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The high-level variation of different energy generation resources makes the reliable power supply signif-
icantly challenging to end-users. These variations occur due to the intermittent nature of energy output
and time-varying weather conditions. The recent literature focuses on the improvements in power gen-
eration and consumption forecasting, which is a demand of the current smart grids’ smooth operations
with a balanced amount of energy generation and consumption for the connected customers. Inspired
by the applications of load forecasting, therefore, in this work, we develop an efficient and effective
hybrid model for power generation and consumption forecasting, thereby contributing to energy harvest-
ing by providing valuable prediction data to the concerned renewable energy analysts. Herein, we inte-
grate a convolutional neural network with an echo state network for robust renewable energy generation
and consumption forecasting. The convolutional network is used to extract meaningful patterns from the
historical data which is then forwarded to the echo state network for temporal features learning. The out-
put spatiotemporal feature vector is then fed to fully connected layers for final forecasting. The proposed
hybrid model is derived after extensive experiments over machine and deep learning models, where the
results indicate that the proposed model substantially decreases the forecasting errors using RMSE, MSE,
NRMSE, and MAE metrics, when compared to state-of-the-art models and acts as a paradigm towards
energy equilibrium between production resources and consumers.
� 2022 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Conventional electric power systems depend on non-renewable
energy resources such as oil, gas, and coal which results in green-
house gases and energy losses during electricity generation and
transmission, respectively (Ma and Ma, 2018). Furthermore,
large-scale electricity transmission brings a huge risk when electri-
cal or mechanical faults occur in a centralized grid station. To over-
come these challenges, the concept of Distributed Energy
Resources (DER) is developed which strengthens a stable and reli-
able power transmission to the end-users and lowers environmen-
tal impacts. To utilize energy storage units’ above limits
penetation, employ DER sensors and devices effectively, and
ensure proper integration of local power generation to the electric-
ity grids, the concept of Micro Grid (MG) is developed to combine
these contributors with utility systems via point of cloud coupling
(Doe, 2011). The MG systems overcome many challenges occurring
in conventional grids systems, but several new challenges are
encountered when managing electricity using the new MG-based
settings. For instance, these systems are purely based on energy
harvesting resources, especially, renewable power resources such
as solar and wind, where these sources are highly unstable and
uncontrollable to provide consistent supply (Ma et al., 2013). Fur-
thermore, electricity consumption is also affected by different con-
sumers behavior and weather conditions. For this purpose, many
advanced strategies are developed in the literature to forecast elec-
tricity consumption and supply, balance the dispatch, and provide
a consistent power supply (Ma and Ma, 2018).

The current literature focuses to improve the prediction results
of electricity supply from renewable energy generation resources
and consumption. For power generation and consumption
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Nomenclature

RMSE Root Mean Square Error
MSE Mean Square Error
RRMSE Normalized Root Mean Square Error
MAE Mean Absolute Error
DER Distributed Energy Resources
MG Micro grid
CNN Convolutional Neural Network
ESN Echo State Network
CNNESN Convolutional Neural Network Echo State Network
RPGP Renewable Power Generation Prediction
ECP Electricity Consumption Prediction
AI Artificial Intelligence
SVM Support Vector Machine
DL Deep Learning

RNN Recurrent Neural Network
LSTM Long Short-Term Memory
GRU Gated Recurrent Unit
CLSTM Convolutional LSTM
AVG Average
STD Standard Deviation
DKASC Desert Knowledge Australia Solar Centre
IHEPC Individual Household Electric Power Consumption
DT Decision Tree
RL Linear Regression
MLP Multilayer Perceptron
GPU Graphics Processing Unit
CPU Central Processing Unit
RPI Raspberry Pi
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predictions, deep learning-based strategies, especially hybrid mod-
els achieved state-of-the-art accuracies. However, different predic-
tive modeling techniques are developed to perform these tasks and
the current literature lacks a generalized model to perform both
tasks at a time. The researchers are focusing to improve the fore-
casting results without considering the computational complexity
of a model. Furthermore, error rates reduction in predictive model-
ing has a great impact on electricity losses and costs. A survey of 19
utility companies concluded that a one percent reduction in error
rates can save 10,000 MW of electricity which means an accurate
predictive model can save up to 1.6 million dollars in a year.
Considering these motivations and limitations of the existing
works, therefore, in this work, we developed a hybrid
Convolutional Neural Network (CNN) and Echo State Network
(ESN) model for reliable electricity generation and consumption
prediction. The prediction results of the proposed model are higher
and its computational complexity is lower than state-of-the-art
models. The main contributions of the proposed model are as
follows:

� A generalized hybrid model is developed for Renewable Power
Generation Prediction (RPGP) and Electricity Consumption Pre-
diction (ECP) to adjust the demand and supply in MGs and
smart grids.

