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Objectives: Specialised metabolites in plants are essential in developing new products since these com-
pounds with antioxidant activity can be incorporated into pharmaceutical and food matrices. However,
optimising the extraction processes of these bioactive compounds is necessary for a practical application.
The current study aims to obtain optimal models to predict the total phenolic content (TPC) and antiox-
idant activity (AA) of Bertholletia excelsa barks by the ABTS, DPPH and FRAP methods.
Methods: Different algorithms were applied by Machine-Learning (ML), such as Random Forest (RF) and
Partial Least-Square Regression (PLSR). Central composite rotational design (CCRD) and response surface
methodology (RSM) were used to analyse the ethanol concentration, time and temperature effect on the
extraction. This research used five levels for each factor to evaluate the assays. These response variables
were used to generate second-order predictive models, and the best conditions for the extraction of
bioactive compounds were established. A matrix correlated with the TPC and AA responses was used
to generate predictive models by machine learning.
Results: The best performance to extract phenolic compounds with antioxidant activity by the ABTS
method was achieved when ethanol (50%) at a temperature of 60 �C was used for 30 min of extraction.
The coefficient of determination of the generated models using RF varied from 85% to 99%, while for the
PLSR, the variation was from 85% to 96%. The composition of RGB (red, green, blue) images can be used to
determine the TPC and AA in extracts of B. excelsa.
Conclusion: The results indicated that the current method was a powerful and effective tool for determin-
ing the AA and TPC on B. excelsa barks. In addition, this study permitted to development of a low oper-
ational cost method that can help determine the antioxidant activity of plant extracts by digital images.
� 2023 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Several plant species have been researched because they have
compounds with antioxidant activities in their composition.
Among these species, Bertholletia excelsa Bonpl., known as Brazil
nut or Pará nut, has been much studied (Welna et al., 2008). This
species is a typical plant from Brazil (John and Shahidi, 2010),
belonging to the family Lecythidecaceae (Surek et al., 2022) found
in the Amazon rainforest. The production of its fruit, almonds,
occurs exclusively in natural forests (Ferreira et al., 2021).

There are a large number of researches on almonds in the liter-
ature. B. excelsa has edible almonds of the great economic and
nutritional value as a source of macro and micronutrients
(Bouvie et al., 2016). Almonds have compounds with antioxidant
potential, and their consumption is associated with health benefits
(Yang et al., 2009; Campos et al., 2005). However, the stem of the
chestnut tree is poorly studied, despite being popularly used to
treat liver diseases and as an antimalarial by indigenous and river-
ine peoples of the Amazon Forest (Campos et al., 2005).

Several statistical tools have been developed to help in the opti-
misation of extraction processes of bioactive compounds in plant
extracts (Perin et al., 2020; Sari et al., 2020). These include the
complete experimental design that investigates the influence of
all factors involved in the processes that affect an answer
(Andrade et al., 2015; Waszkowiak and Gliszczyńska-Świgło,
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2016). The central composite rotational experimental design
(CCRD) is a second-order model with repetitions at the centre
point, making it possible to estimate the model’s accuracy and sys-
tematic errors (Xiong et al., 2014; Tas�pinar et al., 2021). In addition
to more traditional approaches such as experimental designs, other
methods have been used currently to generate classification or pre-
diction models. Such methods use different algorithms and can
classify matrices through computer vision and machine learning
(ML) or generate predictive models of different responses.

ML is a data analysis tool where computational algorithms cre-
ate models by training part of the data given to the algorithms
(Kumbhar et al., 2021). Each data set can be adjusted differently
to several existing algorithms. Among them, Random Forest (RF)
has been widely used today. The RF is an algorithm based on the
development of decision trees for classification or regression, built
through random subsets of observed data, creating rules for con-
structing training and validation models. RF can improve the pre-
dictive accuracy of data through cross-validation between the
predicted and observed data of the training and validation model
(Speiser et al., 2019; Lovatti et al., 2019).

In addition to ML’s models, can be highlighted, chemometric
models. Chemometrics has gained more and more space in agricul-
ture and the food industry due to its low operating cost and ease of
sample preparation. Often, chemometrics can be combined with
spectroscopic techniques making the method even more accessible
(Qin et al., 2015).

The partial least squares regression (PLSR) method is a chemo-
metric method. It has been used in food research to estimate
micronutrients (Hu et al., 2021), bioactive compounds, antioxidant
activity (Qiu et al., 2022) and sensory characteristics (Li et al.,
2021). PLSR is a multivariate calibration method that seeks to
obtain a mathematical function that relates chemical and spectral
results (He et al., 2014).

