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A B S T R A C T   

This paper aims to investigate the impact of transformed auxiliary variables on the performance of variance 
estimators of finite population under adaptive cluster sampling scheme. Further, the formulation of an efficient 
variance estimator of a finite population is also under consideration in this article. Specifically, we explore the 
gain in efficiency obtained through various transformations and define dominance space for each transformation. 
These dominance regions provide valuable insights into the circumstances under which one transformation 
prevails over another regarding precision and accuracy. The theoretical properties of the suggested estimators 
have been discussed along with the dominance region under each transformation. The bias and Mean Square 
Error (MSE) have been derived up to the first order of approximation. To evaluate and empirically validate our 
methodology, we conduct a numerical analysis using real-life ecological data of blue-winged teal. The finding 
reflects the superior performance of the suggested variance estimators over the competing estimators, thereby 
substantiating its importance in making informed decisions in real-world applications.   

1. Introduction 

Sampling plays a vital role in making informed decisions in real-life 
domains. Inferences about the statistical population or data are based on 
the information extracted from the sample. Therefore, a sample must be 
representative, mirroring every characteristic of the population of in
terest (Lohr, 2021). Consequently, special care must be taken in select
ing a representative sample at the design and estimation stage. Adaptive 
cluster sampling (ACS) is of prime importance in the field of survey 
sampling, in situations when the variable of interest is rare, clumpy, and 
clustered with localized variability (Smith et al., 1995). Unlike tradi
tional sampling methods like simple, systematic, and stratified random 
sampling, select units in the sample without observing it, resulting in 
high bias and mean square error. ACS allows the dynamic adjustment of 
sampling effort based on observed values to satisfy some pre-determined 
condition C(yi >0), thereby enhancing the efficiency of data collection 
as well as parameter estimation in specific contexts. This paper in
vestigates the domain of ACS, with a specific emphasis on the use of 
transformed auxiliary variables to formulate efficient variance and 
enhance efficiency Fig. 1. 

In survey sampling, practitioners and researchers face the challenge 

of optimizing sampling efforts to gather meaningful data and estimate 
parameters precisely. The problem becomes more challenging in a sit
uation when the population is rare and clustered where conventional 
sampling efforts like simple random sampling, systematic random 
sampling, etc. lose their effectiveness and result in high bias and low 
efficiency in estimating parameters (Thompson, 1990). Therefore, the 
use of conventional sampling strategies leads us to doubtful and 
misleading inferences. This inadequacy of the design and estimation 
problem of classical sampling methods demands the exploration of 
innovative methods at both the design and estimation stages. Such as 
ACS and the adequate use of auxiliary information in combination with 
the main study variable can cater to dynamic sampling requirements. It 
is revealed from the numerical analysis that the precision and efficacy of 
estimates of the variance of finite population under ACS can be 
enhanced remarkably. 

The main objective of this study is to assess the impact of trans
formed auxiliary variables on the performance of variance estimators 
within the framework of ACS with implications for various persuasions, 
such as ecology, epidemiology, and geology, where ACS can offer 
enhanced insights into clustered or rare populations (Thompson, 1990). 
In this context, several sampling survey statisticians have done their 
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remarkable contributions. (Diggle et al., 1976) works is regarded as a 
pioneered distance-based approach to assess spatial event randomness 
using adaptive cluster sampling. The work done by (Thompson, 1990) 
brings further innovation to sampling designs and unbiased estimators. 
In estimating parameters (Chao, 2004; Félix-Medina and Thompson, 
2004) explored the importance of incorporating auxiliary variables in 
enhancing the efficiency of ratio estimators of population mean. The 
work done by (Chutiman et al., 2013),(Grover and Kaur, 2014), and 
later by (Yadav et al., 2016) encouraged the use of transformed auxiliary 
variables in the efficient formulation of estimators of parameters. A 
similar strategy of incorporating a transformed auxiliary variable with 
the study variable can also be seen in the work of (Gattone et al., 2016) 
for rare and clustered populations. (Noor-Ul-Amin et al., 2018) and 
(Yasmeen et al., 2018) suggested an effective variance estimator under 
adaptive cluster sampling (ACS) and Stratified adaptive cluster (SACS) 
sampling. Some recent work in the field of survey sampling on efficient 
formulation of variance under adaptive cluster sampling is due (Qureshi 
et al., 2020; Singh & Mishra, 2022; Yasmeen et al., 2022), (Ahmad et al., 
2021), (Qureshi et al., 2020), (Singh and Mishra, 2022) with diverse 
applications specifically to ecological data and health data including 
COVID-19. 

2. Methodology 

Let us consider the population P of size N, where P = (1, 2, ...,N). Let 
an initial sample of size n be drawn from the population using a Simple 
random sampling without replacement (SRSWOR) scheme such that 
n < P. Let yi,xj be the unit observed in the initial sample of the main 
study variable and supplementary variable {x}. The supplementary 
variable {x}, where x = {x1, x2,….xN}, is supposed to be positively 
correlated with the study variable {y}, where y = {y1, y2,….yN}.. 

