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In the diagnosis of hydronephrosis, there are cases where pathological symptoms and causes are difficult
to judge. In order to improve the ultrasound diagnosis of hydronephrosis, based on CNN neural network
technology, this paper analyzes the traditional image resolution processing algorithm by contrast analy-
sis method, and proposes a fast image super-resolution reconstruction algorithm. The method improves
the image processing efficiency and combines the CNN neural network to effectively treat the
hydronephrosis ultrasound image. In addition, this study analyzes the clinical effects of the algorithm
by establishing a controlled trial. The analysis shows that the results of this study can obtain effective
diagnosis results, that is, the diagnosis results of this study can provide an effective reference for the diag-
nosis of hydrocephalus ultrasound images, which has certain clinical significance.
� 2020 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Hydronephrosis is a common disease in the urinary system, and
clinicians are looking forward to determining the cause of the dis-
ease. Moreover, the obstruction can occur anywhere in the urinary
tract. The reason is the defect of the ureteropelvic junction, the
obstruction of the urinary tract, or the extra-uropathic lesion
(Portero et al., 2019; Muraoka et al., 2020; Misztal et al., 2020;
Orts-Del’Immagine et al., 2020; Ohata et al., 2019; Kotani et al.,
2019). Ultrasound detection is the main means of diagnosing
hydronephrosis, but there are many kinds of interference factors
in actual detection. Therefore, it is necessary to combine the auxil-
iary diagnosis measures to improve the diagnosis (Liu et al., 2017).

At present, renal magnetic resonance imaging (MRI) examina-
tion mainly uses 1.5 T MRI, but 3.0 T MRI has a higher signal-to-
noise ratio, faster imaging and better spatial resolution (Miyan
et al., 2019; Ruan et al., 2019; Gu et al., 2019; Bhrini et al., 2020;
Ruan et al., 2019). Moreover, it can provide good anatomical image
high contrast and sufficient image resolution, so new imaging tech-
niques are increasingly used to evaluate renal function (Huynh
et al., 2016). The current common MR examination methods
include Perfusion-Weighted Imaging (PWI) (Ma et al., 2017), MR
renography (Rianthavorn and Limwattana, 2015), contrast plasma-
pheresis (Chen et al., 2015), diffusion-weighted imaging (DWI)
(Salehi et al., 2017) diffusion tensor imaging (DTI) (Zhang and
Yang, 2016), blood oxygenation level-dependent (Ren et al.,
2016) (BOLD) and renal sodium ion magnetic resonance imaging
(Alioua et al., 2016) (sodium MRI). MR diffusion imaging is cur-
rently the only non-invasive method for quantitatively detecting
the diffusion and microcirculation perfusion information of living
tissue at the molecular level. The diffusion motion of molecules
is derived from the random thermal motion of water molecules
at the microscopic level, that is, Brownian motion, which is the
basis of MR diffusion imaging (Gonzalez-Sosa et al., 2015). Clinical
applications of MR diffusion imaging include MR diffusion-
weighted imaging (DWI) and MR diffusion tensor imaging (DTI)
(Bejar and Miranda, 2015). MR diffusion-weighted imaging (DWI)
uses the microscopic random motion of water molecules in the
gradient field and changes in apparent diffusion coefficient (ADC)
of the renal parenchyma to assess changes in renal function, which
can reflect changes in the diffusion amplitude of water molecules
(Iakymchuk et al., 2015; Pluim et al., 2019; Song et al., 2018;
Donatelli et al., 2018; Sarbu et al., 2020). The transport of water
in renal parenchyma has an important effect on renal function.
The ADC value of renal parenchyma can be affected by water con-
tent, renal perfusion and renal blood volume. Also, renal blood flow
and tubule fluid flow can affect ADC value (Che et al., 2017).
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Foreign literature reports DWI has been used to evaluate renal
function changes in a variety of kidney diseases, such as renal arte-
riosclerosis and kidney transplantation (Burrascano et al., 1999).
MRI diffusion tensor imaging (DTI) is based on DWI to quantify
the diffusion anisotropy of water molecules from multiple direc-
tions using diffusion-sensitive gradients to reflect the fine struc-
ture and functional information of living tissue. It can measure
not only the ADC value but also the anisotropy index value. The lat-
ter provides a difference in the direction of dispersion of water
molecules, which can provide more diagnostic information for
renal function and structural changes (Zhao et al., 2016). The basis
of its application is based on the radial distribution of renal
tubules, which leads to anisotropy of diffusion. The renal medulla
diffusion tractography (DTT) post-processing technique can dis-
play densely arranged radiation beams in the renal medulla and
can visually show the tubular walking and distribution patterns
(Bakhtiyari et al., 2015).
2. Material & methods

