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Ankylosing spondylitis (AS) is a progressive disease of the spine where the spine slowly stiffens and can
eventually become completely inflexible. It can be difficult to diagnose in primary care, and thus there is
often a 10-year delay in diagnosis. Within this study an intelligent wearable system is designed and
developed to detect the displacement of the spine and provide the subject with a continuous posture
monitoring and feedback signals when an incorrect posture is detected using accelerometer and gyro-
scope sensors. This wearable system can be used both to diagnose AS in early stages and to prevent sub-
jects from lower back and neck pain caused by incorrect posture. We outline here the system which
detects the curvature of the spine by using Shimmer sensors placed on the back and provides relevant
exercises based on the user’s pain records.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Per the Office for National Statistics (ONS), the number of peo-
ple with Lower Back Pain (LBP) and neck pain is increasing. There
was almost 31 million days of work lost in 2013/2014 due to back
and neck pains (O’Flynn et al., 2013b). A common health problem
amongst society is Lower back pain (LBP) which is a leading cause
of activity limitation and work. This can be an economic burden on
individuals, families, governments, industry and society at large. At
least 50% of the European population will experience back and
neck pain at some time in their lives (Hoy, 2014). Back pain can
be caused by many different factors such as diseases, sprains,
strains, injuries, or a pinched or irritated nerve which is caused
by NHS, 2016 bending uneasily or for long period of time, slouch-
ing in chairs, lifting, carrying, pushing or pulling heavy items,
twisting uncomfortably, overstretching, driving or sitting in a
hunched back position or for long times without taking a break
or overusing the muscles during activities such as sport. Many peo-
ple believe back pain is an ordinary symptom, but in some cases,
back pain can be due to more than a strained muscle or other inju-
ries. It can be caused by a chronic condition called Ankylosing
Spondylitis (AS).

Ankylosing spondylitis (AS) is a progressive disease of the spine
where the spine slowly stiffens and can eventually become com-
pletely inflexible. It is arthritis that strikes the spine, but it can
move to other joints. (Worldometers.info, 2016). In AS, the stiffness
and chronic pain is caused by inflammation, and the degree of pain
can vary from one person to another. AS is incurable, but the living
condition can be made easier using medications and practicing
healthy lifestyle tactics. It can be difficult to diagnose AS in primary
care, and thus there is often a 10-year delay in diagnosis. It is not
uncommon to see young people between the ages of 17 and 45 pre-
senting to a rheumatologist for the first time having already devel-
oped severe and permanent stiffening of the spine due to AS (Pearcy
et al., 1987). Back pain is extremely common whereas AS is quite
uncommon and many GPs have not been trained in detecting it.
There are no symptoms that reliably point to the diagnosis although
a questionnaire can help to diagnose it. This questionnaire consists
of 6 questions related to 5 major symptoms: fatigue, spinal pain,
joint pain/swelling, areas of localized tenderness, morning stiffness.
X-rays and MRI scans can fail to detect the condition for several
years after it has started. One of the most important clinical
tests for early AS is a simple tape measure test: Schober’s test2
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(Luinge and Veltink, 2004; Tong and Granat, 1999). This test essen-
tially detects a loss of displacement or elongation in the lumbar spine
when someone bends forward. Unfortunately, this test is usually not
performed in primary care and the diagnosis is missed. Spinal move-
ments in other directions can also be affected in AS: reduced rotation
and lateral flexion of the spine, reduced chest expansion. The neck
can be affected as well as the lower part of the spine. However, it is
uncommon to develop problems in those areas without some reduc-
tion in Schober’s test. Stiffness in AS is worse in the morning – if
patients attend clinic in the afternoon the test may be normal. An
ambulatory test may be more sensitive in detecting those with stiff-
ness in the morning (Bouten et al., 1997). Previous approaches to
measure spinal deformities (increased bend in the thoracic spine,
straightening of the lumbar spine) are limited (Condell et al., 2012).
To date, work has not been carried out on measuring dynamic move-
ment in the spine in AS. Ulster University has developed a system
coupled with wearable gloves to measurement Rheumatoid Arthritis
(RA) in finger joints (O’Flynn et al., 2013a,b; Condell et al., 2012;
Connolly et al., 2012). The need to be able to measure stiffness objec-
tively applies to AS even more than in RA, where other outcomemea-
sures exist to measure disease activity. Whilst there has been some
work with wearable gloves, spinal movement research has not yet
been applied to the study of AS. The ISRC team has therefore been
developing expertise with conductive wearable fabrics merged with
intelligent systems for stiffness measurements (Condell et al., 2012;
Connolly et al., 2012).