The selection of units in the primary sample and its neighboring 
components is based on some predefined condition C

(
yi > 0

)
, according 

to ACS. If the unit selected by SRSWOR and observed satisfies the con
dition C

(
yi > 0

)
it is included in the sample. The additional sampling 

units vary adaptively selected in this way. A network of sampling units is 
therefore selected, consisting of all components that satisfy those con
ditions. The neighbouring components that fail to satisfy the condition 
C
(
yi > 0

)
, is called the edge component. The network with its edge 

component is called a cluster, as a whole. The networks formed so, are 
non-overlapping and comprise the whole population. 

Consider a network ψ consisting of mkcomponents. Let ψk be the kth 
network in the population contains component j. let us denote the 
average values of the elements of variables y and x by wyj and wxj 

respectively, as following 

wyk =
∑

j∈ψk

yj

mk
andwxk =

∑

j∈ψk

xj

mk
. (1)  

The following terms and symbols will be used throughout this article 
while deriving Bias and MSE of the proposed estimators under ACS. 

Suppose, 

e0(w) =
s2
wy − S2

wy

S2
wy

and e1(w) =
s2
wx − S2

wx
S2

wx

such that E
(
e0(w)

)
= E

(
e1(w)

)
= 0 , E

(
e2

0(w)

)
= λ
(
β2y − 1

)
= Vy(w)

E
(

e2
1(w)

)
= λ(β2x − 1) = Vx(w) ,E

(
e0(w)e1(w)

)
= λ(φ22 − 1) = Vyx(w)

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(3)   

e0(w) =
s2
wy − S2

wy

S2
wy

,e1(w) =
s2
wx − S2

wx
S2

wx 
error due to sampling of main study variable y and 

supplementary variable x respectively. 

λ =
1
n
−

1
P 

is a finite population correction factor (fpc). 

y =
1
n
∑n

j=1
yj and x =

1
n
∑n

j=1
xj are the sample mean of y and x respectively. 

μrq =
1

S − 1
∑S

i=1

(
wyj − Y

)r (wxj − X
)q is the second-order moments and (r, q) is the 

non-negative integers. 

β2y =
μ40
μ2

20 
and β2x =

μ04
μ2

02 
are the coefficients of kurtosis due to y and x respectively. 

φ22 =
μ22

μ20μ02 
is the moment ratio? 

wy =
1
n
∑

jεs0
wyj, wx =

1
n
∑

jεs0
wxj The average of auxiliary variable x belonging to the 

sample s0 where s0 ∈ S and S is the collection of all samples. 

wyκ =
1

mκ

∑

j∈ψκ
yj, and wxκ =

1
mκ

∑

j∈ψκ
xj be the average values of the elements in the 

kth-network for variable y and x, respectively. 

Wy =
∑

jεs0

wyj

N 
and Wx =

∑
jεs0

wxj

N 
respectively. 

s2
wy =

1
n − 1

∑n
j=1

(
wy − wy

)2 and s2
wx =

1
n − 1

∑n
j=1

(wx − wx)
2 be the sample variances 

and S2
wy =

1
N − 1

∑N
j=1

(
wy − Wy

)2 and S2
wx =

1
N − 1

∑N
j=1

(wx − Wx)
2 be the 

population variances of y and x respectively.  

Some existing estimators of variance of finite population under adaptive 
cluster sampling discussed in the literature are given as follows.  

• The usual variance estimator of population variance is given by 

t0 = s2
y(w) =

1
n − 1

∑n

j=1

(
yj(w) − y

)2
(1) 

Which is an unbiased estimator with variance given by 

var(t0) = S4
y(w)λ

(
β2y(w) − 1

)
= S4

y(w)Vy(w) (2) 

By letting λ
(
β2y(w) − 1

)
= Vy(w).  

• (Isaki, 1983) suggested the ratio estimator of population variance in 
ACS design as follows 

t1 = s2
y(w)

(
S2

x(w)

s2
x(w)

)

(3)  

With the following Bias and MSE 

Fig. 1. Plot of survey variable (y) and auxiliary variable (x) in study region partitioned in 20*20 square cells generated by population-1.  
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Bias(t1) = S2
y(w)Vy(w)

(
1 − Vyx(w)

)
, (4)  

And 

MSE(t1) = S4
y(w)

(
Vy(w) + Vx(w) − 2Vyx(w)

)
. (5)   

• (Yasmeen and Thompson, 2020) proposed the following class of es
timators of finite population variance as following 

t2,i = s2
y(w)

(
αS2

x + τS2
x

αs2
x(w)

+ τS2
x(w)

)

, i = 1, 2,3, 4, 5. (6) 

Where are some suitable constants or some functions of auxiliary 
variables? 

The Bias and MSE of t2,i is given by Bias
(
t2,i
)
≈ D +

R2DVx(w) − DRVyx(w) + S2
yR2Vx(w) − S2

yRVyx(w), (7) 

MSE
(
t2,i
)
≈ D2 +

(
D2 + S2

y

)2{
Vy(w) + R2Vx(w) − 2RVyx(w)

}
. (8) 

Where R = α
α+τ,D =

S2
wy

S2
wx
− S2

y for different choices of α&τ,t2,i takes the 
following special form listed in Table 1. 