� The proposed model combines CNN with ESN to efficiently pre-
dict future electricity generation and consumption. The CNN
module is incorporated to learn the meaningful patterns from
the historical data and ESN is used to extract sequential infor-
mation which is then inputted to fully connected layers for
the final prediction.

� The CNNESN model is finalized after extensive experiments
over machine and deep learning-based models. The experimen-
tal results indicate that the proposed model is computationally
inexpensive with better generalization abilities and precisely
predicts future electricity generation and consumption.

� The performance of the proposed CNNESN model is evaluated
on benchmarks renewable power generation and electricity
consumption datasets and concluded that the proposed model
achieved better prediction results as compared to state-of-
the-art models.

The rest of the paper is structured as Section 2 recent literature
about renewable power generation and electricity consumption
prediction, Section 3 explains the internal architecture of the pro-
posed CNNESN model, Section 4 has experimental results, and the
conclusive remarks are given in Section 5.
2

2. RPGP and ECP literature

In the literature, various methodologies are developed to pre-
dict renewable power generation and electricity consumption
(Rafique and Jianhua, 2018). For different purposes of electricity
management, various horizons are considered such as long-,
medium-, and short-term, where long-and medium-term predic-
tions are mainly focusing on load dispatch, price settlement, and
maintenance scheduling (Ma and Ma, 2018). Short-term prediction
is responsible for energy flow scheduling, storage units, and loads.
Data-driven approaches such as data mining gained much atten-
tion to predict renewable power generation and electricity con-
sumption in smart grids (Amasyali and El-Gohary, 2018). These
approaches are based on historical energy generation/consumption
and weather data. Data driven approaches are mainly divided into
statistical and Artificial Intelligence (AI) techniques (van der Meer
et al., 2018). The statistical models are based on a mathematical
relationship between input and model’s output data. Several statis-
tical techniques are proposed for RPGP and ECP. Statistical tech-
niques developed for RPGP and ECP include power Bayesian
(Wang et al., 2019; Tang et al., 2019), autoregressive (Mahmud
and Sahoo, 2019; Guefano et al., 2021), moving average (Aasim
et al., 2019; Pappas et al., 2008), Markov (Wang et al., 2015;
Meidani and Ghanem, 2013), gray theory (Wu et al., 2018; Ding
et al., 2018), Kalman filter (Yang, 2019; Zheng et al., 2019), Ham-
merstein (Ait Maatallah et al., 2015; Lu et al., 1989) and multiple
kernel model (Reikard, 2009; Wu et al., 2019). The statistical tech-
niques can learn linear data effectively, however, their prediction
accuracy is hugely affected for non-linear data (Afrasiabi et al.,
2020). The AI model has strong abilities to learn non-linear com-
plex data compared to statistical techniques. Some popular AI
models developed for RPGP and ECP included Support Vector
Machine (SVM) (Tan et al., 2020; Li et al., 2020), artificial neural
network (Wang et al., 2019; Kuo and Huang, 2018), extreme learn-
ing machine (Ali and Prasad, 2019; Rafiei et al., 2018), fuzzy neural
network (Ali and Prasad, 2019; Sideratos et al., 2020), decision tree
(Gupta et al., 2021; Xie et al., 2019), generative adversarial net-
works (Wang et al., 2019; Bendaoud et al., 2021). Compared to sta-
tistical techniques, AI models achieved better prediction accuracies
for EPGP and ECP. However, these models are based on a shallow
architecture that requires handcrafted feature engineering and
pose limited generalization abilities, resulting network instability
and parameters non-convergence due to sufficient data of EPGP
and ECP. Hence, these challenges in conventional AI models
encourage the researchers to reconsider RPGP and ECP based on
Deep Learning (DL) (Wang et al., 2017).
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DL based models achieved considerable attention in several
domains such as image classification, video recognition, signal pro-
cessing, language processing, and time series tasks. These models
have the potentials to learn the features unsupportively with
strong generalization capabilities compared to statistical and AI-
based models. Similarly, for RPGP and ECP several predictive mod-
els are developed based on DL such CNN (Khan et al., 2019;
Korkmaz, 2021), Recurrent Neural Network (RNN) (Rahman et al.,
2018; Li et al., 2019), Long Short-Term Memory (LSTM) (Zhou
et al., 2019; Wang et al., 2019), ESN (Yao et al., 2019; Trierweiler
Ribeiro et al., 2020) and Gated Recurrent Unit (GRU) (Wang
et al., 2018; Wang et al., 2018). These models have better conver-
gence capabilities compared to other models in several domains.
However, for effective deep learning modeling, first, we need to
know the nature of renewable power generation and electricity
consumption data, that are time-series in nature, including spatial
and temporal information, where CNN models can only extract
spatial information while RNN, LSTM, ESN, etc., can model tempo-
ral information very well. Therefore, predictive models based on
these strategies are not applicable for accurate RPGP and ECP
(Tascikaraoglu and Uzunoglu, 2014; Hussain et al., 2021).

