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ABSTRACT

The main purpose of this paper is to provide new vaccinated models of COVID-19 in the sense of Caputo-
Fabrizio and new generalized Caputo-type fractional derivatives. The formulation of the given models is
presented including an exhaustive study of the model dynamics such as positivity, boundedness of the
solutions, and local stability analysis. Furthermore, the unique solution existence for the proposed
fractional-order models is discussed via fixed point theory. Numerical solutions are also derived by using
two-steps Adams-Bashforth algorithm for Caputo-Fabrizio operator, and modified Predictor-Corrector
method for generalised Caputo fractional derivative. Our analysis allows to show that the given
fractional-order models exemplify the dynamics of COVID-19 much better than the classical ones.
Also, the analysis on the convergence and stability for the proposed methods are performed. By this
study, we see that how vaccine availability plays an important role in the control of COVID-19 infection.
© 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Numerical methods

Caputo-Fabrizio and new generalized
Caputo fractional-derivatives

1. Introduction

Throughout this pandemic known as COVID-19, we have exper-
imented a great expansion of cases throughout the world. This sit-
uation converts into solid actions that affect the population: social
isolation, use of masks, etc. Mathematical models play a key role in
describing infectious diseases such as COVID-19 expansion. The
development and investigation of this type of models provide us
tools for describing and characterizing its transmission, and thus,
we are able to propose successful techniques to foresee, prevent,
and control infections, also to ensure that the population is well-
being. Till present time, numerous mathematical models see
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(Bekiros and Kouloumpou, 2020; Bocharov et al., 2018; Brauer
and Driessche, 2008; Brauer, 2017; Zaman et al., 2017) have been
considered and analyzed to ponder the spreading of infections.
COVID-19, has affected nearly 90% of countries across the globe
with the infection rate rising rapidly at almost 5% per day. How-
ever, the COVID-19 infection behavior is different from nation-to-
nation, and is dependent on numerous factors. In South Africa, with
no exception, almost half a million positive cases have been
reported already and is currently one of the five most affected
countries globally. To date, various mathematical models have
been applied to predict infection rates based on only time-series
modes (Higazy, 2020; Zeb et al., 2020). Very few studies attempted
to include other related factors to enhancing the modeling process
such as the influence of climatic factors for the disease rapid
spread. In the last year, numerical models for the COVID-19 plague
have been taken into consideration by many scientists concerning
the different nature and its behavior by applying different controls
to avoid the spread of this pandemic see (Zhang et al., 2020; Zhang
et al., 2020; Atangana and Igret, 2021; Mahrouf et al., 2021) and
references therein. Nowadays, a number of mathematicians are
giving priority to fractional derivatives (Oldham and Spanier,
1974; Podlubny, 1998; Rudolf, 2000; Kilbas and Srivastava, 2020)
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in the study of mathematical models. Recently, thousands of epi-
demic models like tuberculosis (Abboubakar et al., 2021), malaria
(Abboubakar et al., 2020), COVID-19 (Gao et al., 2020; Kumar
etal.,, 2021; Kumar and Erturk, 2021) have been analyzed by apply-
ing non-classical derivative operators. Authors in Erturk and
Kumar (2020) solved a nonlinear system of COVID-19 by using a
recent modification in the Caputo derivative. They used fixed point
theory techniques to demonstrate solution existence and they also
analyzed the stability of the aforementioned model. The dynamics
of COVID-19 in Brazil were studied in Kumar et al. (2021), and in
Cameron in Nabi et al. (2020). A new model of COVID-19 disease
in integer and non-integer sense was provided in Ref. Nabi et al.
(2021). Analysis on the fractional-order mathematical model to
simulate the COVID-19 disease outbreaks in Pakistan are proposed
in Naik et al. (2020). Authors in Yavuz et al. (2021) have proposed a
new non-linear model for deriving the nature of 2019-nCoV. In
Naik et al. (2020), chaotic dynamics of a mathematical model of
HIV-1 in the sense of fractional-order operators is given. In Ref.
Hammouch et al. (2021), the authors have simulated a fractional-
order chaotic system. The study proposed in Yavuz and Sene
(2020) is dedicated to the solution of a fractional-order predator-
prey model. In Naik et al. (2020), researchers have justified the
clear role of prostitutes in the HIV disease. Authors in Yavuz and
Ozdemir (2020) have analyzed an epidemic model with exponen-
tial decay law. In Bonyah et al. (2021), some novel analysis on
the listeriosis epidemic are performed. In Odibat et al. (2021), a
modified version of the Predictor-Corrector technique for the
delay-type fractional differential equations has been proposed.
Authors in Kumar et al. (2021) have analyzed the predictions of
COVID-19 cases in Argentina by using a real-data. In Kalaiselvi
et al. (2021), researchers have introduced a mathematical model
to simulate a biological phenomena. Recently, some authors have
also tried fractional derivatives in ecological problems. One of
the most recent application is given in Kumar and Erturk (2021).