Chemometric models have also been used to optimise processes
in the search for bioactive compounds, an important tool for pre-
dicting the levels of phenolic compounds with antioxidant poten-
tial (Tahir et al., 2017). Phenolic compounds with antioxidant
potential are produced by the specialised metabolism of plants
and are essential organic compounds for their survival (Da Hora
et al., 2021). In humans, these compounds may have nutritional
value (Albuquerque et al., 2021), therapeutic effects and disease
prevention actions (Chiocchio et al., 2021), as well as presenting
pharmacological properties (Santos et al., 2019) and antioxidants
(John and Shahidi, 2010; Perin et al., 2020).

However, there are few or non-existent studies on optimising
the extraction of total phenolic content and antioxidant potential
from B. excelsa barks which are determined by chemometric meth-
ods, such as computer vision and machine learning (ML). In this
context, the present study contemplates two main objectives, pre-
senting two approaches; the first was to optimise the conditions
for extracting phenolic compounds with antioxidant potential
from B. excelsa barks through a CCRD experimental design. The sec-
ond approach was to develop a low operational cost method to
predict the total phenolic content and antioxidant potential from
B. excelsa barks using the PLSR method by digital images.
2. Material and methods

2.1. Chemicals

Folin-Ciocalteu reagent, Gallic acid, 2,4,6-tris(2-pyridyl)-s-
triazine (TPTZ), 2-20-azino-di-(3-ethylbenzthiazoline sulfonic acid)
(ABTS) and Trolox were obtained from Sigma-Aldrich Chemical Co.
(St. Louis, MO, USA). Ethanol was obtained by Êxodo Cientifica Ltda
(Sumaré, SP, Brazil). All Reagents used were of analytical grade.
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2.2. Material and preparation of extracts

Bertholletia excelsa (Brazil nut or Pará nut) barks were collected
in the rural area of Alto Paraíso (Rondônia State, Brazil). The stem
barks were dried in an oven at 37 �C for 24 h and then ground (30
mesh) in a knife mill (Tecnal R-TE-650/1 model, Piracicaba, SP, Bra-
zil). The samples were placed in plastic packages in a freezer at
�12 �C until the analysis was performed.

The extracts were prepared with 0.5 g of B. excelsa bark and
30 mL of ethanol in a water bath under the conditions determined
by the experimental design (Table 1). The extracts were vortexed
at 15 min intervals and then centrifuged at 12,000 RPM in a cen-
trifuge (Hermle Z 200 A, Wehingen, Germany) for 15 min at
20 �C. The supernatant was then collected and stored in a freezer
at �12 �C.
2.3. Experimental design

A central composite rotational design (CCRD) was used to deter-
mine the best extraction condition of the bioactive compounds in
B. excelsa barks. Three factors were used in the experimental
design: solvent concentration, temperature and extraction time.
Five levels for each factor were used in this CCRD and with tripli-
cate at the centre point. This study was conducted with 15 runs
in triplicate, totalling 45 trials. Table 1 shows the independent vari-
ables with their coded and real values, as well as the average
responses and their respective standard deviations TPC (g GAE
100 g�1, GAE: gallic acid equivalent) and antioxidant activity
(AA) by the ABTS, DPPH and FRAP methods.
2.4. Total phenolic content (TPC) and antioxidant activity (AA)

TPC was determined by the Folin-Ciocalteu spectrophotometric
method, and the absorbance was measured at 740 nm, using gallic
acid as a reference standard. The results were expressed in g GAE
100 g�1 (GAE: gallic acid equivalent, 0 to 250 lL mL�1), according
to the methodology described by Singleton et al. (1999).

Antioxidant activity was performed by the ABTS radical scav-
enging method (2–20-azino-di-(3-ethylbenzthiazoline sulfonic
acid)) as described by Re et al. (1999). Initially, 7 mmol L�1 of ABTS
solution reacted with 140 mmol L�1 of potassium persulfate and
incubated in the dark at 25 �C for 16 h. After this time, 1 mL ABTS
solution was diluted with 60 mL ethanol to obtain an absorbance of
0.70 ± 0.02 at a wavelength of 734 nm. The reaction consisted of
30 lL of the extract with 3 mL of the ABTS solution, and the results
were expressed in mM TE g�1 (TE: Trolox equivalent, 10 to
1500 lM).

The scavenging of the DPPH (1,1-Diphenyl-2-picrylhydrazyl)
radical was carried out according to the methodology described
by Perin et al. (2020). An aliquot of 0.5 mL of the extract and
0.3 mL of the 0.5 mM DPPH ethanolic solution was used in this
reaction. The absorbances were read in a spectrophotometer at
517 nm, and the results were expressed in mM TE g�1 (10 to
200 lM).