To this end, hybrid models have sufficient potentials to extract
spatiotemporal features from historical renewable power genera-
tion and electricity consumption data. For RPGP and ECP, several
hybrid combinations of models are developed in the literature,
including CNN-GRU (Sajjad et al., 2020), CNN-RNN (Kim et al.,
2019), CNN-LSTM (Qu et al., 2021; Kim and Cho, 2019), and
LSTM-CNN (Wang et al., 2019; Farsi et al., 2021), Convolutional
LSTM (CLSTM) (Wang et al., 2018; Woo et al., 2018), and autoen-
coder with bidirectional LSTM (Khan et al., 2021). These models
have the ability to accurately predict renewable power generation
and electricity consumption patterns. However, the results of these
models further needs be improved for reliable power prediction.
Furthermore, hybrid models are computationally expensive com-
pared to solo models. Therefore, in this work, we develop a novel
CNNESN based model for efficient and effective RPGP and ECP.
3. The proposed model

RPGP and ECP are very important to provide sufficient energy to
end-users with balanced electricity generation and consumption.
Accurate consumption and generation prediction is a challenging
task due to the variable consumption of the customer, noisy
arrangement of the data, and unpredictable weather conditions.
For this purpose, several techniques are developed to predict elec-
tricity generation and consumption, as mentioned in Section 2.
However, the prediction results further need to be improved and
the computational complexity of the model should be accurate
enough to be be deployed in real-time for a trustworthy MG sys-
tem. Therefore, this work develops a novel lightweight CNNESN
based model for RPGP and ECP, as shown in Fig. 1. The proposed
CNNESN model includes two main architectures, CNN and ESN,
which are further described in the following subsections.
3.1. Convolutional neural network

Nowadays, researchers from computer vision and pattern
recognition domains are inspired by the performance of deep
learning, specifically CNN, which is the subfield of artificial intelli-
gence, primarily inspired by the visual cortex of human beings (Xu
and Vaziri-Pashkam, 2021). Due to weights sharing and local con-
nection strategy, CNN architecture achieved remarkable accuracy
in different tasks such as energy prediction, load forecasting, and
many others. Generally, CNN comprises three types of layers, for
example, convolutional, pooling, and fully connected layers. The
3

convolutional layer extracts discriminative features from the input
data, where a filter or kernel convolve over the extracted feature
map from the previous layer to produce the output feature vector
i. The initial layers are responsible to extract the local features
while the intermediate layers extract the global features. The con-
volutional layer can be represented by a mathematical equation as
follows:

OðlÞ
i ¼

Xtl�1
j

j2ci
�W lð Þ

j:i

� �
þ bðlÞ

i ð1Þ

Fl
i ¼ f yli

� � ð2Þ

Here in, Fl
i is the extracted feature vector by the convolutional layer

l, while the ci is a set of features vector. The output of the convolu-

tion is represented by OðlÞ
i , their bias term is represented by bðlÞ

i , the

convolutional kernel is shown as W lð Þ
j:i and f represents activation

function. In this paper, we used RelU as an activation function, their
mathematical representation is given in Eq. (3).

f xð Þ ¼ maxð0; xÞ ð3Þ
To reduce the spatial resolution of the input data, usually pooling
layers are used and there are different types of pooling layers such
as average pooling, min pooling, and max pooling, where, we used
max-pooling layers to select the most prominent features.