This research presents a wearable system with piezo-resistive
stretchable fabric for the detection of displacement in the lumbar
spine (Carlos et al., 2011) using Shimmer sensors. This will facili-
tate an ambulatory test for people with back pain to achieve early
diagnosis of AS; allowing monitoring of stiffness, daily posture and
encouraging exercise. Patients with AS are normally given a list of
specific spinal exercises to carry out over a 30-minute period each
day. This technology will also be used to obtain objective measures
of outcome in terms of spinal flexibility. The current clinical pro-
cess relies heavily on questionnaires which asks the patient to rate
the severity of their stiffness and pain. However, by the time the
patients visit the clinic, they can forget their symptoms and the
severity of their pains. The system therefore has a daily checkup
section which allows the user to input their symptoms and the
severity of them which is then calculated per the Bath Ankylosing
Spondylitis Disease Activity Index (BASDAI) scoring method. Based
on their BASDAI score the system promotes individual detailed
exercises for the patient. Another important symptom of the AS
disease is the kyphosis which is the medical term for ‘‘hunchback”
appearance. When AS has affected the upper part of the neck, it
creates major kyphosis which causes the head to collapse forward
(Stewart, 2014). So being able to recognize hunchback appearance
at the early stage can help in diagnosing AS.
2. Related work

This section provides an overview of existing works on methods
for detecting the curvature of the spine and maintaining a correct
posture. In (Campbell-Kyureghyan et al., 2005), an MRI scan was
used to to validate a method of predicting the lumbar spine geom-
etry from external (non-invasive electro goniometer) measure-
ments. This allowed for the correct representation of the
vertebral position and orientation relative to the sacrum using
scaled anthropometric data and individual goniometric measure-
ments. The results achieved by the research had a high degree of
accuracy but the main problem is the degree of practicality as it
is not practical and easy to have radiograph images taken any-
where. Another study (Bartalesi et al., 2010) described the design
and the development of a wearable smart T-shirt system which
can estimate the lumbar arch length. This is estimated by process-
ing the raw sensor data through a hybrid model developed to
describe the peculiar characteristics of the e-textile sensors. This
system used both e-textile and accelerometer sensors. The system
has been tested in comparison with a stereo photogrammetric sys-
tem showing a 2% error in length estimation. This study has no
information on how the user’s postures in different positions were
handled. In (Mattiman et al., 2007), the study presented the use of
novel textile strain sensor to detect a bend on the subjects back.
The sensors used had a linear resistance vs. strain characteristics
and a negligible hysteresis. The resulting measurement error was
±3.5% over a strain range of up to 100%. A garment prototype
was developed by connecting the strain sensors with a silicone film
on the back area of a tight-fitting stretchy garment. Even though
this system showed a good result, they do not calculate the force
of gravity against the subject. This can result in system failure if
the subject is standing or sitting on an uneven surface.
2.1. Intertial sensors

Inertial sensors are primarily accelerometers and gyroscope
sensors and are based on inertia. An accelerometer measures speci-
fic force and acceleration, and a gyroscope measures the rate of
change of angles. An inertial measurement unit combines multiple
accelerometer and gyros (usually three of each) to generate a
3-dimentiaonal (3-D) measurements of accelerations and the rate
of angle change, this produces data from x, y and z axis of both
accelerometer and gyroscope sensors. These sensors are popular
amongst health monitoring systems as they are usually very small,
have long battery life and are easily attached to human body.
DorsaVi ViMove sensor are inertial sensors, popular with many
health clinics. DorsaVi’s hardware contains twomovement sensors,
two EMG (muscle activity) sensors, a recording and feedback
device, and a charging dock. The movement sensors consist of a
3-D accelerometer, a gyroscope, and magnetometer which collects
movement data in three dimensions as well as measuring the force
and the impact. The collected data are transferred wirelessly to the
recording device. The data can be collected remotely for up to 24
hours or live data can be received by connecting directly to the
PC (DorsaVi, 2016).
2.2. E-Textile sensors