3. Proposed estimators 

Motivated by (Isaki, 1983), the first estimators is proposed by taking 
the linear combination of usual ratio and exponential estimators in term 
of transformed auxiliary variable, and similarly in the second estimator 
is proposed by taking the linear combination of regression ratio and 

exponential form of transformed auxiliary variable with the main study 
variable as following 

tP1,k = ω1k

(

s2
y(w)

Zk(w)

zk(w)

)

+ω2k

(

s2
y(w)exp

(
Zk(w) − zk(w)

Zk(w) + zk(w)

))

, (9)   

Taking motivation from (Ali et al., 2024; Cingi and Oncel Cekim, 2015; 
Gupta and Shabbir, 2008; Jhajj et al., 2006; Khan et al., 2015) the 
transformations, listed in Table 2, are suggested. 

4. Asymptotic properties of the proposed estimators 

The theoretical properties of the developed estimators are discussed 
along with the transformations given in Table 1, the properties of the 

error term will alter with each transformation and accordingly influence 
the sampling error as given in Table 3. Their corresponding superiority 
or dominance space bounds the validity of the transformation properties 
of the error due to sampling using the transformed auxiliary variable, we 
can now obtain the bias and mean square error (MSE) of tP1,k and tP2,k , 
k=1,2,..,7., Rewriting eq.(9) and eq. (10) in terms of the error due to 
sampling as following Table 4. 

tP1,k ≅ S2
y(w)

(
1 + e0(w)

)
{

ω1k

(
1 − gke1(w) + g2

k e2
1(w) + ⋯

)
+ ω2k

(

1

−
1
2
gke1(w) +

3
8
g2

k e2
1(w) + ⋯

)}

(11)  

And 

tP2,k ≅ ω3kS2
y(w)

(

1 + e0(w) −
Vyx(w)

Vx(w)

e1(w)

)

+ω4kS2
y(h)

((
1 + e0(w)

)(
1

− gke1(w) + g2
k e2

1(w) + ⋯
))

(12)  

Or 

tP1,k − S2
y(w) ≅ S2

y(w)

⎡

⎢
⎢
⎣

(ω1k+ω2k − 1)+(ω1k +ω2k)e0(w) − gk

(
ω1k+

ω2k

2

)
e1(w)

+

(

ω1k+
3ω2k

8

)

g2
k e2

1(w) − gk

(
ω1k +

ω2k

2

)
e0(w)e1(w)

⎤

⎥
⎥
⎦

(13)  

And 

Taking expectation of both sides of eq.(13) and eq.(14) and after 
simplification we get 

Bias
(
tP1,k

)
≅ S2

y(w)

[

(ω1k + ω2k − 1) +
(

ω1k +
3ω2k

8

)

g2
kVx(w) − gk

(
ω1k

+
ω2k

2

)
Vyx(w)

]

(15)  

And 

tP2,k = ω3k

{
s2
y(w) + b

(
S2

x(w) − s2
x(w)

)}
+ ω4k

(

s2
y(w)

Zk(w)

zk(w)

)

+ ω5k

{

s2
y(w)exp

(
Zk(w) − zk(w)

Zk(w) + zk(w)

)}

, k = 1,2, ...,7.
(10)   

tP2,k − S2
y(w) ≅ S2

y(w)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(ω3k + ω4k + ω5k − 1) + (ω3k + ω4k + ω5k)δ0(h) −

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ω3k
V22(h)

V04(h)

+ω4k +
ω5

2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

gke1(w)

+ω5kS2
y(w)

(
(
1 + e0(w)

)
(

1 −
1
2
gke1(w) +

3
8
g2

k e2
1(w) + ⋯

))

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(14)   
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Bias
(
tP2,k

)
≅ S2

y(w)

[

(ω3k + ω4k + ω5k − 1) +
{

ω4k +
3
8

ω5k

}

g2
kVx(w) −

(
ω4w

+
ω5w

2

)
gkVyx(w)

]

(16)  

Squaring both sides of eq. (13) and eq.(14) and applying expectation, to 
obtain the MSE of tP1,k and tP2,k,k=1,2,…,7. as following 

MSE
(
tP1,k

)
≅ S4

y
[
A1kω2

1k + A2kω2
2k + A3kω1k + A4kω2k + A5kω1kω2k + 1

]

(17)   

Where 

A1k=
(

3V2
x(w),k+V2

y(w) − 4Vyx(w),k

)
+1,A2k=

(
V2

x(w),k+V2
y(w) − 2Vyx(w),k

)
+1

A3k=2
(

Vyx(w),k − V2
x(w),k

)
− 2,A4k=

(

Vyx(w),k −
3
4
V2

x(w),k

)

− 2

A5k=

(
15
4

V2
x(w),k+2V2

y(w) − 6Vyx(w),k

)

+2  

To find the optimum value of ω1, ω2, ω3, ω4 and ω5, we use calculus rule 

Table 2 
Transformed auxiliary variables and their impact on the error due to sampling and the dominance space.  