Our objective in this paper is to continue this research line by
introducing a new fractional COVID-19 model that takes into
account the existence of vaccines. Our paper is organized as fol-
lows: Section 2, is related to providing some well-known results
that will be later needed. Section 3 is devoted to the description
of fractional order models using Caputo-Fabrizio and generalized
Caputo non-classical derivatives. Section 4 contains the basic anal-
ysis of the model, involving the positivity, boundness, and repro-
ductive number with stability along with disease free-
equilibrium points. Next, in Section 5 and Section 6 the existence
of solutions for the models via Adams-Bashforth in CF sense and
modified Predictor-Corrector in generalized Caputo derivative
sense are provided, respectively. These sections also contain the
numerical simulations and graphical results for both models.
Finally, in Section 7, we present the concluding remarks.

2. Preliminaries
Here we mention some definitions and results for further uses.

Definition 1. Caputo and Mauro (2015) The CF (Caputo-Fabrizio)

fractional-derivative of x order for a function % € H'(c,d) and
0 < % < 1, is given by:

L /t d9(%) exp[—@(t — A)]|dA

CF N« _
PAO=1"% ), ~a@

where @ = %
The respective CF fractional integral is defined by

Frrgt) =1 -w9(t) + x/t 9(7)d.
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Theorem 1. Verma and Kumar (2020) Let .# be a compact metric
space and C(.#,R) denotes the space of continuous functions when
endowed with the supremum norm metric. A set & C C(.) is compact
if and only if & is bounded, closed, and equicontinous.

Definition 2. Naik et al. (2020) The modified Caputo fractional
derivative operator, D;‘f, of order » > 0 is given by:

_Sa)n—u—l <Sl—0£> Y(s)ds, £>d,

®—n+1 <
D)) =g [ € =
1)

where ¢ > 0,d > 0,andn -1 < <n.

Theorem 2. Naik et al. (2020) Let n—1 <% <n,o >0,a > 0 and
g€ C"[a,b]. Then, fora <t < b,
n-1
1

BIDC(0 =80~ > (€ )" (%) mgm} w @

3. Formulation of fractional-order Covid-19 models

In order to formulate our COVID-19 model with the influence of
quarantine class and vaccination, we split the whole population into
four different compartments. The first of them is the class of suscep-
tible to disease which is represented as %, second one is infective or
infectious .#;, third one is quarantined 2; (in which the infectious
peoples are putting for isolation), and last one is the recovered class
2 with temporary immunity. The flow of the population is
described in the following system of differential equations:

%: 1-qQb-BF I —d S+ 5%,
%:/}%Jf(n+y+d+m)fn 3
%:njt—(p+d+0'z)32n

%:ylt—kpﬂt ~(d+8)% +qb,

where b describes the enroll rate of the population that directly
joins the susceptible class .#;, 8 stands for the contact rate mainly
incidence rate at which susceptible class joins infectious class
#:,d denotes the out going rate of each class in the form of natural
death or migration rate from each class, y is the recovered rate of
infected class to join recovered class #; and p is the recovered rate
of quarantine class people. Moreover, ¢; and o, are the disease
related deaths rates for infected class and quarantined class, ¢
shows the relapse rate at which the recovered class #, moves to
susceptible class and q represents the vaccine rate, that is, the pro-
portion of the susceptible class that becomes vaccinated with
0 < g < 1. To simulate the past history or hereditary characteristics
in the given model (3), we utilized the Caputo-Fabrizio (CF) frac-
tional derivatives instead of classical derivatives. In this matter,
we propose the following model of fractional order type