E-textiles are fabrics that can be stretched and allow electronics
and interconnections to be embedded into them, offering physical
flexibility that cannot be accomplished as easily with other elec-
tronic manufacturing techniques. There are two different cate-
gories of smart textiles: one is aesthetic and second is
performance enhancing. Aesthetic instances are fabrics that can
change their color. Many of these smart textile fabrics receive
energy from the environment by harnessing harnessing vibrations,
sound or heat, reacting to this input. There are also performance
enhancing textiles sensors, which are very useful within the sport
and military industries. These smart textiles assist in controlling
and adjusting the body temperature, its can control the vibration
within muscles, and reduce the resistance of the wind. These can
all have a huge impact on an athletic performance. There are other
smart textile fabrics that can protect the wearer from dangerous
environmental threats such as space travel effects and radiation.
Bend can also be sensed by textile sensors by detecting the fabric
being shortened or stretched which is calculated by evaluating
the percentage of change in electrical resistance. Many studies
have used textile sensors to detect the curvature of the back
(Lorussi et al., 2004; Mattiman et al., 2007; Rajdi et al., 2012;
Sardini et al., 2015).



Fig. 1. Sensor Location.
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2.3. X-ray sensors

Another approach to detect the curvature of the spine and rec-
ognize incorrect posture in the human body is via radiograph
imaging which includes techniques such as computer tomography
(CT) and magnetic resonance imaging (MRI). These techniques are
widely used as they can create a detailed image of the human
spine. However, these systems cannot monitor spine during daily
activity and thus cannot provide the awareness that comes with
monitoring and user feedback. This technique is more suitable
for clinics and hospitals but is not suitable for personal and field
use (Farra et al., 2011).

2.4. Fiber-optic bend sensors

When detecting the curvature of spine and incorrect posture,
fiber-optic sensors are a popular approach. Fiber-optic bend sen-
sors (or optical goniometers) include a light source, a plastic optical
fiber (POF) with an abraded section in between and a photosensi-
tive detector. Light is released into the POF at one end and next it is
detected at the other end. When the optical-fiber is bent, the light
(intensity) is lowered. When a section of POF has been cut, pol-
ished or raised, the loss of light is often increased. Due to the sens-
ing principle, single fiber-optical bend sensors are unipolar devices
(cxnull, 2011).
3. Methodology

Our system collects posture data using 3 sensors placed on a
subject’s back. The collected data is classified as one of the incor-
rect sitting posture, so when a user changed their correct posture
to an incorrect posture the system can recognize it and notify the
user. If the subject is sitting in an incorrect posture, the system
should notify the user on the specific incorrectness of the posture.
The system will be able to save the users daily posture record
which can help the doctors to diagnose specific diseases such as AS.
The system saves each test record for patients. The user is asked to
fill in a daily questionnaire to assess their level of AS. The system
will calculate a grade based on user answers. Then, depending on
their score, it will provide the user with specific exercises and
instructions on how they should be done. The grade is calculated
using the Gold standard for measuring and evaluating disease
activity in Ankylosing Spondylitis, which is called BASDAI (Bath
Ankylosing Spondylitis Disease Activity Index).

3.1. System design

Thesystemwasdevelopedusing3wearablewireless sensors cre-
ated by Shimmer to collect accelerometer and gyroscope data. The
dimension of these sensors are 51 mm⁄34 mm⁄14 mm and they
include highly accurate and scientifically reliable raw, calibrated
or un-calibrated data to allow complete control over capture and
interpretation of sensed data in real-time. The Shimmer sensors
were placed on the participant’s back using piezo-resistive stretch-
able fabric. Sensor 1was placed onCervical spine, second sensorwas
placed in between all Thoracic spine and sensor 3 was placed on
lower Lumbar spine. Fig. 1 shows the positions that the sensorswere
placed on the body. MATLAB software is used to connect to the sen-
sors and record the receiving data to .dat files. The system includes a
graphical user interface to create a user friendly application.

3.2. Data collection

The data was collected from 3 sensors placed on 5 subjects
backs. Each subject was asked to perform two incorrect posture
associated with AS (Hunchback and slouching back). They were
recorded 4 times, which in total gave us 120 data files. 60 for
hunched back posture and 60 for slouching back posture. This
gave us 20 test runs for each sensor. The recorded data library
is then used to train and test the system. Before the data collec-
tion process began, the shimmer sensors had to be tested that are
working and are set correctly. This process was done by testing
each shimmer sensor’s accelerometer and gyroscope with a 60 s
running time. For the first 10 seconds, the X axis was moved,
then in the next 10 seconds there was no action performed so
that we could distinguish between the two actions. The same
process was repeated on the other two axes (Y and Z) with
20 s spent on each. Fig. 2 presents the plotted accelerometer data
to validate the shimmer sensors setting. Each test data was
labeled uniquely to represent the body posture type the subject
was performing during the recording process, which sensor (s1,
s2, s3) and the test number. For example, HBs1t1.dat represents
the recorded data from subject in a hunched back position
with sensor number 1 placed on cervical spine and assigned test
number 1.