Finally, the ferric reducing antioxidant power (FRAP) assay was
determined, and the FRAP reagent was prepared by mixing 25 mL
of 300 mM acetate buffer (pH 3.6), 2.5 mL of 10 mM TPTZ in 40 mM
HCl, and 2.5 mL of 20 mM FeCl3 in aqueous solution. An aliquot of
100 mL of the extract was added to 3 mL of the FRAP reagent and
maintained in bath water at 37 �C for 30 min. The reducing power
of Fe+3 to Fe+2 in the presence of TPTZ was determined according to
the methodology proposed by Singleton et al. (1999). The results
were obtained in a spectrophotometer at a wavelength of
595 nm and expressed as mM Fe+2 g�1 (100 to 2000 lM).



Table 1
Central composite rotational design (CCRD) and results for the extraction of the total phenolic content (TPC) and antioxidant activity (AA) by ABTS, DPPH and FRAP methods on
Bertholletia excelsa barks.

Run Ethanol
(%)

Temperature
(�C)

Time
(min)

TPC
(g 100 g�1)

ABTS
(mM TE g�1)

DPPH
(mM TE g�1)

FRAP
(mM Fe2+ g�1)

1 �1 (20) �1 (50) �1 (50) 14.83 ± 0.18* h 57.50 ± 2.48 k 665.14 ± 3.28 h 1623.61 ± 15.92 k

2 �1 (20) �1 (50) 1 (100) 15.87 ± 0.03 g** 146.53 ± 2.23 i 622.00 ± 15.89 hi 2099.05 ± 7.98 h

3 �1 (20) 1 (70) �1 (50) 16.41 ± 0.13 f 146.43 ± 5.32 h 569.45 ± 10.56 i 2130.21 ± 16.63 g

4 �1 (20) 1 (70) 1 (100) 14.54 ± 0.14 h 234.00 ± 7.33 e 957.66 ± 2.40 g 1996.99 ± 13.95 i

5 1 (80) �1 (50) �1 (50) 17.38 ± 0.21 e 227.09 ± 0.36 e 1477.41 ± 10.61 d 2481.18 ± 13.14 f

6 1 (80) �1 (50) 1 (100) 19.27 ± 0.14 b 193.84 ± 4.26 g 1456.96 ± 39.44 d 2647.28 ± 6.79 c

7 1 (80) 1 (70) �1 (50) 18.00 ± 0.08 cd 211.51 ± 5.07 f 1459.01 ± 13.88 d 2583.14 ± 2.46 d

8 1 (80) 1 (70) 1 (100) 15.81 ± 0.04 g 194.16 ± 5.74 g 1173.42 ± 15.80 f 2501.28 ± 1.98 f

9 �1.68 (0) 0 (60) 0 (75) 10.86 ± 0.07 i 149.62 ± 5.40 hi 327.22 ± 0.48 j 1635.70 ± 2.44 k

10 1.68 (100) 0 (60) 0 (75) 16.07 ± 0.22 fg 121.33 ± 4.52 j 1200.98 ± 10.10 f 1819.50 ± 7.48 j

11 0 (50) �1.68 (40) 0 (75) 17.83 ± 0.02 d 312.12 ± 6.62 c 1370.70 ± 30.51 e 2546.73 ± 12.03 e

12 0 (50) 1.68 (80) 0 (75) 20.38 ± 0.08 a 325.80 ± 2.33 c 1661.67 ± 51.54 c 2783.03 ± 4.12 a

13 0 (50) 0 (60) �1.68 (30) 20.44 ± 0.12 a 423.14 ± 1.72 a 1317.30 ± 34.57 e 2727.94 ± 13.41 b

14 0 (50) 0 (60) 1.68 (120) 19.27 ± 0.15 b 353.31 ± 9.48 b 2010.83 ± 7.94 a 2765.78 ± 4.29 a

15 0 (50) 0 (60) 0 (75) 18.34 ± 0.07 c 283.35 ± 1.23 d 1843.25 ± 2.69 b 2624.23 ± 12.71 c

Values followed by different letters in the same column are significantly different (p � 0.05). GAE: Gallic acid equivalent, TE: Trolox equivalent. The results are expressed as
mean ± standard error (n = 3).
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2.5. Statistical analysis

Statistical analysis was conducted using the statistic software
(STATISTICA 8.0). All determinations were carried out in triplicate,
and the data was recorded as mean and standard deviation. The
data were analysed using a one-way analysis of variance (ANOVA)
with a 95% confidence level followed by the Tukey test. The effects
were estimated and analysed by the Pareto chart (Supplementary
material – Fig. SI 1). Each analysed response generated second-
order models, which in turn generated response surface plots
(Fig. 1). The quadratic equations are expressed in Supplementary
material – Table SI.1. Finally, the global response (GR) was calcu-
lated using Eq. (1). The optimal conditions for the evaluated factors
were calculated using the partial derivative method.