Transformed Auxiliary Variable Error term Transformer/normalizers Properties of Error term Dominance region 

z1(w) = s2
x(w) + α1

(
S2

x(w) − s2
x(w)

)

Z1(w) = S2
x(w)

e11(w) = g1e1(w) g1 = 1 − α1 E(e11(w)) = 0 and
E
(
e2

11(w)

)
= g1

2Vx(w) = Vx(w),1

E(e0(w)e11(w)) = g1Vyx(w) = Vyx(w),1 

0 < α1 < 1 

z2(w) = α2s2
x(w) + (1 − α2)

(
S2

x(w) − s2
x(w)

)

Z2(w) = α2S2
x(w)

e12(w) = g2e1(w) g2 = 2 −
1
α2 

E(e12(w)) = 0 and
E
(
e2

12(w)

)
= g2

2Vx(w) = Vx(w),2

E(e0(w)e12(w)) = g2Vyx(w) = Vyx(w),2 

0.5 < α2 < ∞ 

z3(w) = s2
x(w) + S2

x(w)(α3 − 1)

Z3(w) = α3S2
x(w)

e13(w) = g3e1(w)
g3 =

1
α3 

E
(
e13(w)

)
= 0and

E
(

e2
13(w)

)
= g3

2Vx(w) = Vx(w),3

E
(
e0(w)e13(w)

)
= g3Vyx(w) = Vyx(w),3 

0 < α3 < 1 

z4(w) = α4s2
x(w) + β1

(
S2

x(w) − s2
x(w)

)

Z4(w) = α4S2
x(w)

e14(w) = g4e1(w)
g4 = 1 −

β1
α4 

E
(
e14(w)

)
= 0and

E
(

e2
14(w)

)
= g4

2Vx(w) = Vx(w),4

E
(
e0(w)e14(w)

)
= g4Vyx(w) = Vyx(w),4 

β1 < α4 and bothβ1,α4 > 0 

z5(w) = α5s2
x(w) + β2

Z5(w) = α5S2
x(w) + β2 

e15(w) = g5e1(w)

g5 =
α5S2

x(w)

α5S2
x(w)

+ β2 

E
(
e15(w)

)
= 0and

E
(

e2
15(w)

)
= g5

2Vx(w) = Vx(w),5

E
(
e0(w)e15(w)

)
= g5Vyx(w) = Vyx(w),5 

α5,β2 > 0 

z6(w) = α6s2
x(w) − β3

Z6(w) = α6S2
x(w) − β3 

e16(w) = g6e1(w)

g6 =
α6S2

x(w)

α6S2
x(w)

− β3 

E(e16(w)) = 0 and
E
(
e2

16(w)

)
= g6

2Vx(w) = Vx(w),6

E(e0(w)e16(w)) = g6Vyx(w) = Vyx(w),6 

α6S2
x(w)

− β3 > 0 

z7(w) = α7s2
x(w) + (α7 + β4)S2

x(w)

Z7(w) = (2α7 + β4)S
2
x(w)

e17(w) = g7e1(w) g7 =
α7

2α7 + β4  

E
(
e17(w)

)
= 0and

E
(

e2
17(w)

)
= g7

2E
(

ε2
1(w)

)

E
(

e2
17(w)

)
= g7

2Vx(w) = Vx(w),7

E
(
e0(w)e17(w)

)
= g7Vyx(w) = Vyx(w),7 

α7,β4 > 0  

Table 1 
some special cases of estimators for different transformations of auxiliary variables.  

S. 
No 

Estimator t2,i R =
α

(α + τ)
Bias and MSE 

1 
t2,1 = s2

wy

(
S2

x + MdS2
x

s2
wx + MdS2

wx

)

R1 =
1

(1 + Md)
Bias

(
t2,1
)
≈ D + R2

1DVx(w) − DR1Vyx(w) + S2
yR2

1Vx(w) − S2
yR2

1Vyx(w)MSE
(
t2,1
)
≈ D2 +

(
D2 + S2

y

)2{
Vy(w) + R2

1Vx(w) −

2R1Vyx(w)

}

2 
t2,2 = s2

wy

(
ρS2

x + MdS2
x

ρs2
wx + MdS2

wx

)
R2 =

ρ
(ρ + Md)

Bias
(
t2,2
)
≈ D + R2

2DVx(w) − DR2Vyx(w) + S2
yR2

2Vx(w) − S2
yR2

2Vyx(w)MSE
(
t2,2
)
≈ D2 +

(
D2 + S2

y

)2{
Vy(w) + R2

2Vx(w) −

2R2Vyx(w)

}

3 
t2,3 = s2

wy

(
CxS2

x + MdS2
x

Cxs2
wx + MdS2

wx

)

R3 =
Cx

(Cx + Md)
Bias

(
t2,3
)
≈ D + R2

3DVx(w) − DR3Vyx(w) + S2
yR2

3Vx(w) − S2
yR2

3Vyx(w)MSE
(
t2,3
)
≈ D2 +

(
D2 + S2

y

)2{
Vy(w) + R2

3Vx(w) −

2R3Vyx(w)

}

4 
t2,4 = s2

wy

(
β1S2

x + MdS2
x

β1s2
wx + MdS2

wx

)