3.2. Echo state network

In the past few years, substantial attention is achieved by deep
neural networks containing multiple layers architecture in the field
of neural networks (Goodfellow et al., 2016). Additionally, the hier-
archic standardized RNN has also played a crucial part in different
convoluted tasks including deep learning. In (Gallicchio et al.,
2017), Galllicchio et al. initially fused ESN with deep learning
frameworks, that is computationally intelligent with respect to
other RNN variants, as ESN is also a novel and special form of
RNN. RNN is modeled by jaeger et al. (Jaeger, 2001), which pro-
vides an essential architecture and a supervised learning approach
to RNN, and the hidden layers of ESN are developed by a reservoir.
The ESN architecture mainly consists of a reservoir ‘R’, input ‘I’ and
an output ‘O’, where ‘I’ indicates the input unit, accredit to the
input layer, ‘R’ as internal units for the reservoir, and ‘O’ as output
units. The input, internal, and output units are given in Eqs. (4)–(6)
with their corresponding operations. Also, the updated (unit
updates) equations for internal and output units are also given in
Eqs. (7) and (8).

u ið Þ ¼ u1 ið Þ;u2 ið Þ � � � :uIðiÞ½ �T ð4Þ

x ið Þ ¼ x1 ið Þ; x2 ið Þ � � � :xRðiÞ½ �T ð5Þ

y ið Þ ¼ y1 ið Þ; y2 ið Þ � � � :yOðiÞ½ �T ð6Þ

x iþ 1ð Þ ¼ f Win � u iþ 1ð Þ þW � x ið Þ þWback � yðiÞð Þ ð7Þ

y iþ 1ð Þ ¼ g Wout � u iþ 1ð Þð Þ ð8Þ

Wout ¼ M�1 � T
� �T

ð9Þ

In Eq. (7), 8, ‘f ’ and ‘g’ indicatea activation function for both out-
put and reservoir units, whereas the total weight metrics consist of
‘‘Win R � Ið Þ”, ‘‘WðR � RÞ”, ‘‘Wback R � Oð Þ”, and ‘‘Wout(O � R)” as input,
reservoir, output backward, and readout metrics, respectively.
The weight matrix ‘‘Wout” is randomly selected and remains
unchanged, whereas for reservoir it updates in the learning process



Fig. 1. The proposed CNNESN model for RPGP and ECP. The historical data of electricity generation and consumption are first preprocessed for refinement and then inputted
into the CNNESN model. Finally, the CNNESN model is evaluated on different evaluation metrics.
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(Chouikhi et al., 2017; Ma et al., 2016). The target outputs
‘‘TððS� So þ 1Þ � OÞ” and reservoir state vectors
‘‘IððS� So þ 1Þ � RÞ” are selected to calculate the readout weights.
Here, ‘S’ indicates the training step whereas ‘So’ indicates the wash-
out time step. Eq. (9) calculates the readout as the time step is
equal or bigger than ‘Vo’. The major role in ESN is mainly played
by these reservoirs as they influence the overall performance of
the network through its three major parameters. After that, the
number of reservoir neurons ‘N’ has also shown a massive impact
on the performance of ESN, due to its internal structure related to
the hidden state’s information (Chouikhi et al., 2017). It also
depends on the training size of data and the intricacy of targeted
tasks that need to be attained. Correspondingly, the ESN perfor-
mance is also affected by the rate of connectivity ‘a’, absolute
eigenvalue by the weight matrix ‘W ’, and the special radius ‘q’,
where ‘q’ is indicated between 0 and 1 intervals. Concluding, ESN
is better and faster than RNN’s (Chen et al., 2018) with respect to
learning and approximation.