RG ¼ ½R x1ð Þ=MR x1ð Þ þ R x2ð Þ=MR x2ð Þ þ :::þ R xnð Þ=MR xnð Þ ð1Þ
where R(xn) is the answer for an element in a particular experiment
and MR(xn) is the largest answer in the set for element n.

The performance of the models was evaluated using five statis-
tical indices, namely, coefficient of determination (R2), root mean
square error of calibration (RMSEC), residual predictive value
(RPD), dependent proportion (SD) and chi-square test (v2). Pre-
dicted versus observed plots were constructed using OriginPro
8.5 software.

2.6. TPC and AA estimation through machine learning (ML)

All assays obtained through experimental design (CCRD),
together with TPC and AA responses by ABTS, DPPH and FRAP
methods (Supplementary material - Table SI.2), were used for the
modelling. The essays of each answer were obtained in a mini-
photographic studio, and the digital images were acquired using
the Apple iPhone cell phone. Additionally, the parameters used in
this analysis were previously reported by the team in Perin et al.
(2020) for the standardisation and determination of the conditions
such as distance, zoom, angle and lighting. The same CCRD data
matrix and responses (TPC, AA) were input for modelling by Ran-
dom Forest (RF) and PLSR. The dataset was divided for construction
(70% of the data) and validation of the models (30% of the data).
The models were trained by generating the predicted values for
each evaluated response. The performance of each model for each
answer was evaluated by the figures of merit mentioned in item
2.5. The observed versus predicted response values for each model
and each response (TPC and AA) were plotted on Cartesian axes
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(Figs. 3 and 4). WEKA 3.8.5 software was used to generate the pre-
dictive models through ML, while the Random Forest (RF) algo-
rithm was used to estimate TPC and AA.

2.7. Multivariate calibration by partial least-squares regression (PLSR)
models

Partial least-squares regression (PLSR) was used to predict the
total phenolic compounds and antioxidant activity by ABTS, DPPH
and FRAP methods. Two data matrices were needed to implement
the multivariate calibration method by PLSR. Thus, the X matrix
was composed of the grayscale values of the digital images, and
the Y matrix contained the values obtained through the responses
of the spectrophotometric tests. In this way, two approaches were
carried out; the first was the images of the extracts (EI) in matrix X
and the values of the assay concentrations (TPC and AA) in matrix
Y. In the second approach, the X matrix of the assay images (AI)
was used, while the Y matrix contained their respective
concentrations.

Chemostat� V software was used to extract grey tones and PLSR
modelling, while OriginPro 8.5 software was used to obtain the
predicted versus observed values graph. The parameters to assess
the quality of the model were: root means square error calibration
(RMSEC), coefficient of determination (R2), residual predictive
value (RPD), degrees of freedom (DF) and the number of latent
variables (VL).
3. Results and discussion

3.1. Screening design – TPC and AA analysis

The independent variables selected for this study were solvent
concentration (ethanol), time (min) and temperature (�C) extrac-
tion. According to Chew et al. (2011), these are the main factors
that can influence the extraction of phenolic compounds and the
antioxidant activity in plant extracts. The TPC in B. excelsa barks
ranged from 10.86 ± 0.007 to 20.44 ± 0.121 g GAE 100 g�1 (Table 1).
At the same time, the AA by ABTS and DPPH methods ranged from
57.40 ± 2.48 to 423.14 ± 1.72 and 327.22 ± 0.48 to 2010.83 ± 7.9
4 mM TE g�1, respectively. Finally, the AA results by the FRAP
method went from 1623.61 ± 15.92 to 2783.03 ± 4.12 mM Fe2+

g�1. To date, no other author has reported on the TPC and AA of
B. excelsa bark extracts in this extraction condition. Therefore, in
the proceeding section, comparisons to other authors’ work are



Fig. 1. Fitted surface plot obtained from interactions of conditions: ethanol (%), temperature (�C) and time (min) for each variable. A, B and C: Total phenolic content (TPC); D,
E and F: Antioxidant activity by ABTS method; G, H and I: Antioxidant activity by DPPH method and J, K and L to FRAP method by Central Composite Rotational Design (CCRD)
on Bertholletia excelsa barks.
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limited to those concerning the nut and not the barks from B.
excelsa. The TPC obtained in this work for the barks was higher
than that of edible Brazil nuts from B. excelsa reported by
Maldonado et al. (2020), who found 0.162 g GAE 100 g�1 on Brazil-
ian nut from São João da Baliza, Brazil.