R4 =
β1

(β1 + Md)
Bias

(
t2,4
)
≈ D + R2

4DVx(w) − DR4Vyx(w) + S2
yR2

4Vx(w) − S2
yR2

4Vyx(w)MSE
(
t2,4
)
≈ D2 +

(
D2 + S2

y

)2{
Vy(w) + R2

4Vx(w) −

2R4Vyx(w)

}

5 
t2,5 = s2

wy

(
β2S2

x + MdS2
x

β2s2
wx + MdS2

wx

)

R5 =
β2

(β2 + Md)
Bias

(
t2,5
)
≈ D + R2

5DVx(w) − DR5Vyx(w) + S2
yR2

5Vx(w) − S2
yR2

5Vyx(w)MSE
(
t2,5
)
≈ D2 +

(
D2 + S2

y

)2{
Vy(w) + R2

5Vx(w) −

2R5Vyx(w)

}

MSE
(
tP2,k

)
≅ S4

y(w)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(ω3 + ω4 + ω5 − 1)2
+ (ω3 + ω4 + ω5)

2Vy(w)+{

(

ω3k
Vyx(w)

Vx(w)

+ ω4k +
ω5k

2

)2

+

2(ω3k + ω4k + ω5k − 1)
(

ω4k +
3
8

ω5k

)
}
Vx(w),k − 2

{
(ω3 + ω4 + ω5 − 1)

(

ω4 +
1
2

ω5

)

+(ω3 + ω4 + ω5)

(

ω3
Vyx(w)

Vx(w)

+ ω4 +
ω5

2

)

}Vyx(w),k

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(18)   
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of differentiating the squared loss functions (MSEs) and equating to zero 
to find the minimum value of MSEs function w.r.t ω1k, ω2k, ω3k,

ω4k and ω5k . This gives 

ω1(opt) = −
2A2kA3k − A4kA5k

4A1kA2k − A2
5k

, ω2(opt) = −
2A1kA4k − A3kA5k

4A1kA2k − A2
5k  

And 

Substituting the optimum value of ω1 and ω2 ω3,ω4and ω5 in eq.(17) and 
eq.(18), we get 

MSE
(
tP1,k

)

min ≅ λS4
y(w)

(

1 −

(
A2kA2

3k + A1kA2
4k − A3kA4kA5k

4A1kA2k − A2
5k

))

, (19)  

MSE
(
tP2,k

)

min ≅ S4
y(w)

[
25V5

x(w),kVy(w) − V4
x(w),k

(
41V2

yx(w),k+

136Vy(w)Vyx(w),k + 16Vy(w)

)
+ V3

x(w),k

(

184V3
yx(w),k + 192Vy(w)V2

yx(w),k + 32V2
yx(w))

− V2
x(w),k

(
153V4

yx(w),k − 64V3
yx(w),k

)
− V4

yx(w),k
{
Vx(w),k

(
216Vyx(w),k − 80

)}
− 64V2

yx(w),k]/

[25V5
x(w),k − V4

x(w),k{16 + (112Vyx(w),k+

16V4
x(w),k)} + 240V3

x(w),kV
2
yx(w),k −

192V2
x(w),kV

3
yx(w),k + 80Vx(w),kV4

yx(w),k].

(20)  

This complete the final expression of minimmum MSEs of the proposed 
estimators for k=1,2,…,7. Howevere, as for practice it is observed that 
the MSEs can further be reduced if proper choice of auxiliary variable’s 
parameter or constants are use in the transformation within the domi
nance region. 

5. Theoretical comparisons 

The theoretical comparison of the first and second proposed class of 
estimators given by eq.(9) to eq.(10) for k=1,2,…,6. against the 
competing estimators given by eq.(2), eq.(5) and eq.(8) and some special 
cases of eq.(8) for i=1,2,…,5., discussed in the literature under adaptive 
cluster sampling is given as following:  

• The proposed estimator given by eq.(9) and eq.(10) well outperform 
the usual classical estimator t0 given by eq.(2) in ACS, if 

MSE
(
tP1,k

)
⩽Var(t0) ⇒

Var(t0)

MSE
(
tP1,k

) > 1, k = 1, 2, .., 7.

and 

MSE
(
tP2,k

)
⩽Var(t0) ⇒

Var(t0)
MSE

(
tP2,k

) > 1, k = 1, 2, ..,7.

Or Var(t0)
MSE(tP1,k)

× 100 > 100⇒PRE
(
tP1,k, t0

)
> 100. 

and 

Var(t0)
MSE

(
tP1,k

)× 100 > 100⇒PRE
(
tP1,k, t0

)
> 100    

• The proposed estimator given by eq.(9) and eq.(10) will outperform 
the ratio type estimator given by eq.(5) if 

MSE
(
tP1,k

)
⩽MSE(t1) ⇒

MSE(t1)
MSE

(
tP1,k

) > 1, k = 1,2, ..,7.

And 

MSE
(
tP2,k

)
⩽MSE(t1) ⇒

MSE(t1)
MSE

(
tP2,k

) > 1, k = 1,2, ..,7.