3.3. CNNESN architecture

The historical data of electricity generation and consumption
are first preprocessed to remove the abnormal data such as outlier,
missing, and redundant values. These values are recorded due to
sensor fault, unconditional weather conditions, and short circuits,
etc. (Genes et al., 2017). To remove the outlier values, in this work,
we used sigma-rules (Chandola et al., 2009) where the mathemat-
ics behind these rules are given in Eq. (10).

fðdiÞ ¼
avg Dð Þ þ 2stdðDÞ; ifdi > avg Dð Þ þ stdðDÞ

di; otherwise

�
; ð10Þ

where D represents the data, avg Dð Þ is the average, and stdðDÞ is the
standard deviation of the data. To recover missing values, we used
NAN interpolation technique, where the mathematics behind this
technique is given in Eq. (11).
4

fðdiÞ ¼
di�1þdiþ1

2 ;di 2 NAN;di�1;diþ1 R NAN
0; ai 2 NAN; ai�1oraiþ1 2 NAN

ai; ai R NAN

8><
>: ; ð11Þ

where di represents electricity generation, consumption, or
weather variable values. If these values are null, we replace them
with NAN. Furthermore, we utilized the data normalization tech-
nique to transform huge, variated data into a specific range. The
normalization technique is applied due to different ranges of elec-
tricity generation, weather information, and consumption. In this
work, we used deafult (0~MinMax data normalization techniques.

The preprocessed data are then used for the training, validation,
and testing purpose of the model. The preprocessed historical are
divided into training 70%, validation 10%, and testing 20% purposes.
In the training phase, the refined data has used an input to CNN
layer which is responsible to extract meaningful patterns followed
by ESN architecture to learn sequence information between those
patterns. The output of the ESN architecture is then forwarded to
fully connected layers for final electricity generation and consump-
tion prediction. In the proposed CNNESN architecture we used two
CNN layers with a filter size of 32 and 64, kernel size of one is used
in each convolution with activation function ReLU, while the ESN
includes a single reservoir with 16 units and using tanh as an acti-
vation function. The internal architecture of the proposed CNNESN
mode is given in Table 1, and the block diagram is shown in Fig. 2.
The proposed model is available at ‘‘https://github.com/zulfiqarah-
madkhan/CNNESN”.
4. Results

The experimental results are discussed in this section for
renewable power generation and electricity consumption predic-
tion. In this section, we discussed the datasets used in this paper,
define the evaluation metrics, a brief discussion about experimen-
tal results of our ablation study, and comparison of the proposed

https://github.com/zulfiqarahmadkhan/CNNESN
https://github.com/zulfiqarahmadkhan/CNNESN


Table 1
The architecture of the proposed CNNESN model, layer type, kernel, filter, and
parameters.

Type of layer Size of kernel Size of filter Params

CNN layer 1 1 32 352
CNN layer 2 1 64 2112
Max pooling – – –
Flatten – – –
ESN (16) – – 1542
Dense (32) – – 3104
Dense (12) 396
Total params – – 7506

Fig. 2. A block diagram of the proposed CNNESN model.
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model with other state-of-the-art models in terms of prediction
performance and time complexity.
4.1. Electricity generation and consumption datasets

For RPGP, we utilized Desert Knowledge Australia Solar Centre
(DKASC), Alice Springs, Australia datasets (DKASC, Alice Springs).
DKASC includes multiple active solar power plants recording the
daily data in a five-minute resolution from the date of installation.
In this paper, we used three datasets collected from DKASC such as
Trina 10.5 kW mono-si sual 2009 (Tarina 10.5 kW), Trina 23.4 kW
mono-si sual 2009 (Tarina 23.4 kW), and Eco-Kinetics 26.5 kW
5

mono-Si dual 2010 (Eco-Kinetics 26.5 kW). These datasets include
renewable power generation and weather information data such as
humidity, rainfall, temperature, etc. Some technical specifications
of these datasets are given in Table 2, while statistical information
of each dataset is given in Table 3. As given in Table 3, some values
are negative, for example, the minimum value of Tarina 23.4 kW is
�0.0341 which is considered as zero in this work and removed in
the preprocessing step. The total generation capacity of the Eco-
Kinetics 26.5 kW dataset is 26.5 kW, while the maximum value
is 52.982, as reported in Table 3 which can be analyzed from
Fig. 3, where the generation capacity of the plant is reduced after
some time of the installation.

For electricity consumption prediction, we used the Individual
Household Electric Power Consumption (IHEPC) dataset
(Individual household electric power consumption Data Set). This
dataset is recorded in one-minute resolution in the period of
2006–2010, including time-date information, active and reactive
power, intensity, voltage, and submetering information. A short
description of each attribute in IHEPC and DKASC datasets is given
in Table 4.