3.3. Data Pre-processing

In order to remove the noise from the data, a mean signal filter
was applied to all the row accelerometer and gyroscope data
imported by the meanSignalGenerator Function file. The mean sig-
nal filter (Function meansignal (signal, windowlength, overlap,
zeropad)) calculates windowed (over- and non-overlapping) mean
of a signal using the specified window length. signal is a 1-D vector,
windowlength is an integer length of the mean signal window in
samples, overlap is the number of samples to overlap adjacent win-
dows, zeropad is a flag for zero padding the end of the data. The
window size and the overlap size given to the mean signal filter
were 10 and 9 respectively. Decreasing the window size allowing
faster activity detection, as well as reduced resources and energy
needs. Large data windows are normally considered for the recog-
nition of more complex activities.

3.4. Feature extraction

Next, after all the row accelerometer and gyroscope data was
cleaned of noise and pre-processed, the signals were uploaded to
create a template for each sensors accelerometer and gyroscope
x, y and z axis within the two different incorrect seated posture



Fig. 3. Hunchback Posture Template.

Fig. 2. Sensors Setting Validation.
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categories related to AS. This process was done by developing func-
tion files, templatesfrom1data, templatesfrom5data and tem-
platesfrom20data functions.

The templatesfrom1data function assigned the cleaned data
from tests 1 in all the postures to templates. This was done for test-
ing purposes in order to have a larger test data set. This was
repeated for templatesfrom5data and templatesfrom20data. All
these function files, call the signalCleaning function. The sig-
nalCleaning function imports the recorded data for each posture,
where then the mean value for the signals is calculated using the
meanSignal function described earlier in the data pre-processing
section. These template functions then receive the pre-processed
data and use the generatesignalTemplate function file to create
templates. The generatesignalTemplate function file was
developed to find the average of given inputs/signals using
signalAverage = (data + data + . . .)/dataLenght; method. Next within
the templates function, 6 new variables are created for each sensor
in each posture category (Hunch Back/ slouch back sensor 1/2/3
(accelerometer x, y, z and gyroscope x, y, z)) using the generateSig-
nalTemplate function file, which calculates the average of the given
signals. After the templates were created, they were plotted to
show a visual understanding of each templates unique shape.
Figs. 3 and 4 are the plotted version of the 36 calculated variables
of the accelerometer and gyroscope x, y and z axis (18 hunch back
variables and 18 slouch back variables). Once the reflective
samples are created, we can use them in the correlation process.

3.5. Classification

We used the SAX (Symbolic Aggregate approXimation) method
for posture classification (see Fig. 5). This method allows for
dimensionality reduction and indexing with a lower-bounding dis-
tance measure (SAX, 2011). This method decreases the dimension-
ality of a numerical series, which involves converting a time series
into a short chain of characters. SAX involves a two-step process:
(1) Piecewise Aggregate Approximation (PAA) and (2) conversion
of a PAA sequence into a series of letters. PAA divides the data
set of length n into w equally spaced segments or bins, and
computes the average of each segment (Muhammad Fuad and
Marteau, 2012).

There are two main functions within the SAX source, firstly the
timeseries2symbol function which takes in a time series and con-
verts it to a string. This function receives 4 inputs, the raw time
series (data), the length of the sliding window or the length of
the raw data (N), the number of symbols in the low dimensional
approximation of the sub sequence (n) and the number of discrete
symbols (alphabet_size). This function returns two outputs, a
matrix of symbolic data (symbolic_data) and the location of the
first occurrences of the strings (pointers) SAX, 2011. The time-
series2symbol function is used to convert all of the templates to
a symbolic string. This function then is called when the new data



Fig. 4. Slouch back Posture Template.