Or 

MSE(t1)
MSE

(
tP1,k

)× 100 > 100⇒PRE
(
tP1,k, t1

)
> 100 

And 

MSE(t1)
MSE

(
tP2,k

)× 100 > 100⇒PRE
(
tP2,k, t1

)
> 100    

• The proposed estimator will outperform the ratio type transformed 
class of estimator given by (8) and with special cases given in Table1 
if 

MSE
(
t2,m
)

MSE
(
tP1,k

)× 100 > 100⇒PRE
(
tP1,k, t2,m

)
> 100  

MSE(tP1)⩽MSE
(
t2,m
)

⇒ MSE(t2,m)
MSE(tP1,k)

> 1, m=1, 2,..,5 and k=1,2,…,7. 

The above conditions hold true for all types of data when there is a 
positive correlation between the main survey variable and auxiliary 
variable. 

ω5(opt)=

− 8

⎧
⎨

⎩

4V4
x(w),kVyx(w),k − 3V4

x(w),kVy(w) − 17V3
x(w),kV

2
yx(w),k − 12V3

x(w),kVy(w)Vyx(w),k−

30V2
x(w),kV

3
yx(w),k + 5Vx(w),kV4

yx(w),k − 4V5
yx(w),k − 4V3

x(w),kVyx(w),k − 8V2
x(w),kV

2
yx(w),k

⎫
⎬

⎭

Vx(w),k

⎛

⎝
25V4

x(w),k − 112V3
x(w),kVyx(w),k − 16V3

x(w),kVy(w) + 240V2
x(w),kV

2
yx(w),k

− 192Vx(w),kV3
yx(w),k + 80V4

yx(w),k − 16V3
x(w),k

⎞

⎠

.

Table 3 
Blue Winged Teal Data (Smith et al., 1995).  

0 0 3 5 0 0 0 0 0 0 

0 0 0 24 14 0 0 10 103 0 
0 0 0 0 2 3 2 0 13,639 1 
0 0 0 0 0 0 0 37 14 122 
0 0 0 0 0 0 2 0 0 177  

Table 4 
Simulated y Values (Smith et al., 1995).  

0 0 11 17 0 0 0 0 0 0 

0 0 0 95 51 0 0 39 422 0 
0 0 0 0 9 12 7 0 54,483 4 
0 0 0 0 0 0 0 0 53 499 
0 0 0 0 0 0 9 0 0 734  
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6. Numerical analysis 

The performance of the proposed estimator against competing esti
mators was demonstrated in a simulation study under the ACS design. 
Two populations were used: a Poisson cluster (Diggle et al., 1976) pages 
55–57. Second population is taken from (Smith et al., 1995) in which 
5000 km2 of area distributed among 50 × 100 quadrants in central 
Florida. The data of blue-winged teal was used as an auxiliary variable to 
compare the efficiency of the estimators and the estimator suggested by 
(Isaki, 1983) in estimating variance under adaptive cluster sampling 
without replacement sampling. Denoting the j-th variate of interest y 
and auxiliary variate wx by yj and wxj. (Dryver & Chao, 2007). 

The following two models generated the survey variable, given by 

yj = 4xj + εj, εj ∼ N
(
0, xj

)
(21)  

yj = 4wxj + εj, εj ∼ N
(
0,wxj

)
(22)  

The two models given by eq.(21) and eq.(22) suggest a strong correla
tion of the survey variable with a subsidiary variable at both, the unit 
level and network level respectively. The comparison is made with the 
(Isaki, 1983) estimator of variance in adaptive sampling design. For 

neighboring units to be included if 
[
y; yj > 0

]

Relative Efficiency =
var(t0)
MSE(t*)

× 100 (23) 

Table 5 
Relative Efficiencies of the Proposed Estimators and Competing Estimators 
against the usual Variance under Simulated Model given by (21) using the first 
Population.  

Estimators Relative efficiency 
Sample Size 

7 20 34 48 

t1  2502.7  16063.8 61005.73  87095.37 
t2,1  2663.8  25592.8 462054.1  607055.3 
t2,3  2726.1  29603.3 409460.5  615805.4 
t2,5  2715.3  24423.4 484324.2  629328.4 
(tP1)α1=ρyx(w)

5426.7  37095.1 505865.4  682067.2 

(tP1)α1=0.5  6020.2  37536.2 554446.3  683554.0 
(tP1)α2=ρyx(w)

6065.0  37478.0 538798.2  683193.4 

(tP1)α4=S2
x(w)

,β1=C2
x(w)

6020.2  37536.2 554446.3  683554.01 

(tP1)α4=N,β1=n  6091.2  38273.11 509,529  700388.23 
(tP1)α4=1/2,β1=1  6141.42  38653.20 519458.05  682332.57 
(tP1)α5=S2

x(w)
,β2=C2

x(w)

6230.18  38707.73 511665.73  682800.41 

(tP1)α5=ρyx(w) ,β2=C2
x(w)

6145.83  37209.67 513223.19  693910.56 

(tP1)α7=S2
x(w)

,β4=C2
x(w)

6151.97  37347.45 516632.00  708435.74 

(tP1)α7=N,β4=n  6065.51  38715.91 504457.21  697522.02 
(tP1)α7=Vx(w) ,β4=N  6044.42  37703.24 508780.34  685366.44 
(tP2)α3=ρyx(w)

6091.22  37140.56 518742.73  706059.25 
(tP2)α3=1  6250.19  38230.83 513023.41  702638.03 
(tP2)α3=2/3  6067.62  38319.19 506546.24  685560.91 
(tP2)α6=Vx(w) ,β3=N  6065.08  37478.02 538798.01  683193.47 
(tP2)α6=N,β3=C2

x(w)

7055.31  51024.07 601145.31  791147.51 

(tP2)α6=1,β3=1/2  7513.26  50963.81 602356.39  792064.30 
(tP2)α6=2/3,β3=1/2  7325.14  51167.29 602063.71  791072.11  

Table 6 
Relative Efficiencies of the Proposed Estimators and Competing Estimators 
against the usual variance under simulated model given by (21) using 2nd 
population.  