The extracts obtained by runs 12 and 13 of the CCRD showed
the highest TPC values and did not present a statistically significant
difference between them (p > 0.05). In this study, it was observed
that increasing the concentration of water in the extracting solu-
tion enabled an improvement in the extraction of compounds with
antioxidant activity (AA) in B. excelsa barks. In fact, the binary-
solvent system has been reported by several authors (Perin et al.,
2020; Sari et al., 2020) as more efficient for the extraction of
antioxidant compounds in plant extracts compared to a system
with only a single solvent). Additionally, adding water to the
organic solvent can increase the bioactive compounds’ extraction
4

efficiency because the vegetal material can swell, promoting pene-
tration of the solvent on the sample matrix (Chew et al., 2011).

However, when the concentration of water in the extracting
solution was higher than the level corresponding to the central
point (50% water and ethanol v/v), these compounds’ extraction
efficiency decreased. This is possibly due to solvent polarity and
solute–solvent bioaffinity (Waszkowiak and Gliszczyńska-Świgło,
2016). The 30 min extraction time in these extracts was enough
to extract the largest amount of compounds with antioxidant
activity by the ABTS method. Additionally, the extracts obtained
with the solvent 50% ethanol/water (v/v) during 120 min of
extraction at 60 �C was the ideal condition for extracting com-
pounds with AA by the DPPH and FRAP methods. Furthermore,
temperatures above 60 �C indicated greater efficiency in extracting
phenolic compounds with antioxidant activity by the three
methods.



Fig. 2. Observed and predicted values of Machine Learning model performance by Random Forest on Bertholletia excelsa barks: A, B, C and D: TPC: Total phenolic content,
antioxidant activity by ABTS method and antioxidant activity by DPPH and FRAP methods respectively in the model set. E, F, G and H the respective variables in the validation
set. DF: degrees of freedom, R2: coefficient of determination, RMSEC: root mean squared errors of calibration, RPD: residual predictive values.
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The antioxidant analysis methodologies can quantify com-
pounds with different polarities. Thus, the ABTS and DPPH meth-
ods allow analysis for hydrophilic and lipophilic antioxidants
using various radical sources. Additionally, the FRAP and TPC
methods are evaluated according to the ability of compounds to
reduce their respective reactants. Thus, as the compounds are
extracted according to the interactions of the factors, it is possible
to quantify them by different methods, making the evaluation
5

more complete and analysing a wide spectrum of compounds with
antioxidant potential.

When evaluating the estimation of the effects (Supplementary
material - Table SI.2), it was possible to verify that the solvent con-
centration was the most important factor for the TPC extraction
(Supplementary material - Fig. SI.1A) and consequently for the
AA of these compounds. In the second-order model (Equation X)
for TPC, the linear and quadratic terms were significant



Fig. 3. The extracted color pattern of extracts from Bertholletia excelsa barks (A),
color pattern along with the reaction medium for testing total phenolic compounds
(B), along antioxidant activity measured by ABTS assay (C), DPPH assay (D) and
along FRAP assay (E) used for modelling by PLSR corresponding to run R1 to R15,
according to central composite rotational design (CCDR).
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(p < 0.05). The time factor also had a significant effect in this model,
as well as the solvent X temperature and time X temperature inter-
actions, significantly influencing the extraction processes
(Fig. SI.1).

In the analysis of AA by ABTS (Supplementary material -
Table SI.2 and Fig. SI.1B), the individual factor solvent concentra-
tion was the only factor that had a significant effect, as well as
the interactions, solvent concentration X time and solvent concen-
tration X temperature (p < 0.05).

The significant influencing factors for the AA method by DPPH
(Supplementary material - Table SI.2 and Fig. SI.1C) were: solvent
concentration, temperature (quadratic terms) and time, as well
as the interaction of solvent concentration � time (p < 0.05).
Finally, the factors that had a significant effect on the FRAP AA
method (Supplementary material - Table SI.2 and Fig. SI.1D) were:
solvent concentration, temperature (linear terms) and the
time � temperature interaction (p < 0.05). In contrast, the other
factors and interactions showed no significant influence on the
model (p > 0.05).
3.2. Response surface methodology (RSM)

For the TPC analysis, it can be observed that the solvent concen-
tration X temperature interaction (Fig. 1A) showed a more opti-
mised response close to the central point, while the time X
temperature interaction (Fig. 1C) showed a tendency to optimise
at levels higher, above the centre point. When analysing Fig. 1A
and C with the data expressed in Table 1, it appears that the run
with the best apparent optimisation for TPC (20.44 g GAE
100 g-1) was obtained with 50% ethanol (v/v) at 60 �C for 30 min
of extraction. For the ABTS assay, the most influential factor in
optimizing the extraction of the compounds with antioxidant
activity was the solvent concentration (Fig. 1D–F), which, under
conditions close to the central point, seems to maximise the
extraction of these compounds with antioxidant activity. This con-
dition was similar to the temperature factor (Fig. 1F).