The biggest difference between convolutional neural networks
and BP artificial neural networks is that adjacent neurons in the
CNN structure are not fully connected, but partially connected,
and the perceptual region of each neuron comes from some neu-
rons in the upper layer of the neuron (Prandi et al., 2017).

The goal of the Super-Resolution Convolutional Neural Network
(SRCNN) is to learn to obtain the mapping function F to achieve an
end-to-end mapping between the low-resolution image block Y
and the high-resolution image block X. Since the above operations
can be realized by convolution, a convolutional neural network can
be established. The network structure is as shown in Fig. 1
(Lombardo and Pizzo, 2016).

Feature extraction and representation. The first layer of convo-
lution operation is equivalent to convolving the image, and each
convolution kernel corresponds to a basis function so that the
image block can be represented by a set of bases (Hamid et al.,
2016):

F1 Yð Þ ¼ max 0;W1 � Y þ B1ð Þ
The size of W1 is c � f 1 � f 1 � n1. c represents the number of

channels input to the image, f 1 � f 1 represents the size of the con-
volution kernel, and n1 is the number of convolution kernels. It can
be explained that W1 is performed a convolution operation n1

times on the input image, and the convolution kernel size of each
convolution is c � f 1 � f 1. The output corresponds to the n1 number
of the feature map. B1 is a vector of h dimensions, and each convo-
lution kernel corresponds to an n1. After convolution, this article
responds to the results with an activation function.
Fig. 1. FSRCNN netw
Nonlinear mapping. In the first layer of convolution operations,
n1 the number of convolution kernels is used in this paper, so n1

the number of feature maps can be obtained. In the nonlinear
mapping layer, these n1-dimensional feature vectors are mapped
to n2-dimensional feature vectors. The second layer convolution
operation can be expressed as (Zhang et al., 2015):

F2 Yð Þ ¼ max 0;W2 � F1 Yð Þ þ B2ð Þ
No more nonlinear mapping layers are used in SRCNN. Increas-

ing the nonlinear mapping layer can improve the quality of the
reconstructed image, but it increases the complexity of the model,
which leads to more time training for the model.

Image reconstruction. The convolution layer convolves the fea-
ture vector of the high-resolution image block outputted from the
previous layer and outputs the reconstructed image. The third
layer convolution operation can be expressed as:

F Yð Þ ¼ W3 � F2 Yð Þ þ B3

Among them, the size of W3 is n2 � f 3 � f 3 � c and B3 is an
c-dimensional vector.

Although these three operations play different roles, they are all
implemented by convolution. Thus, a three-layer CNN network can
be obtained. After the network structure is determined, to learn the
mapping function F between the low-resolution image block and
the high-resolution image block, this paper needs to continuously
optimize the parameter h ¼ W1; W2; W3; B1; B2; B3f g in the net-
work to reduce the error value between the reconstructed image
and the real high-resolution image. In this paper, the mean square
error (MSE) is used as the Loss function of network training:

L hð Þ ¼ 1
n

Xn

i¼1

F Yi; hð Þ � Xij jj j2

Among them, n represents the number of training samples. It
has been found through research that when the variables in the
above structure are set to f 1 ¼ 9; f 3 ¼ 5; n1 ¼ 64; n2 ¼ 32, the
trained network has a better reconstruction effect on the image.
For the three channels of the color image, this paper only considers
the brightness channel of the image, so this paper takes c ¼ 1. Of
course, the values of the variables f and n can also be larger, so that
the convolution kernel of the feature extraction in the network is
larger, which increases the number of parameters in the network
and also increases the amount of sample data required for network
training. Therefore, research on this aspect can be further carried
out.