4.2. Evaluation metrics

Renewable power generation and electricity consumption are
time-series data problems, and the performance of a prediction
model is evaluated on error metrics such Root Mean Square Error
(RMSE), Mean Square Error (MSE), Normalized Root Mean Square
Error (RMSE), and Mean Absolute Error (MAE), where the details
can be deeply studied from a recent survey (Hussain et al., 2021).
These metrics define the average difference between actual and
predicted values of the model. The mathematical representation
of these metrics is given in Eqs. (12)–(15).

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1

ai � pið Þ2

N

vuuut
ð12Þ

MSE ¼
Pn

i¼1 ai � pið Þ2
N

ð13Þ

NRMSE ¼ RMSE=ðamax � amin ð14Þ

MAE ¼
Pn

i¼1jai � pij
N

ð15Þ

In these equations, a and p represent the actual and predicted val-
ues by the model, where N is the total number of records.

4.3. Ablation study

To substantiate the robustness of the proposed CNNESN model,
we conducted experiments on several predictive modeling tech-
niques, including traditional regression methods such as SVR, Deci-
sion Tree (DT), and Linear Regression (RL) and deep learning-based
models such as Multilayer Perceptron (MLP), LSTM, CNN, GRU, ESN,
CNN-GRU, CNN-LSTM, and optimally introduced the proposed
CNNESN model. The detailed results of each predictive technique
are given in Figs. 5-7 for RPGP and Fig. 8 for ECP, respectively.
The results indicate that the traditional regression models per-
formed worst as compared to deep learning-based models. For
in-depth analysis, the prediction performance of solo deep
learning-based models is compared with hybrid models. This is
because renewable power generation and electricity consumption
are time-series data including both spatial and temporal informa-
tion with non-linear relationships. The proposed CNNESN model
achieved the lowest error rates when compared to other solo and



Fig. 3. Historical electricity generation data recorded in Eco-Kinetics 26.5 kW.

Fig. 4. Actual and predicted values by the proposed model a) Tarina 10.5 kW, b) Tarina 23.4 kW, c) Eco-Kinetics 26.5 kW, and d) IHEPC datasets.

Table 2
Technical specifications of DKASC datasets.

Dataset Specification Value

Tarina 10.5 kW Generation capacity (kW) 10.5
No. of Panels 2 � 30
Single panel generation capacity (W) 175
Date of installation 08/01/2009

Tarina 23.4 kW Generation capacity (kW) 23.4
No. of Panels 4 � 30
Single panel generation capacity (W) 195
Date of installation 08/01/2009

Eco-Kinetics 26.5 kW Generation capacity (kW) 26.52
No. of Panels 156
Single panel generation capacity (W) 170
Date of installation 23/08/2010
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hybrid combinations models. For instance, the proposed CNNESN
model achieved 0.1366, 0.0187, 0.2396, and 0.059 RMSE, MSE,
NRMSE, and MAE, respectively over Tarina 10.5 kW dataset. For
Tarina 23.4 kW dataset, the proposed CNNESN model achieved
0.0913 RMSE, 0.0083 MSE, 0.3023 NRMSE, and 0.053 MAE while
these values are 0.0406, 0.0016, 0.2393, and 0.0228, respectively
over Eco-Kinetics 26.5 kW dataset. Compared to other models,
CNNESN model also achieved the lowest error rates over IHEPC
dataset, such as 0.0472 RMSE, 0.0022 MSE, 0.2341 NRMSE, and
0.0266 MAE. All the experiments are performed for one-hour
ahead prediction and the proposed model achieved the lowest
error rates compared to other predictive models. The predicted val-
ues by the proposed CNNESN model and actual values of the test
6



Table 3
Statistical information of renewable power generation and electricity consumption datasets.

Features Tarina 10.5 kW Tarina 23.4 kW Eco-Kinetics 26.5 kW IHEPC

Minimum value �0.0341 �0.0615 �0.140 0.076
Maximum value 11.331 23.426 52.982 11.122
Standard deviation 2.832 6.369 5.998 1.055
Average 2.188 4.616 3.515 1.089

Table 4
Datasets attributes and their description.