FD'S =1 —qb—pS I —d S+ 5%,
EDII =S I — M+ y+d+01) 5,
FD2 =nI:— (p+d+ 02) 2,

FDIRe =7 I+ P2 — (d+ )% + qb,

(4)

where 0 < % < 1 and %D presents the fractional derivative in the
Caputo-Fabrizio sense.

For generating more diversity in the fractional-order simula-
tions, we propose another fractional order model in the sense of
generalized version of Caputo-type fractional derivative as follows:
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DS =(1-qb—pS I —dS + 0%,
DI =S I —(N+y+d+01) I,
D2 =ns—(p+d+ )2,

DY =7 I+ p 2 — (d+ )%+ qb,

(5)

where 0 < % < 1,0 > 0, and “D{” presents the fractional derivative
in the generalized (or modified) Caputo sense.

4. Basic analysis of the model
4.1. Positivity and boundedness

Suppose that
R ={(4,7,2,%)¥,9,2,% > 0}.

From Odibat and Shawagfeh (2007) and utilizing a generalized
mean value theorem and a fractional comparison principle, the
proof of the following theorem is achieved. We state the analysis
for the Caputo-Fabrizio fractional model (4) and it is straightfor-
ward to obtain the corresponding analysis for the generalised
Caputo one (5).

Theorem 3 (Positivity and boundedness). Let (%o, -%0, 20, %0) be
any initial data belonging to Ri and (¢, I+, 2, A¢,) the correspond-
ing solution of model (4) to the given initial data. The set R% is
positively invariant. Furthermore, we have

limsups; < . = 1-abo2e

t—o0
lim sup.s, < 7. i= (A5 6
lil}liups@t < 2w = pZd&&z ’ "
HTimﬂﬂgﬂm:L&¥%ﬁ@'

Proof. From model (4), we have

FD'S|, =(1—q)b+5% >0,
*Dfs, o =0,

FDf2,y =nIc =0,
FDiR| g =7t p2+gb>0.

7)

For all t > 0, with the help of generalized mean value theorem
(Odibat and Shawagfeh, 2007) and system (7), we can conclude
that %, 7, 2¢,#: > 0. First equation of system (4) implies that

FDIS <(1—qQb—dF + 0%
By utilizing the fractional comparison principle, it follows that

lhnsun¢t<<¢m;:ﬁl;;ﬂ¥%tff%g.
t—o0

The second equation of the system (4) implies that
CDHS+I) <A1 =qQb—dS + 0% — (+7+d+01) 54,
which implies that

limsups; < S..

t—oo

As a result, the second estimate of (6) is obtained. While third
equation of the system (4) gives us

FDI2< NI — (p+d+02) 2,

for enough large value of t. This follows the third estimate of (6).
Finally, the fourth equation of system (4), implies that
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FDIRLY I+ P20 — (d+ )%+ qb,

for enough large value of t and the fourth estimate of (6) holds. O

4.2. Free virus equilibrium point and reproduction number

Diseases Free Equilibrium (DFE) point of system (3) is given by

b((1 —q)d +9) gb
d(6+d) ’0"0’6+d>' (8)

For the reproductive number of model (3), suppose that
y = (S, %) and using next generation matrix approach (Brauer
and Driessche, 2008), we have

6o = (%0,%0,20,%0) = <

dy

w=7W-=70) 9)

where Jacobian of # and 7~ are

s (BT I o m+y+d+o1)s,

7o) = < 0 ) Ty = <7(1 fq)b+ﬁ,,<ftft+d5ﬁt—é%>
(10)

At &y, we have
Bb((1-q)d+3) n+y+d+o; o
F(60) = dio+d) , V(o) = Bb(1—q)d+s .
0o 0 Pt d
Hence, the reproductive number for model (3) is

pb((1 —gq)d +9)

s+d(n+y+d+aor1)’ (an

l//O = p(FVil) = d(

pb((1 —gq)d +9)

s+dyn+y+d+or) (12)

l//O = p(FVil) = d(

The results about the positive endemic equilibrium point are
contained in the next theorem.