Fig. 5. Symbolic Aggregate approXimation.
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is collected to be tested. So the new test raw time series is con-
verted to a symbolic string and is compared against the all of the
posture template symbols. The second main function in the SAX
method is the min_dist, which processes the minimum (lower-
bounding) distance between the two strings. Here the test data
string is compared to each of the template strings. The smallest
number means the least distance which means that the test data
is very close to a specific posture template, hence the system can
notify the user of the incorrect posture they are adopting.
Fig. 6. Hunched Back posture test data.
4. Results

4.1. Testing and results

This system was developed based on data received from 3
Shimmer sensors. 3 was the minimum number of sensors that
could be used in order to lead to accurate classification. A larger
number of sensors can be used but it will not have any more signif-
icant impact in the classification results would be more expensive
for such a commercial system. When designing the system, two
approaches were taken. One was to use the pre-recorded data,
which allows a user to choose a test, import the file and compare
it with the templates symbols. We could then evaluate the
correlation between the signals. This was developed mainly for
development and testing purposes. The second approach of data
classification is continuous throughout the recording of new
accelerometer and gyroscope data.

This process was completed by comparing the performance of
the posture recognition approaches on the 10 s long testing scenar-
ios. The test was recorded using a limited number of 5 healthy sub-
jects (2 male and 3 female aged between 25 and 60). The user can
check their posture by recording new data files at anytime through
visual assistance in the GUI. When recording a new posture data
point, the system provides a selection of responses to the user,
such as a text box to inform the user of their posture and 3 visual
graphs. These graphs are the plotted graph of the users recorded
posture data and the posture templates. Fig. 6 represents the plot-
ted graph of a user testing the system while in a hunched back pos-
ture. It can be seen that the new data and the template are almost
identical. The systems graphical user interface was developed in
Matlab. Fig.7a represents the first screen the users will interact
with.Fig. 7b is the posture check view where the user can input
their name and check their posture. The system receives the name
and using the computers date, it creates new files to record the
subject’s posture data. Then the system cleans, filters and classifies
the data against the training dataset and informs the user about
their posture details. The user or their GP can access the users pos-
ture record by simply looking up the posture record view (Fig.7c)
named with the user’s name and the date the recording was done.
The user will have to do a daily check up (Fig.7d) in order to access
their daily exercises. The daily check up calculates the score and
when the user is going to the exercises section, depending on the
calculated score the appropriate exercise is displayed for the user
(Fig. 8).

A series of tests were carried out to produce results from each
posture. These results can be seen in Tables 1–3. The testing was
done in 3 different ways. The first stage of the process involved
using the templatesfrom1data function file. The posture templates
for the postures were created using one datasets (test1) for each
category. This gave us a larger data set for testing (test2 to test20).
Table 1 represent the classification result with 85% accuracy.
Within Tables 1–3, ‘1’ represents correct classification and the
value next to 1 is the value of the minimum distance between
the test data and the template. ‘0’ represents incorrect classifica-
tion. The results from the templatesfrom5data function are in
Table 2. The system classified the data with 95% accuracy.



Fig. 8. Daily Exercises.

Fig. 7. (a) Home Page (b) Posture Check (c) Posture Record (b) Daily Checkups.

Table 1
Classification Result (1 Training Data).

Hunched Back (HB) Slouched Back (SB)

Test 1 1 | 4.3466 1 | 6.1788
Test 2 1 | 1.003 1 | 4.8118
Test 3 1 | 5.377 0
Test 4 1 | 2.4034 1 | 2.3899
Test 5 1 | 2.0336 1 | 2.8663
Test 6 1 | 6.8973 1 | 6.0978
Test 7 0 1 | 6.1202
Test 8 1 | 5.2967 0
Test 9 1 | 3.5106 1 | 1.91
Test 10 1 | 3.5818 1 | 4.7469
Total 9/10 90% 8/10 80%

Total % 85%
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The last stage of testing involved using the templatesfrom20-
data function file. The posture templates for the postures were cre-
ated using 20 datasets. Table 3 represents the classification results
with 100% accuracy for all tests. This shows that the larger the
training dataset is, the more accurately the system can distinguish
between the postures.

4.2. System performance evaluation

The results show the validity in using off-the-shelf sensors for
detecting the curvature of the spine. Larger training sets led to
higher accuracies in the classification process. The shimmer sensor
battery life is quite good allowing for days of running and testing
without needing to be recharged. There was however times that
sensor connections were lost leading to restarts in testing. During
the testing process, it was also noticed that the Shimmer sensors
needed to be placed in the same orientation as template data in
order to result in correct posture detection. While the orientation
of the sensors is important, the location of the sensors do not have
to be on the same spot as the templates so long as they are placed
within the area of the 3 spine locations i.e. (Sensor 1 on Cervical
spine, sensor 2 on Thoracic spine and sensor 3 on lower Lumbar
spine). They will have record accurately and can be classified cor-
rectly. Currently the system records data when so instructed. This
was done, as a proof of concepts but ideally the system should be



Table 2
Classification Result (5 Training Data).