Dataset Variables Description

IHEPC Time/Date Time and date attribute
Global active
power

Minutely Avg global active power

Global reactive
power

Minutely Avg global reactive power

Voltage Minutely Avg voltage
Intensity Minutely Avg current intensity
Sub-metering 1, 2,
and 3

Electricity consumption in kitchen, laundry room, and heating/cooling systems

DKASC Timestamp Time and date attribute
Active Energy Total generated energy in 5-minute interval
Weather attributes Weather attributes in DKASC dataset including windspeed, temperature, humidity, global horizontal radiation, diffuse horizontal

radiation, wind direction, rainfall, radiation global tilted, and radiation diffuse tilted.
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set are shown in Fig. 4, indicating a narrow gap between them and
ensuring the applicability of the proposed model for RPGP and ECP.
4.4. Comparative analysis of CNNESN with state-of-the-art models

In this section, we compared the performance of the proposed
CNNESN model with other state-of-the-art models for RPGP and
ECP tasks. In the literature, several researchers investigated DKASC
datasets and evaluated their predictive modeling techniques with
different data resolution and prediction horizons. However, for
RPGP, in this work, we performed a general comparison with other
models such (Zang et al., 2020; Chen et al., 2020; Li et al., 2019;
Zhou et al., 2020; Cheng et al., 2021; Li et al., 2020; Korkmaz,
2021; Wang et al., 2019; Wang et al., 2019). The detailed perfor-
mance of these models is given in Table 5, where the proposed
model achieved the lowest error rates.
Fig. 5. Comparison of several mode
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The performance of the proposed CNNESN model is also com-
pared with other state-of-the-art models over the IHEPC dataset.
For instance, the performance is compared with Kim and Cho
(2019), Khan et al. (2020), Ullah et al. (2019), Kim and Cho
(2019), Le et al. (2019), Sajjad et al. (2020), Khan et al. (2020),
Haq et al. (2021), Ullah et al. (2021), Khan et al. (2021). In compar-
ison to these state-of-the-art models, the proposed model also
achieved the lowest error rates among them, as indicated in
Table 6.

The reduced error rates of our method are observed due to sev-
eral reasons. Firstly, we ignored the traditional CNN and RNNs vari-
ants because these architectures are specifically designed for visual
analysis domains such as activity recognition (Ullah et al., 2021)
and video data prioritization (Hussain et al., 2020). RNNs with
CNNs perform better for these tasks but in terms of energy predic-
tion tasks, authors have used several invariants and stacked multi-
ls over Tarina 10.5 kW dataset.



Fig. 6. Comparison of several models over Tarina 23.4 kW dataset.

Fig. 7. Comparison of several models over Eco-Kinetics 26.5 kW dataset.

Fig. 8. Comparison of several models over IHEPC dataset.
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Table 5
Comparison of the proposed CNNESN model with state-of-the-art models over DKASC datasets.

Dataset Paper Method Data Resolution RMSE MSE NRMSE MAE

DKASC, Yulara, 3A Chen et al. (2020) RCC-LSTM 5 min 0.94 – – 0.587

DKASC-ASA Zang et al. (2020) DenseNet 1 h – 0.081 – 0.152
Li et al. (2019) HIMVO-SVM 30 min – – – 0.2805
Zhou et al. (2020) SDA-GA-ELM 5 min – – 21.07 0.2367
Cheng et al. (2021) GCN 5 min 0.336 – – 0.177
Li et al. (2020) WPD-LSTM 5 min 0.2357 – – –
Korkmaz (2021) SolarNet 5 min 0.309 – – 0.175
Wang et al. (2019) CNN-LSTM 5 min 0.343 – – 0.126
Wang et al. (2019) LSTM-CNN 5 min 0.621 – – 0.221
Proposed CNNESN (Average) 5 min 0.0895 0.0095 0.2604 0.0449

Table 6
Comparison of the proposed CNNESN model with state-of-the-art models over IHEPC
datasets.

Paper RMSE MSE MAE

Rajabi and Estebsari (2019) 0.79 – 0.59
Khan et al. (2020) 0.42 0.18 0.29
Haq et al. (2021) 0.32 0.10 0.31
Ullah et al. (2020) 0.5650 0.3193 0.3469
Kim and Cho (2019) 0.5957 0.3549 0.3317
Mocanu et al. (2016) 0.6663 – –
Tao Han et al. (2020) 0.22 0.17 0.19
Khan et al. (2020) 0.47 0.19 0.31
Kim and Cho (2019) – 0.3840 0.3953
Proposed 0.0472 0.0022 0.0266

Table 7
Different settings for model complexity analysis.