Theorem 4. There exists a unique positive endemic equilibrium point
&* for system (3) if oy > 1.

Proof. Endemic equilibrium point (EEP) is obtained from the sys-
tem (3), by putting right hand side of each equation equal to zero,
we have

w __ Nty+diog
Sy = B

o a (13)
2= prare It
* b pi gy 1
Ay = s+ ifiptiey 7o
1-qb-n+y+d+01) I —dS+ 0% =0,
Now, from the last equation of system (13), we have
.. b((1—qyd+
a(sp = 20 9d+0)
Yp+d+a2)+pn \ .
(—(d+5)(p+d+02) m+y+d+01) )7
_d(n+y4ﬁrd+m). (14)

By the values of .&*,.#*, 2" and #*, it is clear that a unique EEP
& exists, if g > 1. O

Theorem 5. The model (3) is locally stable at &, for y, <1 and
unstable for y, > 1.



A. Zeb, P. Kumar, Vedat Suat Erturk et al.

Proof. The Jacobian of the model (3) is

—pg—d —BS, 0 b
= B BLe—m+y+d+or) 0 0
0 n —(p+d+0ay) 0
0 Y p —(d+9)
(15)
Along &, it implies that
—d B 0 )
Jo=| © PGS — (n+y+d+ay) 0 0 ’
n —(p+d+07) 0
0 Y p —(d+9)
(16)

which follows that all the eignvalues are negative if y, <1 and
eigenvalue 2, is positive for y, > 1. Hence, we conclude that the
system (3) is locally stable under the condition ¥, < 1 and unstable
fory,>1. O

Theorem 6. The model (3) is globally stable, if Y, > 1 at &.

Proof. First, we define the Lyapunov function 77(t), for the system
as:

"ﬁ‘(t):‘l‘Fft*ln::;;. (17)
Then differentiating the Eq. (17) with respect to time, we have
sy = (1-4)4
= Y BSi+(m+y+d+om).
By manipulating along the point &g, we get

£

—(BSe—m+y+d+01))

~ (PGS~ 4y +d+ o))

=~y +d o) (A - 1)
< 0 forygy>1.

Therefore, if , > 1, then 4 (#7(t) < 0, which implies that the
system (3) is globally stable for y, > 1 at &,. O

Remark 1. The simulations of stability of &* is an important math-
ematical term, but in this paper, we particularly focus on the case
Yo < 1 to find effective manners to prevent the epidemic.

5. Solution of the variable Caputo-Fabrizio fractional order
model (4)

5.1. Existence and uniqueness analysis

Since the last few years, a lot of work has been done in the field
of the existence of solution for different types of fractional differ-
ential equations by using techniques from fixed point theory. In
order to fulfill this requirement for the proposed model, we use
the procedure which has been recently proposed by Verma et al.
in Verma and Kumar (2020). For this purpose, we rewrite our
model in a compact form given by:

CFD];e(/t - g‘] (t, pyr),
CFD?ft = gz(tv jt)v
D9, = Gs(t, 2,)

FD R, = G, Ry).

(18)
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Now the above system (18) converts to the following fractional
Volterra integral form when we apply CF integral operator on it of
order 0 <% < 1,

Se(t) = F4(0) = (1 =G (8, 1) + % [y 1 (1, S0)dy,

Ie(t) = (0) = (1 = WG (t,.90) + % fy Ga(1, I0)dY, 9)

S

2¢(t) — 2:(0) = (1 = %)F3(t, 2¢) + % [y F3(x, 20)dy,
() — 2:(0) = (1 — R)%a(t, Re) + % [y Ga(y, Re)dY.