Based on SRCNN, a fast image super-resolution reconstruction
algorithm, Fast Super-Resolution Convolutional Neural Network
(FSRCNN) for short, is proposed. The structure of the network is
similar to an hourglass shape, as shown in the following Fig. 1.
ork structure.
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The first four layers are convolutional layers, and the last layer
is the deconvolution layer. For the sake of easy understanding, the
convolutional layer is denoted as Conv f i;ni; cið Þ and the deconvolu-
tion layer is denoted as DeConv f i; ni; cið Þ. The variables f i; ni and ci
are the convolution kernel size, the number of convolution kernels,
and the number of channels. The specific operations of each layer
are described in detail below.

Feature extraction layer. This layer is similar to the first layer in
the SRCNN structure.

After the input image is subjected to a convolution operation of
a set of filters, each input image block is represented as a high
dimensional feature vector. FSRCNN uses the convolution kernel
of f i ¼ 5 as the first layer of the convolution kernel. The experiment
only trains the channel of the image, so the experiment
takesc1 ¼ 1. Therefore, this paper only needs to determine the
number n1 of convolution kernels. From another point of view, n1

can be regarded as the dimension of the low-resolution feature
map, which is set to the variable d. Then, this article can express
the first layer as Conv 5; di;1ð Þ.

Dimension reduction layer. In SRCNN, the nonlinear mapping
layer follows the feature extraction layer, and the high-
dimensional low-resolution feature vector is directly mapped to
the high-resolution vector space. However, the dimensions of
low-resolution feature vectors are generally very high, so the com-
putational complexity of nonlinear mapping layers is usually very
high. FSRCNN adds a dimension reduction layer after the feature
extraction layer to reduce the low-resolution feature vector dimen-
sion d and fix the convolution kernel size f 2 ¼ 1. The filter now acts
as a linear combination of low-resolution feature vectors. We take
the number of dimensions of the convolution kernel as n2 ¼ s
(Here, s is much smaller than d), then the low-resolution feature
vector dimension is reduced from d to s, which greatly reduces
the number of parameters. s is the second variable. The second
layer can be expressed as Conv 1; si; dð Þ.

Nonlinear mapping layer. In the SRCNN structure, when the size
of the nonlinear mapping layer convolution kernel is set to 5� 5,
the image reconstruction effect is significantly better than the non-
linear mapping layer network with the convolution kernel size
1� 1. However, if the depth of the network is increased, the com-
putational complexity of the nonlinear mapping layer will
increase. In order to balance the contradiction between recon-
structed image quality and network training complexity, the con-
volution kernel size of the nonlinear mapping layer is finally
taken 3� 3. The number of layers of the nonlinear mapping layer
m is another variable that directly affects the computational com-
plexity of reconstructed image quality and model training. The
non-linear mapping layer can be represented as m� Conv 3;3; sð Þ.

Expansion layer. The extension layer can be regarded as inverse
processing of the dimension reduction layer. In order to be consis-
tent with the dimension reduction layer, the convolution kernel
size of the extension layer is also set to 1� 1, and the number of
convolution kernels remains the same as the number of convolu-
tion kernels of the feature extraction layer. The dimension reduc-
tion layer is denoted as Conv 1; s; dð Þ, and then the extension
layer can be recorded as Conv 1; d; sð Þ.

Deconvolution layer. The last layer is the deconvolution layer,
which uses a set of deconvolution filters to amplify the previous
feature image to produce the final reconstructed image. For a con-
volutional layer, if the convolution kernel convolves the image at a
pitch of k steps, the output image is 1=k times the input image.
Conversely, if the position of the input and output is changed by
this paper, the output image will be k times the input image.
According to this feature, the output image can be enlarged to a
fixed multiple by the deconvolution layer. The deconvolution layer
can be expressed asDeConv 9;1; dð Þ.
In this paper, we use the random linear correction unit (PReLU)
instead of the linear correction unit (ReLU). The general form of the
activation function PReLU is defined herein as:

f xið Þ ¼ max xi;0ð Þ þ aimin 0; xið Þ
when ReLU is used as the activation function, this article can only
retain information with x greater than 0, and other parts of the
information are ignored. Therefore, some information cannot be
recovered during image reconstruction. PReLU inherits the property
of the ReLU function where x is a positive part. At the same time, in
the case where x is less than 0, the function can preserve some use-
ful information by retaining the learnable parameter ai, thereby
improving the quality of image reconstruction. The combination
of the above five parts forms the FSRCNN model, which can be
expressed as:

Conv 5; d;1ð Þ � PReLU � Conv 1; s;dð Þ � PReLU �m� Conv 3; s; sð Þ
�PReLU � Conv 1; s; dð Þ � PReLU � DeConv 9;1;dð Þ

There are three variables d; s;m in the whole structure, which
represent the low-resolution feature block vector dimension, the
number of the dimension reduction layer convolution kernel and
the number of layers of the nonlinear mapping layer. The structure
improves the speed of network training and also improves the
quality of reconstructed images. For the sake of simplicity, this
paper describes the fast-convolutional neural network as
FSRCNNðd; s; mÞ. The computational complexity of this structure
is: Of ð25d þ sd þ 9ms2 þ ds þ 81dÞSLRg ¼ Of ð9ms2 þ 2ds
þ 106dÞSLR g. This article does not take into account the parameter
ai of PReLU. The structure of the whole FSRCNN is similar to an
hourglass and has symmetry. The experimental results prove that
the convolutional neural network of this structure is more efficient
for image reconstruction.

Liking SRCNN, this paper uses mean squared error (MSE) as the
loss function of the entire convolutional neural network. The final
expression of this function is as follows:

min
h

¼ 1
n

Xn

i¼1

k F Yi
S; h

� �
k
2

2

In the above formula, Yi
S and Xi respectively represent the low-

resolution and high-resolution sub-block images of the i-th layer in

the training process. F Yi
S; h

� �
indicates the output of the low-

resolution image block through the FSRCNN structure, and the h
parameter indicates the parameters that need to be optimized for
the entire convolutional neural network. All parameters are iter-
ated and optimized by the stochastic gradient descent method. In
order to determine the values of the three variables d, s, m, we
select d = 48, 56, s = 12, 16 and m = 2, 3, 4 to test, so we can gen-
erate a network of 12 different parameters. Comparing the recon-
struction effects of different networks on the image, it is concluded
that the FSRCNN has the best reconstruction effect on the test
image when d = 56, s = 12, m = 4.
3. Results and discussion

Case group: Among the 50 patients, 35 were male, and 15 were
female, and the age range of the patients was 20–55 years old, with
an average age of 36 years. Informed consent was taken from every
patient before the start of the study. There were 3 cases of kidney
stones, 7 cases of kidney stones complicated with ureteral stones,
13 cases of ureteral stones, 9 cases of ureteral stenosis, 8 cases of
congenital stenosis of renal pelvic ureteral transition, 2 cases of
renal pelvic cancer, 1 case of rectal cancer and lower ureteral inva-
sion. Inclusion criteria for cases: (1) B-ultrasound confirmed the
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patient’s unilateral renal mild or moderate hydronephrosis
(assembly system expansion less than 3.5 cm). (2) IVP examination
of the hydronephrosis showed that it was developed or not devel-
oped and the contralateral kidney was normal. (3) The patient’s
serum creatinine and urea nitrogen are normal. (4) The patient
has no history of diabetes, gout, hypertension, urinary tuberculosis
or infection. (5) The patient has no renal cyst with a maximum
diameter greater than 1.0 cm; (6) The patient had no contraindica-
tions for MRI.

Normal control group: 20 healthy volunteers were selected,
including 12 males and 8 females, with an age range of 20–54 years
and an average age of 35.4 years. It basically matches the age and
gender of the case group. The MRI of the kidney of the selected per-
son was not found abnormally, and there was no previous kidney
disease, diabetes, hypertension and other related diseases.

IVP inspection method: According to the routine preparation of
IVP examination, we first ingested the supine abdomen plain film
of the selected person, and injected lopamiro injection (lopamiro,
370 mg I/ml) 40 ml into the selected person (produced by Shanghai
Bolai Kexinyi Pharmaceutical Co., Ltd.). At the same time, the Com-
pression belt was applied to the lower abdomen of the selected
person, and the filling of the renal pelvis and renal pelvis was
observed at 7 min, 15 min, and 30 min after the injection. After fill-
ing and satisfying, the film is taken after the loose abdominal pres-
sure belt, and if necessary, the film is delayed, and the longest
delay time is 1 h. All patients were strictly followed by the IVP
examination procedure and were performed independently by
the same doctor.