Considering the extraction method adopted in this study, these
results corroborate those found by Perin et al. (2020) in a study of
Calycophyllum spruceanum barks. The authors found that the trans-
fer of mass to the solvent is related to the time and temperature of
extraction. However, according to Chew et al. (2011) mass transfer
increases with time until the maximum extraction is reached.
However, high temperatures can degrade compounds with AA.

The model for DPPH and AA determination showed that the
solvent � time interaction was the only significant (p < 0.05)
(Fig. 1G–I). This proves and confirms that by the DPPH method,
the time factor and the solvent concentration present higher
results near the central point. In the FRAP assay (Fig. 1L), the tem-
perature X time interaction was significant, as well as the solvent
concentration and temperature factors (p < 0.05) (Fig. 1J, K), (Sup-
plementary material - Table SI 2), evidencing that solvent concen-
tration closer to the central point, and higher temperatures showed
better responses. The lack of fit (Table SI 2) for all models was sig-
nificant (p < 0.05). It denotes that the models would need adjust-
ments. The data were fitted to models using machine learning
algorithms (RF and PLSR) to bypass this. This approach showed
that the ML models were suitable for the proposed models.

In general, among the evaluated response variables, there was a
similar behaviour in relation to solvent concentration, indicating
that ethanol concentrations at 50 and 60% are the best conditions
for extracting compounds with AA. As for temperature and time,
the two factors affect the dependent variables inversely propor-
tional ways. This fact is important and should be considered in
these types of research, as high temperatures would lead to



Fig. 4. Observed and predicted values of PLSR model and prediction performance on Bertholletia excelsa barks: A, B, C and D: TPC: Total phenolic compounds, antioxidant
activity by ABTS method and antioxidant activity by DPPH and FRAP methods respectively in the extract images. E, F, G and H the respective variables in the assay images.
NLV: Optimum number of latent variables, DP: dependent proportion, R2: coefficient of determination, RMSEC: root mean squared errors of calibration, RPD: residual
predictive values.
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ethanol boiling since its boiling point is around 78 �C (Souza et al.,
2021). Furthermore, it is essential to note that high extraction tem-
peratures can degrade phenolic compounds with antioxidant
potential in plant extracts. In this case, using lower temperatures
and longer times to extract bioactive compounds from plants is
recommended (Sari et al., 2020).
7

3.3. Global response (GR) for the dependent variable (TCP, ABTS, DPPH,
FRAP)

The global response equation (Eq. (1) was used to determine the
general optimal condition for the dependent variables. GR deter-
mined that the extraction conditions used in run 13 (50% ethanol,
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60 �C and 30 min) can be considered ideal for extracting bioactive
compounds in B. excelsa barks. The GR results agree with the results
presented and discussed until the current topic. Supplementary
material - Table SI.1 shows the values predicted by the model with
the data observed in the test results. In this study, the coefficient of
determination for TPC was 0.92, indicating that the model can
explain 92% of the data variability. These values were evaluated by
the Chi-squared test at a significance level of 5%. The results showed
no significant difference (p > 0.05) between predicted and observed
values for TPC, indicating high model reliability.

The coefficients of determination for the antioxidant activity
assays by the ABTS, DPPH and FRAP methods were respectively
0.68, 0.89 and 0.90. However, according to this methodology, only
the DPPH test presented a significant Chi-squared test (p < 0.05).
This denoted a statistically significant difference between the
observed and predicted values when the DPPH test was modelled.
Thus, this test was not the most adequate to evaluate the antioxi-
dant activity in B. excelsa bark extracts. Additionally, from the
quadratic equations generated by the model (Supplementary
material - Table SI.1), it was possible to calculate the best condition
for the studied factors (solvent concentration, temperature and
extraction time). Thus, applying partial derivatives and subsequent
data interpolation to decode the levels was adequate to find the
best extraction condition.

These results are represented in Supplementary material -
Table SI.3 for each factor studied concerning the dependent variables
TPC and antioxidant activity by the ABTS, DPPH and FRAP methods.
The best condition for TPC by the method of partial derivatives was
with ethanol 58.86%, at a temperature of 63.67 �C during
28.31 min of extraction. When we compare these results with the
best run of the experimental design (Run 12, Table 1), we observe
that the values are close to the values determined by the equations,
evidencing that the optimisation was indeed efficient for TPC.