S

N

N

Now we derive the analysis for #,(t) and it is straightforward to
mention that the given analysis will exist in a similar way for the
other model equations of (18).

Consider the Banach space # = C(|0,T]) with the associated
norm ||| = maxXepn{|<:,V¥: € #} and %" = min,or{%} and
%" = MaXeepn{®} be the minimum and maximum weight of the
variable non-integer order % on [0, T]. Now, we recall the following
hypothesis to explore our main observations:

[2'1]: There exist constants %.,H. > 0, and k € [0,1) such that

|%1(t, 0| < Ge| 7" + He.

[22]: There exists a constant N.>0, such that
[91(t, %) — %1 (6, S )| S Nel S, (6) — S, (D]
Now, we define the operator ¢ : # — # as
t
O (t) = 71 (0) + (1 =)D (t, Tr) + %/ G1(y, L)dy. (20)
0
It is clear that operator O(Z+(t)) = O1(F¢(t)) + O2(F+(t)), where
O1(F(t)) = F(0) + (1 = w)Gi (£, F). (21)
t
O2(F2(0)) = % / G (1, S )d. (22)
0

Theorem 7. Assume that hypothesis [Z>] holds and there exists € > 0
(constant) such that ¢ = [(1 — %*)N¢ + %*N.T] < 1. Then ¢ has a
unique fixed point for the model (18) on 4.

Proof. Let consider &, , %, € #. Then

”@‘¢f1 - @yf2|| < Hdﬁ‘yﬁ - 61‘(/;[2” + H(ﬁz‘(/}ﬁ - (}2‘(/;t2||
< — 4 — .
X (] %)g}gﬁgl(t:yn) Gl(t7 ytz)‘

Fmax| Jo (& 4 )dE = o %1(8, 7, )de]

< [(1 —%)N: + MNCT]tr?[Oa%(]\%] - %]

(23)

<[(1 =% )Ne+ wNCTY|F1, — S|
< %)“gjfl - ‘9}[2”'

Since ¢ = [(1 — »*)N. + %'N.T] < 1, using Banach fixed point
theorem, we conclude that the operator ¢ has a unique fixed point.
Then, the model (18) has a unique solution. O

Theorem 8. Assume that statements [Z1]—[%>] hold and
0 < (1 —%*)N. < 1. Then the system (18) has at least one solution.

Proof. First, we show the operator ¢’; is a contraction. Indeed, it is
given &, € 7 where 7 = {%; € #:|¥| < w,w > 0} is a closed
convex set it follows that

H(Dl "(/tl 4 yfz H = (1 - %)max‘gl (t7 yﬁ) -% (t7 '(ff2)|
t€[0.T] (24)
S =%)N[|[ S, = S, |-
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Hence ¢, is a contraction. Now to demonstrate that the second
operator O, is compact we can see that O, is continuous and com-
pact for any %, € 7, then (), is contraction as % is continuous, then

00| = max|x [L %1 (&, Vel < %] [F|%1(¢, 50)|d
027 (t)]] teml Jo % (& 70)de < |4 [o%1(E S )|dE 25)
<wT% | + He).

So, 0, is bounded. Now, assume t; > t, € [0.T], such that

|C251(t1) = 27 ()]| =% ma| [y (&, 0)dE = [y 9 (6, 70)d]

<H[Ge S +Heltr — o).
(26)

This yields ||02(F¢(t1)) — O2(S(t2))]] — O as t; — t,. Hence, the
operator (’; is equicontinuous. As a consequence of Theorem 1, ¢,
is compact. Now by referring to the analysis given in Section 5 of
Verma and Kumar (2020), we conclude that the given system has
at least one solution. O

5.2. Numerical solution of CF system

Now we write the solution of the proposed system in CF sense
applying two-step Adams-Bashforth algorithm. Our time interval is
[a, T] with the step width h = 2% where N is the sample size.