Estimators  Relative efficiency  
Sample size  

4 12 18 20 

t1   45.0193  191.241  376.1015  423.7462 
t2,1   49.5371  364.964  2894.187  5221.121 
t2,3   54.6728  372.547  4010.763  3060.547 
t2,5   52.7281  414.849  2261.723  3771.930 
(tP1)α1=ρyx(w)

94.152  440.951  4058.425  5513.719 
(tP1)α1=0.5   96.1619  445.719  4544.176  5520.819 
(tP1)α2=ρyx(w)

98.5221  444.41  4387.849  5575.152 

(tP1)α4=S2
x(w)

,β1=C2
x(w)

99.2121  441.835  4282.176  5441.459 

(tP1)α4=N,β1=n   96.1619  455.700  4417.211  5511.004 
(tP1)α4=1/2,β1=1   99.8179  451.740  4514.267  5571.877 
(tP1)α5=S2

x(w)
,β2=C2

x(w)

96.124  443.591  4351.560  5591.416 

(tP1)α5=ρyx(w) ,β2=C2
x(w)

98.3215  455.970  4543.618  5404.716 

(tP1)α7=S2
x(w)

,β4=C2
x(w)

98.3001  445.145  4516.673  5609.886 

(tP1)α7=N,β4=n   94.6021  450.581  4498.267  5590.5601 
(tP1)α7=Vx(w) ,β4=N   96.1619  449.883  4456.618  5518.7841 
(tP2)α3=ρyx(w)

92.8013  454.910  4501.7814  5611.1708 

(tP2)α3=1   89.1525  455.100  41201.568  5589.1355 
(tP2)α3=2/3   96.2445  456.733  4414.3856  5567.7814 
(tP2)α6=Vx(w) ,β3=N   88.5128  484.407  4271.1943  5651.4589 
(tP2)α6=N,β3=C2

x(w)

101.100  510.189  5135.9102  6610.7183 

(tP2)α6=1,β3=1/2   101.168  499.154  5210.6193  6680.8925 
(tP2)α6=2/3,β3=1/2   100.937  491.692  5219.7183  6639.7435 
(tP2)α6=2/3,β3=3/4   99.6571  501.315  5339.6391  6715.8492 
(tP2)α6=N,β3=ρyx(w)

98.4534  511.201  5115.1482  6698.4189 

(tP2)α6=1,β3=ρyx(w)
101.155  509.553  5209.4519  6701.1473 

(tP2)α6=N,β3=S2
x(w)

101.765  493.981  5203.5167  6751.754 

(tP2)α6=S2
x(w)

,β3=C2
x(w)

99.0346  501.191  5318.8152  6705.6103  

Table 7 
Relative Efficiencies of the Proposed Estimators and Competing Estimators 
against the usual Variance under the Simulated Model given by (22) using the 
first Population.  

Estimators Relative efficiency 
Sample size 

4 8 12 18 20 

t1 4.04E-06 3.07E-04 8.95E-05 2.99E-04  0.011 
t2,1 3.58 0.01269 0.631 0.284  0.032 
t2,2 3.68 0.01292 0.635 0.277  0.080 
t2,3 3.581 0.01297 0.621 0.259  0.137 
t2,4 3.567 0.01259 0.630 0.261  0.076 
t2,5 3.577 0.01274 0.621 0.261  0.077 
(tP1)α2=ρyx(w)

11.041 2.035 0.944 0.786  0.1939 

(tP1)α4=S2
x(w)

,β1=C2
x(w)

11.129 1.964 1.077 0.818  0.2244 

(tP1)α4=N,β1=n 11.247 1.942 1.179 0.761  0.1378 
(tP1)α4=1/2,β1=1 10.645 1.904 1.005 0.837  0.1143 
(tP1)α5=S2

x(w)
,β2=C2

x(w)

11.037 2.086 1.094 0.788  0.0703 

(tP1)α5=ρyx(w) ,β2=C2
x(w)

11.093 1.964 1.856 0.788  0.0801 

(tP1)α7=S2
x(w)

,β4=C2
x(w)

10.847 2.045 1.071 0.734  0.082 

(tP1)α7=N,β4=n 10.132 1.905 1.106 0.816  0.1308 
(tP1)α7=Vx(w) ,β4=N 10.939 2.053 0.929 0.781  0.1045 
(tP2)α3=ρyx(w)