Setting Memory Model

GPU 8 GB GeForce RTX 2070
CPU 64 GB Intel Core i5-6600
RPI 4 GB RPI 4B+
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ple layers to achieve better prediction performance. The better per-
formance comes at the cost of higher computational complexity
and limited generalization towards unseen real-world data. In con-
trast, the ESNs, are introduced for textual prediction data due to
their better modeling abilities of complex and dynamic patterns.
Furthermore, ESNs are truly designed for high-level non-linear
data with key benefit of short-term memory capacity which
ensures to recall satisfying extent of the previous input to the cur-
rent state.
4.5. Time complexity analysis

Alongside error rate reduction in the time-series domain, real-
time implementation of predictive models demands to be light-
weight so that they can be implemented on edge devices to reduce
the computational cost in MG systems. The computationally
expensive models may cause system instability and delay in
Table 8
Comparative analysis of the proposed model with state-of-the-art in terms of running tim

Method GPU CPU RPI

Chen et al. (2020) – 6.387 –
Cheng et al. (2021) 3.5 –
Wang et al. (2019) – 0.6217 h –
Wang et al. (2019) – 7.196 –
Haq et al. (2021) 0.72 1.44 –
Tao Han et al. (2020) – 6.38 20.3
Proposed 0.544 0.874 1.0
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response time which leads to power losses. Considering the appli-
cation of the lightweight modeling techniques, the researchers are
focusing to improve the forecasting results and reduce the compu-
tational cost of the model. In this work, we conducted experiments
to find the computational complexity of the proposed model with
the three available settings, as given in Table 7 and compared it
with the state-of-the-art model developed for RPGP and ECP. The
detailed time complexity analysis of the proposed model and other
state-of-the-art models is given in Table 8. As shown in Table 8, the
computational complexity of the proposed models is lower than
other state-of-the-art models over CPU, GPU, and Raspberry Pi
(RPI) which ensures the implementation of the proposed model
in real time.

The lower computational complexity of the proposed model is
due to the lightweight nature of ESN, where we only train the out-
put weights of the network, speeding up the training and testing
time of the network and provide better predictions accuracy for
time series data. This is the main reason behind lower computa-
tional complexity of the proposed CNNESN model. Compared to
other RNNs, ESN is fast, easy to implement, and does not suffer
from bifurcations. In several domains, ESNs achieved better perfor-
mance compared to other methods for non-linear dynamical
modeling.
5. Conclusion

Balancing electricity generation and consumption is among the
several main objectives of the smart grid. For effective electricity
generation and consumption managament, predictive modeling
techniques provide a significant role by matching the consumption
and generation to ensure sufficient energy transmission towards
end-users. Several predictive modeling techniques are already
available to predict future electricity generation and consumption
with questionable accuracy and higher computational complexity,
that hinder their applicability in real-world scenarios. For this pur-
pose, in this work, we developed an efficient and effective hybrid
model for electricity generation and consumption prediction by
integrating CNN and ESN architecture, achieving high prediction
accuracy and demanding lowered running time. The proposed
CNNESN model is finalized after an extensive ablation study of
e.

Remarks

Intel Core i5 with 8 GB RAM
GTX 1080 GPU
Intel Core i5 with 8 GB RAM
Intel Core i5 with 8 GB RAM
GeForce RTX 2070

6 Intel Core i7 with 16 GB RAM, RPI ARM Cortex A53 processor
14 Refer to details in Table 7
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machine learning, deep learning, and a hybrid combination of
these models. The results aprove that the proposed model achieved
higher prediction accuracy and demand significantly reduced run-
ning time when compared to state-of-the-art prediction models.
The results reveal a high margin of reduction in the error rates over
DKASC dataset (i.e., RMSE (21.95%), MSE (7.15%), and MSE (8.11%))
and IHEPC dataset (i.e., RMSE (17.28%), MSE (9.78%), and MAE
(16.34 %)) as compared to state-of-the-art models. The dominant
derived results indicate that our proposed model can also be effec-
tively used in other time-series prediction domains such as traffic,
weather, and stock price prediction. In the future, we aim to inves-
tigate emerging technologies such explainable artificial intelli-
gence, reinforcement learning, lifelong learning, and active
learning technique for power generation and consumption
prediction.
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