Let &, be the numerical approximation of 7(t) at t = t;, where
ti=0+jhand,j=0,1,...,N. Writing the equations of .#,(t) at the
uniform grid points (to,t1,t2,...,t1,t,ti11), we get the estima-

| x=0.75,__ x=0.85, _x=0.95__ x=1 |

Si(t)

Journal of King Saud University — Science 34 (2022) 101914

tions at distinct grid point values. For doing it, first we consider
the equivalent Volterra CF integral equation for .#,(t) which is,

740 = 740+ (1= 0506, 74(0) + % ‘i, (27)
0

So the estimations at t; are

F(t) = L, + (1 = )G (L1, Se(tj1))

+u / Y, (t,7:(t))dt, (28)
0

and at tj 4

Fe(tir1) = Sty + (1 =) %1(4, S (8)))

+u / Mgt ()t (29)
0

Subtracting Eq. (29) from (28), we get
Fi(tj1) = L) = (1 =) (%1, Se(4) = G1(t1, (8 1))

4 x/t“ 91 (t, 7())dt. (30)

J
Now, by applying linear interpolation to %;(t,¥(t)) and
employing trapezoid rule on the integral part, we obtain

/[Hl
t:

)

At

3At

gl(tjvyt(tj))v (31)

| x=0.75,_ x=0.85, _x=0.95, _ x=1 |

100 60
80 50
40
60
30
40
20
20
10
t : ' ' : -
20 40 60 80 100 20 40 60 80 100
(a) Variations in class S; against the time ¢ (b) Variations in class Z; against the time ¢
| x=075_ x=085 x=095_ x=1 | | x=075_ x=085  x=095_ x=1 |
Gy(t) Re(t)
120 500
100
600
80
60 400
40
200
20
- - - - _ - - ' ' _—
20 40 60 80 100 20 40 60 80 100

(c) Variations in class Q; against the time ¢

(d) Variations in class R; against the time ¢

Fig. 1. Structure of the model classes in CF sense at various values of order %, when vaccination fraction q = 1.
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where At =t; —t;_1. Hence, we have established the numerical
approximation for 7;(t) as

Fi(ti) = Se(tj) + <1—%+¥>%(tj,/t(t))

®At
— (1 —%+T>g1(tj,]7yt(tj,1)). (32)
As a consequence, the solution of the proposed CF model (18)
states as follows:

Feltin) = L) + (1 =n+2 % (4, 7(8)) — (1 =%+ 29 %1 (61, S (G 1)),

i
Fe(tpa) =) + (1 =%+ (6, 7:(6)) — (1 =% +55) %2 (G 1, (1)),
2e(tia) = 2¢() + (1 =%+ G5 (8, 2:(t)) — (1 - %+ G5 (1, 2 (1)),
Re(tiv) = Ze(ty) + (1 = n+ 2L G, (4, 2 () — (1 =+ 90 Ga(tj_1, R (1))

(33)

Theorem 9. The proposed numerical scheme (32) is unconditionally
stable if (particularly for the first model equation)

191 (L1, Se(ti1)) — G1 (L, Lo ()] — 0.

Proof. Given ¥,(t) the solution of (27), we have that:
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Making j — oo, we get

| e(ti) =78, <llm 1=0)||(%1 (4, 7 () — %1 (1, Lo (61) |

)|
)| (1 (8, P()) — 91 (-1, % (t1)) |

ZHW L2916, 94(1)))

j=0j=0

+11mW) S g .7

<lim(1-% (35)

+11m%ff*‘ ))|dn

Clearly, the second part of the above inequality goes to zero
when j— oco. Now, if [|%(tj1, % (tj1)) — %1 (L, (L)) — 0 as
Jj — oo, we conclude that the given scheme is stable. O

Theorem 10 (Convergence). Let the solution of D{S,(t) be S(t).
Then there exist T, such that H@’; <T.