As for antioxidant activity by the ABTS method, the best values
were obtained when 50% ethanol was used at 60 �C temperature
for 75 min (Supplementary material - Table SI.3). Likewise, when
comparing the results of run 13 (Table 1), we observed that the sol-
vent concentration and extraction temperature also correspond to
the results obtained through the equations.

The results obtained experimentally for the optimisation of the
model for DPPH were 59.91% ethanol, 60 �C of temperature and
extraction time of 81.45 min (Supplementary material -
Table SI.3). In our assays, run 14 showed the best response to AA
by the DPPH method. In this analysis, the temperature factor was
closer to the optimised condition, followed by the solvent concen-
tration factor, which needs a slight adjustment.

The optimal conditions obtained through partial derivatives for
the FRAP assay were obtained with 58.58% ethanol, 60 �C and an
extraction time of 87.96 min. Run 14, expressed in Table 1, corre-
sponds to these conditions. This result shows that the extraction
temperature was the factor that most suited the model, while
the solvent concentration factor still needs slight adjustments.
The extraction time factor was lower than that used in the exper-
imental model. However, it is worth noting that the time factor
was not significant for the model (Supplementary material -
Table SI. 1 and Fig. SI. 1). Studies conducted by Gomes et al.
(2019) show that the extraction temperature of 60 �C was the most
suitable for the extraction of bioactive compounds of solid residue
(cake) from Brazil nut. Sartori et al. (2020) obtained results for TPC
similar to those obtained in this study with temperatures of 60 �C
and ethanol 70% as extraction solvent.

3.4. Predictive modelling for AA and TPC by RF

Machine Learning (ML) is a tool capable of modelling experi-
mental data through computational algorithms. Fig. 2A-H refer to
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models by Random Forest. The probability calculated by the Chi-
squared test for the TPC data showed that there is no statistically
significant difference (p > 0.05) between the observed and pre-
dicted values by the models (Fig. 2A and E). The coefficient of
determination (R2) was 0.99 with DF (degrees of freedom) of 29,
indicating that the proposed model explained 99% of the data vari-
ability. The value for RMSEC (mean squared error) was 0.333.
According to De Carvalho et al. (2019), the RMSEC value indicates
the modelling error and the smaller this value, the smaller the
error produced by the calibration, making the model more robust.
The value for RPD (residual predictive value) was 8.21. RPD above 3
are values that classify the model as reliable (Santos et al., 2019).
The Chi-Squared test also checked the predicted and observed val-
ues. We observed no statistically significant difference (p > 0.05)
between these values for TPC. For this model, the R2 was 0.98.
The RMSEC was 0.381 and RPD 6.52 (Fig. 2E). These metrics show
the good suitability of the data for the proposed model.

Model results for the ABTS assay for AA are shown in Fig. 2B and
F. The chi-squared test was performed to assess whether there was
a difference between the observed and predicted values. The
results showed no statistically significant difference (p > 0.05)
between these values. R2 was 0.99 for full-model and validation
models. The values for RMSEC and RPD were respectively 10.43
and 8.44 (full-model) (Fig. 2B). While for the validation model,
the values were 10.83 for RMSEC and 9.07 for RPD (Fig. 2F). These
metrics also show that the data were adequately adjusted to the
proposed models. Results for the DPPH assay are shown in
Fig. 2C and G, while the modelling results for FRAP are shown in
Fig. 2D and H. According to the Chi-squared test, there was no sta-
tistically significant difference between the observed and predicted
values for the FRAP models (p > 0.05). In this study, we can verify
that the generated models and the obtained metrics attest that the
models were adequate. It is also observed that the Random Forest
algorithm presented the best metrics of the models compared to
PLSR. These results agree with previous studies by Nickel et al.
(2017) with European mosses using the Random Forest algorithm,
which obtained R2 values between 0.32 and 0.64, with low RMSEC
values. In their essays, Fu et al. (2014) identify palmitoylation sites
by coupling multi amino acid properties with random forest (RF).
These authors reported the superiority of this algorithm as a pow-
erful and effective tool for identifying palmitoylation sites.

3.5. Chemometric model of assay images (AI) and extracts (EI) using
partial least squares regression (PLSR)

The chemometric model used in this work is a less conventional
approach, but it has gained ground due to its practicality, speed
and low cost (Perin et al., 2020). Fig. 3 shows the images of the
tests and extracts used in the modelling. In this study, the mod-
elling was carried out using two approaches: in the first one,
images of the extracts (EI) were obtained according to the factorial
design and the responses of the dependent variables (TPC, ABTS,
DPPH and FRAP) were used. In the second approach, the modelling
was performed using the trial images (AI) with their respective val-
ues for each answer. In this way, Fig. 3A corresponds to the images
of the extracts obtained in the experimental planning, which were
submitted to regression models using the values obtained in the
TPC and AA (EI) tests. Fig. 3B, C, D and E correspond to the model
where the images of the extracts were used after the addition of
the specific reagent used in each colorimetric test, and the regres-
sion was performed with the specific values of each test.