According to the results of the IVP examination, it was divided
into a normal development group, a poor development group, and
a non-development group. People with the simultaneous develop-
ment of kidney pelvis and renal pelvis on the stagnant side and the
normal side at 7 min and 15 min of hydronephrosis and with the
same density were included in the normal development group of
IVP. For those with hydronephrotic kidneys that were delayed
and lighter than normal renal pelvis and renal pelvis at 7 min,
15 min and 30min, they were included in the IVP poorly developed
group. The person whose hydronephrosis kidney was still not
developed at 1 h was included in the IVP non-developing group.
The IVP non-developing group was confirmed by ultrasound, CT,
MRU or surgery to have a clear cause of upper urinary tract
obstruction. In the absence of the patient’s clinical data such as
symptoms, signs, and past medical history, the results of the
grouping were determined by the two attending physicians.

The ADC, FA image is automatically generated by the FiberTrak
software package. The ADC and FA grayscale maps are selected for
Fig. 2. Comparison of hydronephro
display. Taking the B = O DTI image as a reference, the correspond-
ing region of interest (ROI) is selected in the ADC and FA grayscale
maps of the central layer of the bilateral kidneys. Moreover, the
unilateral kidney upper pole, the renal hilum and the lower pole
respectively selected 6 circular ROIs in the renal cortex and
medulla. The ROI of the renal cortex is within a range of about
3 mm from the surface of the kidney. The ROI of the medulla is
taken from the surface of the kidney by less than 3 mm, and blood
vessels, artefacts, and renal pelvis are avoided as much as possible
(Fig. 1a, b). Each ROI area is between 10 and 20 voxels (Voxel) and
is measured repeatedly as described above. In the case group, the
unilateral renal cortical or medullary FA value and ADC value were
the average value obtained by measuring 6 ROIs of the upper pole,
the renal pelvis and the lower pole twice. In the normal control
group, the FA value and ADC value of the renal cortex or medulla
were the averages of 12 ROIs obtained from the kidneys measuring
the upper, middle and lower poles of the kidney.

The medullary tubule structure was imaged at the central level
of bilateral kidneys using diffusion tensor tracing imaging (DTT).
The FiberTrak software package loads the b = 0 DTI image as an
anatomical reference, adjusts the b = 0 DTI image threshold to
clearly show the cortical medullary boundary, and browses the
image to select the central plane of the double kidney coronal
plane. The free curve method then outlines the medullary region
(including the renal column) between the cortex and the renal
sinus as a seed ROI with a minimum FA of 0.15, a maximum angu-
lar change of 27�, and a minimum length of 10 mm. Finally, the
software automatically generates a tubule structure map of the
medulla region.

The type of image to be reconstructed is a medical ultrasound
image (carotid artery ultrasound image). However, the 91-images
training set contains images that are type images such as land-
scapes. Therefore, FSRCNN can only learn related types of image
features through training and has no specific features for the
reconstruction of medical ultrasound images. Therefore, this
experiment additionally selects the common carotid artery map
corresponding to the type of image to be reconstructed to train
the FSRCNN and compares it with the network obtained by the
standard library training to study the reconstruction effect of the
training set image type on the ultrasound image.

Fig. 2(a) shows the image of hydronephrosis, in which the
hydronephrosis cannotbe effectivelyobserved, and there is a certain
misdiagnosis in the actual judging process. Based on this, the picture
needs to be processed and combined with the CNN neural network
of the study for auxiliary diagnosis. In the actual research, the image
is sharpened first, and the obtained result is shown in Fig. 3.
sis images and normal images.



Fig. 3. Results after image sharpening.

Fig. 4. Image after grayscale processing.

Fig. 5. Image of the test result.

Fig. 6. Results image after color marking.

2686 J. Su et al. / Journal of King Saud University – Science 32 (2020) 2682–2687
As shown in Fig. 3, after the image is sharpened, the sharpness
of the image is further improved, and various factors in the image
can be clearly displayed. In order to further interpret the image, the
image needs to be further processed. In combination with image
recognition requirements, the image background needs to be sep-
arated, so image grayscale processing is required in the research.
The result of grayscale processing is shown in Fig. 4.

Through gradation processing, the color interference of the
image has been directly eliminated, and the single factor informa-
tion can be obtained from the image at this time. After that, the
image needs to be further processed to further highlight the
hydronephrosis factor, and the final test result is obtained. The
results of the final treatment are shown in Fig. 5.