Hunched Back (HB) Slouched Back (SB)

Test 1 1 | 6.444 1 | 1.0465
Test 2 1 | 5.2296 1 | 3.5186
Test 3 1 | 5.1433 0
Test 4 1 | 1.4649 1 | 2.3899
Test 5 1 | 2.5007 1 | 2.8663
Test 6 1 | 4.7836 1 | 5.0978
Test 7 1 | 2.7452 1 | 4.1202
Test 8 1 | 3.5306 1 | 1.0978
Test 9 1 | 6.5106 1 | 2.4001
Test 10 1 | 4.0681 1 | 4.1
Total 10/10 100% 9/10 90%

Total % 95%

Table 3
Classification Result (20 Training Data).

Hunched Back (HB) Slouched Back (SB)

Test 1 1 | 1.0406 1 | 2.7483
Test 2 1 | 1.9202 1 | 2.3581
Test 3 1 | 0 1 | 4.1943
Test 4 1 | 3.0092 1 | 5.9834
Test 5 1 | 1.1543 1 | 1.1154
Test 6 1 | 2.9854 1 | 2.9547
Test 7 1 | 5.5284 1 | 6.8511
Test 8 1 | 1.0944 1 | 1.2023
Test 9 1 | 5.1633 1 | 1.9403
Test 10 1 | 3.8564 1 | 3.5488
Total 10/10 100% 10/10 100%

Total % 100%
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monitoring the subjects continuously to be able to have a valid
posture record and diagnosing AS. For example, in AS disease the
patient spine slowly stiffens and can eventually become com-
pletely inflexible which results in a hunched back appearance.
The hunch back appearance can gradually get worse, but with
the system continuously monitoring the users, it can detect the
condition getting worse and adapt their exercises according to
the degree of condition.
4.3. Future work

This system aims to help diagnose and monitor the stages of AS.
The system can be improved to not only detect and record seated
postures, but also to detect and record incorrect standing and
walking postures. This can be achieved by adding more data to
train the system and then to transfer the actual system from the
computer on to a mobile phone. An automatic Schober’s test could
be added to the system. Schober’s test is a measurement used for
AS, which measures the Lumbar spine mobility. In this examina-
tion the patient is standing up with their feet hip width apart
and with their back to the examiner. The examiner determines
the location of the lumbosacral junction by outlining the location
of the dimples of Venus. The intersection on the top of the dimples
of Venus are marked by drawing a horizontal line. This line acts as
the landmark. The second line is marked 10 cm above the first and
the third is marked 5 cm below the first line. The difference
between the measurements in erect and flexion positions indicates
the outcome of the lumbar flexion. An examiner physically present
can do this easily but our system can be modified to perform the
test without the need for the presence of an examiner. In order
to develop this, accelerometer and gyroscope are not sufficient as
there is no way that the system can determine the distance
between each sensor. Therefore, the best option is to design the
system in such a way that the phone camera can be used to do
the Schober’s test. Here the image would be acquired using a
mobile phone with the exact locations marked and recognised
through image processing so the distance between the locations
can be measured. The approach would be practical and allow sub-
jects to monitor their curvature progress from home while mini-
mizing the use of X-rays and MRIs. In future, a larger number of
subjects would be useful in order to solidify the validity of the
results. We would also of course need to conduct a clinical study
to validate our results. Finally, the Shimmer sensors are portable
but a superior approach would be where the accelerometer and
gyroscope are embedded within wearable clothing.

5. Conclusion

This paper outlines the development of a system to detect
incorrect posture as an early symptom of Ankylosing spondylitis
(AS) disease. The system classification performance was tested
and shows that the system is reliable with a high accuracy. This
was accomplished by collecting, processing, cleaning and filtering
raw accelerometer and gyroscope data collected from 4 subjects.
The system was trained to distinguish between two incorrect pos-
ture (Hunch Back and Slouch Back) related to AS using prerecorded
data. The user can check their posture in real-time, the recorded
posture in then classified and each user is notified of their postures.
The subject’s posture is then saved with the date they were
recorded allowing a physician to monitor each patient. The user
also completes a daily questionnaire in order to be offered recom-
mended individual exercises.
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