The generated models could correlate the data predicted by the
model with the observed values obtained experimentally. The
accuracy of models generated by PLSR can be evaluated by their
correlation coefficient and error estimates (Fig. 4A–H). The number
of latent variables (VL) for each dependent variable was set at 5,
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keeping the smallest number of LVs possible. According to Santos
et al. (2019), the greater the number of VL, the greater the noise,
and it is incorporated into the models, decreasing their reliability.
The values of R2 (coefficient of determination) for the models were
between 0.85 and 0.96.

According to Andrés et al. (2007), to consider a reliable model,
the coefficients of determination must be above 0.80; this value
is viewed as the limit of reliability in mathematical modelling.
The images of the 15 extracts obtained in each CCRD run were used
to build the model. Results of the models generated for the vari-
ables TPC, DPPH, ABTS and FRAP are shown in Fig. 4A-D. In the EI
model for the TPC, the coefficient of determination (R2) was equal
to 0.96 and VL equal to 5, while the RMSEC and RPD were respec-
tively 0.50 and 3.45. According to these metrics, the approach
using RGB patterns of extracts versus response variables was con-
sidered adequate.

The model results for the assay images (AI) for all response vari-
ables are shown in Fig. 4E-F. The model for the TPC test is repre-
sented in Fig. 4E. In this model, the R2 was 0.88 with 5 VL. At the
same time, the RMSEC and RPD metrics were, respectively, 0.86
and 3.45. These values show that the model was adequate and
can be used for predictive purposes to determine concentrations
of phenolic compounds.

The results for the EI ABTS model are represented in Fig. 4B. The
model shows a coefficient of determination (R2) of 0.85, RMSEC of
36.83 and RPD of 1.78. The R2 for the model with the AI in the ABTS
test was 0.94, RMSEC of 22.50 and RPD of 1.78 (Fig. 4F). The results
for the DPPH assay in the EI approach are represented in Fig. 4C. In
this model, the R2 was 0.87, RMSEC of 171.23 and RPD of 2.97. On
the other hand, the results for the AI model are represented in
Fig. 4G, in which R2 was 0.94 with an RMSEC of 114.92. By evalu-
ating these results, we can verify that the model with AI, mainly for
AA by the ABTS and DPPH method, was better than the model
obtained by EI. Finally, the modelling was performed for the FRAP
test and the two approaches (EI and AI). The results for FRAP for the
EI approach are represented in Fig. 4D. In this model, R2 of 0.86 and
RMSEC of 147.82 were obtained. For the AI approach (Fig. 4H), the
R2 value was 0.92 and 109.12 for RMSEC. Both approaches obtained
an RPD value of 3.09 using five latent variables. The results were
generally efficient for all tests, except for the ABTS test. However,
as previously noted, the ABTS, FRAP and DPPH assays were slightly
more efficient in the approach using AI with its respective concen-
tration. In contrast, the EI approach proved to be more efficient for
the TPC assay. These differences in the models using EI or AI may
be related to the grey tones of the RGB channels. In the case of
the extracts, only a slight difference in the shade of the green col-
our may not be enough to capture the differences present in the AA
or TPC. On the other hand, when AI is used, the colour differences
in each type of test are more pronounced and adequate to justify
the fit of the best predictive models.
4. Conclusion

Optimising extraction conditions for compounds with antioxi-
dant activity from B. excelsa barks was possible using CCRD. In this
approach, it was possible to determine that the solvent was the
most important factor, and it affects antioxidant activity by the
ABTS, FRAP and DPPH assays, as well as the content of total pheno-
lic compounds (TPC) present in the plant extract. In addition to
classical methodologies, this work presents other new proposals
to determine antioxidant activity and TPC in B. excelsa barks. These
new methodologies were developed by concatenating visible spec-
troscopy with computer vision through machine learning algo-
rithms. Algorithms applied by Machine-Learning (ML), Random
Forest (RF) and Partial Least-Square Regression (PLSR) can be used
9

to determine the antioxidant capacity of bioactive compounds. In
fact, all the results of the models evaluated by their metrics that
attest to their quality proved to be adequate and promising. Still,
we can mention that our article is the first research that uses
images of extracts of B. excelsa and assays. In this way, the new
approaches reported in this work can serve as a basis for other
studies, as such strategies reveal the antioxidant potential of natu-
ral products.
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