647(22)00643-7/h0005
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0005
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0005
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0010
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0010
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0015
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0015
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0015
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0020
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0020
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0020
https://doi.org/10.1016/j.aej.2022.07.064
https://doi.org/10.1016/j.aej.2022.07.064
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0030
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0030
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0030
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0030
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0035
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0035
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0035
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0040
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0040
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0040
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0045
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0045
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0045
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0050
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0050
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0055
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0055
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0055
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0060
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0060
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0070
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0070
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0075
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0075
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0080
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0080
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0085
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0085
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0090
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0090
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0095
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0095
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0095
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0100
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0100
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0105
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0105
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0105
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0110
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0120
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0120
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0120
https://doi.org/10.1007/s11587-021-00663-4
https://doi.org/10.1007/s11587-021-00663-4
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0130
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0130
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0135
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0135
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0140
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0140
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0145
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0145
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0145
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0150
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0150
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0155
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0155
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0160
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0160
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0165
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0165
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0165


A. Alrumayh, W. Weera, H.A. Khogeer et al. Journal of King Saud University – Science 35 (2023) 102462
Pradhan, B., Kundu, D., 2013. Inference and optimal censoring schemes for
progressively censored Birnbaum-Saunders distribution. J. Stat. Plann.
Inference 143, 1098–1108.

Ranneby, B., 1984. The maximum spacing method. An estimation method related to
the maximum likelihood method. Scand. J. Stat. 11, 93–112.

Rao, G.S., Aslam, M., 2021. Inspection plan for COVID-19 patients for Weibull
distribution using repetitive sampling under indeterminacy. BMC Med. Res.
Methodol. 21 (1), 1–15.
12
Sherwani, R.A.K., Shakeel, H., Saleem, M., Awan, W.B., Aslam, M., Farooq, M., 2021. A
new neutrosophic sign test: An application to COVID-19 data. PloS One 16 (8),
e0255671.

Wang, Yongjing et al., 2022. Analysis of cryptocurrency exchange rates vs USA
dollars using a new Dagum model. Alexandria Eng. J..

Zhou, Yang et al., 2021. Impact of YouTube Advertising on Sales with Regression
Analysis and Statistical Modeling: Usefulness of Online Media in Business.
Comput. Intell. Neurosci. 2021.

http://refhub.elsevier.com/S1018-3647(22)00643-7/h0170
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0170
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0170
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0175
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0175
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0180
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0180
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0180
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0185
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0185
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0185
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0190
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0190
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0195
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0195
http://refhub.elsevier.com/S1018-3647(22)00643-7/h0195

	Optimal analysis of adaptive type-II progressive censored for new�unit-lindley model
	1 Introduction
	2 Classical inference
	2.1 Maximum likelihood estimator
	2.2 Maximum product of spacings estimators
	2.3 Asymptotic confidence intervals

	3 Bayesian estimators
	3.1 Prior information and loss function
	3.2 Posterior analysis by LF

	4 Optimum progressive censoring plans
	5 Generating simulated data data for estimation purpose
	5.1 Simulation purpose
	5.2 Simulation design
	5.3 Simulation outcome observations

	6 Real-life applications
	7 Conclusion remarks
	Declaration of Competing Interest
	Acknowledgment
	References