10.269 2.094 1.092 0.838  0.2006 

(tP2)α3=1 10.845 1.911 0.924 0.730  0.0865 
(tP2)α3=2/3 11.133 1.904 1.123 0.713  0.0838 
(tP2)α6=Vx(w) ,β3=N 10.116 2.015 1.016 0.836  0.1253 
(tP2)α6=N,β3=C2

x(w)

10.893 1.973 1.162 0.750  0.1765 

(tP2)α6=1,β3=1/2 11.319 2.013 0.911 0.704  0.1907 
(tP2)α6=2/3,β3=1/2 11.149 2.046 0.950 0.855  0.2139 
(tP2)α6=2/3,β3=3/4 10.209 1.996 1.075 0.786  0.2658 
(tP2)α6=N,β3=ρyx(w)

10.749 1.959 0.932 0.825  0.2642 

(tP2)α6=1,β3=ρyx(w)
10.564 1.902 1.149 0.763  0.2216 

(tP2)α6=N,β3=S2
x(w)

11.073 2.077 0.970 0.877  0.2193 

(tP2)α6=S2
x(w)

,β3=C2
x(w)

10.603 1.929 1.061 0.857  0.1386 

(tP2)α6=S2
x(w)

,β3=ρyx(w)
11.142 2.087 1.179 0.767  0.1642  
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Where t* = tP1, tP2, t1, t2,j, j = 1,2, ...,5. denote the proposed class of 
estimators and competing estimators of variance in adaptive cluster 
sampling in the formula for Percent Relative efficiency (PRE) given by 
eq.(28). 

The following steps are used in R-Language to perform simulation: 
Step 1: Generate response variable y using model (21) and (22) with 

supplementary variable x and Wx from given populations. 
Step 2: Consider initial sample sizes n = 7; 20; 34 and 48 for 

100,000 repetitions to calculate the variance estimator in adaptive 
cluster sampling. 

Step 3: Calculate 100,000 values of tP1i, tP2i, t1, t2,j, i = 1, 2, ...,7. j =
1, 2, ...,5. using equations (1) to (10) for different choices of αk,βj,k = 1,
2, ..,7. and j = 1,2,3,4.. 

Step 4: Compute Mean Squared Error (MSE) for both conventional 
and proposed estimators for each sample. 

Step 5: Calculate Percent Relative Efficiency (PRE using values from 
steps 3 and 4 and report in Table 5-8. 

7. Results and discussion 

Adaptive Cluster Sampling (ACS) is a complex sampling technique 
used in statistical estimation, particularly when the characteristic of 
interest is rare and clustered. However, the accuracy of estimation re
mains a major concern. The suggested estimators consistently outper
form competing estimators of finite population variance under ACS. 
These estimators incorporate transformed auxiliary variables, reducing 
mean squared error and bias. Comparative analysis reveals that (Isaki, 
1983) variance estimator performs poorly compared to competing 

estimators. The suggested class of estimators increases efficiency with 
sample size, outperforming inferior estimators. Zero values in the sam
ple and a high correlation between the survey and auxiliary variables do 
not significantly affect the target function estimation. 

The expected sample size is calculated using a formula that sums all 
quadrant inclusion probabilities is given by: 

E(ν) =
∑N

i=1
πi.

Interestingly, the final sample size usually grows with the size of the 
primary sample and is usually greater than the former. 

Two proposed classes of variance estimators have been developed, 
incorporating auxiliary variables and known population parameters. 
These estimators outperform the (Isaki, 1983) estimator when dealing 
with moderate sample sizes and using only the primary sample. The 
proposed estimators are flexible and can be adapted to other sampling 
scenarios, such as simple random sampling, stratified random sampling, 
and non-response sampling. These estimators represent a promising 
advancement in statistical estimation, offering better results for rare and 
patchy populations in practical scenarios. The suggested estimators are 
quite flexible can be seamlessly adapted into the estimation of other 
parameters such as mean, median, coefficient of variation etc. thereby 
making a significant contribution in parameter estimation using trans
formed auxiliary variable. 
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(tP2)α3=ρyx(w)

12.61 10.43 7.914 2.764 1.035 

(tP2)α3=1 12.55 9.941 7.524 2.618 1.023 
(tP2)α3=2/3 11.96 10.87 6.049 2.491 1.340 
(tP2)α6=Vx(w) ,β3=N 11.99 10.86 6.568 2.128 0.907 
(tP2)α6=N,β3=C2

x(w)

12.24 9.783 6.662 2.918 1.036 

(tP2)α6=1,β3=1/2 12.86 9.425 6.467 2.077 1.031 
(tP2)α6=2/3,β3=1/2 10.06 9.127 6.217 2.219 1.021 
(tP2)α6=2/3,β3=3/4 10.66 8.434 6.921 2.163 1.038 
(tP2)α6=N,β3=ρyx(w)

13.22 9.221 6.277 2.183 1.022 

(tP2)α6=1,β3=ρyx(w)
12.38 10.13 6.914 2.141 1.024 
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x(w)

9.843 9.731 5.801 3.023 1.016 

(tP2)α6=S2
x(w)

,β3=C2
x(w)

11.75 10.39 5.139 3.027 0.832 

(tP2)α6=S2
x(w)

,β3=ρyx(w)
12.16 10.53 6.001 3.108 0.737  
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