As shown in Fig. 5, the water accumulation area in the image
can be effectively recognized, but there is a certain difference
based on the color of the above area, which can be effectively dis-
tinguished only by the dividing line. In order to improve the visual
effect, the water area is marked with color, and the result is as
shown in Fig. 6.

As shown in Fig. 6, the color mark in the image is already very
clear, and the distribution results of different regions can be clearly
observed from the image, thereby effectively improving the diag-
nosis result. Through the above analysis, it can be seen that the
results of this study can obtain effective diagnosis results, that is,
the diagnosis results of this study can provide an effective refer-
ence for the auxiliary diagnosis of hydronephrosis, which has cer-
tain clinical significance.

It is a three-dimensional random diffusion motion, which has
not only amplitude but also directionality. Different tissue struc-
tures in the human anatomical region may cause differences in
the diffusion of water molecules in all directions (Le ihan et al.,
2001). If diffusion can occur in all spatial directions, this non-
limiting diffusion is called isotropic diffusion. If diffusion can be
restricted in one direction by a structure (such as nerve fibers),
and the restricted diffusion in all directions is asymmetrical, which
is expressed by different intensities in different diffusion direc-
tions, it is called anisotropic diffusion (Lu et al., 2006).

In order to explore the effect of the convolution kernel size of
the first layer of feature extraction layer on the reconstruction of
ultrasound images, based on the initial value of 5 * 5, 7 * 7 and
3 * 3 were used to carry out two experiments. Moreover, this paper
uses the two groups of experimental training to perform super-
resolution reconstruction of the test images and compares them
with the reconstruction effect of the initial value of 5 * 5 network.
The network basis of this experiment is US-FSRCNN2 when the
number of feature extraction layer convolution kernels is 56. In
addition, in the case of ensuring that other parameters are
unchanged, only the pretext file describing the network structure
is modified. It can be seen from the above results that the CNN neu-
ral network method is superior to the traditional recognition algo-
rithm in reconstructing ultrasound images, which shows that the
reconstruction method based on the convolutional neural network
has certain effectiveness. At the same time, the method of this
paper is better than the traditional method in reconstructing ultra-
sound images. This verifies that in the actual application scenario,
the algorithm is also effective for the reconstruction of ultrasound
images randomly acquired from the ultrasound imager (Shen and
Ebbini, 1996).

In this paper, the thickness of the middle layer of the intima can
be accurately obtained, and the thickening of the intima can be
found in time to prevent the arteriosclerosis condition in advance.
Currently, this indicator has been officially included in the target
organ damage category of cardiovascular risk. When observing
the reconstructed image of the ultrasound image, the paper can
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also clearly judge whether the surface of each film is smooth,
whether there is crack, and whether plaque is present. If plaque
occurs, the doctor needs to judge the type of plaque based on his
professional knowledge. The presence of plaque in the arteries is
a relatively common problem at present (Glagov, 1994). Over time,
some types of plaques will grow up to block the local carotid arter-
ies, and some will fall off into emboli in the bloodstream, which
can block the cerebral arteries and cause blood clots (Glagov,
1994). Therefore, the judgment of plaque in the carotid artery is
very important. In this paper, the reconstruction result is magni-
fied by 30%. Compared with other algorithms from the visual angle,
the algorithm is still relatively clear in the thickness of the film and
the plaque (Chan, 2012).

4. Conclusion

In order to improve the clinical effect of an ultrasound-assisted
diagnosis of hydronephrosis, this study is aimed at the traditional
auxiliary cutting method and proposes an auxiliary diagnosis
method based on CNN neural network for the disadvantages of tra-
ditional methods. In order to improve the quality of reconstruction
and improve the training time of the model, based on SRCNN, a fast
image super-resolution reconstruction algorithm is proposed. At
the same time, this study combined with CNN neural network
for image recognition processing, starting from several angles such
as segmentation, grayscale and sharpening. Moreover, the corre-
sponding experiment was designed to analyze, and the clinical
effect of the algorithm was analyzed by establishing a control
experiment. In addition, in this study, diffusion tensor tracing
imaging (DTT) was used to image the medullary tubule structure
at the central level of bilateral kidneys. The analysis of results show
that the study can obtain effective diagnosis results, that is, the
diagnosis results of this study can provide an effective reference
for the diagnosis of hydrocephalus ultrasound images, which has
certain clinical significance.
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