Proof. Starting from Eq. (30) and performing linear interpolation,

we have
Se(tinn) =Se(t) = (1=%)(G1 (6 5¢(6) = Gr (G-1.5¢(6-1))) + % [ Gi (1.5 (m))dny
(1=%)(G1(5,5:()) = G1 (t-1,5¢(8-1)))

o {(}1 rj.s[(t.))(” 9‘) Gi(ti 1,5 (6. 1))(” 5)}01;1 (36)

Pr(ti1) — Le(t =||(1 =) (%1 (t;, e(t)) — %1 (i1, S (L i
H t JH) I(J)H ” ( 1(1 t(])) 1(1 15 t(} 1))) +Mj’“ {ZHGI ta,Se(ta) ( )}dﬂ
S 0S| € (=) (546 6) = 01,700 |+ o
Simplifying further, we arrive at the numerical solution with
l[{]\l{ql ',’_’(spt ],I d;,]H p y g
i the truncation term
(34)
I x=0.75,__x=0.85,__ x=0.95, _ x=1 I I x=0.75__ x=0.85, x=095, x=1 I
le(®) Gi(t)
60 120
50 100
40 80
30 60
20 40
10 20
0 Syt
0 20 40 60 80 100 St 20 40 60 80 100 0
(a) Plot of S; versus Z; (b) Plot of S; versus Q,
| x=075_ x=085_ x=095_ x=1 | | x=075_ x=085  x=095_ x=1 |
Ry (t) Re(t)
800 800
600 600
400 400
200 200
/
0 Sit) o I (t)
20 40 60 80 100 20 30 40 50 60

(c) Plot of &; versus R

(d) Plot of R; versus Z;

Fig. 2. Variations in the model classes compare to each other, when vaccination fraction q = 1.
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Se(tian) = Se(ty) + (1 — %+ 2G4 (5, Si(t)) 0=0.003,6, =0.003,0, =0.002,q = 1(this value is just an assumption)

+(1 _ %_"_MTAt)G](tjil’s[(tjil)) +®{1 (37) which are taken from the literature of COVID-19 cases in 'Chma

. ] . (Gao et al.,, 2020; Erturk and Kumar, 2020). In the collection of

where the truncation term is written as Fig. 1, the subFigs. 1a, 1b, 1c, 1d are devoted to showing the vari-

) tiy [(i=2=2 _t ations in %,,.#;,2,, and %, against the time variable t. Here, the

0, = %/ {chl(fa,sr(ta))in)azt) }dﬂ (38) variations in the dynamics of the model can be clearly explored

g a=0a=0 ‘ at different derivative order values. We can observe that when

Then taking the norm, we have the fractional order values changes then the differences between

i2j2 phases of the plot lines increases. Fig. 2 reflects the relations

”@IM” = %ft‘_m {ZHQ ta, St(ta)) '7 fa } H between the given classes. SubFig. 2a plots the variations of %,

! 0a verses .7;, subFig. 2b plots the corresponding ones for &; versus

2j- 92, and 2c plots the variations of %, versus #,. Finally, subFig. 2d

< %jt”l { Gl(th[(ta)) '7 t” } H 39 plots %, against .#,. The fractional order values which have been
a=0a=0 (39) considered are » = 0.75,0.85,0.95,1.

22 Now we intend to explore the role of the vaccines in the

< %frm ZH)” . SUP(max|Gl(ta>5f(ta))|>d’l given model classes. For this purpose, we change the value of

o 0000 the vaccination fraction q to simulate the model structure. Here,

< wu(j-1)A8°'T in the family of Fig. 3, the subFigs. 3a, 3b, 3¢, 3d demonstrate

Hence, the solution has a convergence result. [

5.3. Graphical simulations

In this section, we derive the all necessary plots by using the
above given scheme. We use the initial populations
¢(0) =100, #,(0) = 10, 2,(0) = 5, %:(0) = 0, and parameter val-

the variations in %;,.7;,2;, and %, against the time variable t
at the vaccination fraction q =0, where all other values are
same as used above. Similarly, Fig. 4 shows the corresponding
ones when the vaccination fraction q = 0.5. By the comparison
of these figures, we can easily observe that when the value of
vaccination fraction g increases then the population of infec-
tious humans decreases. So, vaccine availability is one of the
most important control measures to reduce the infection of

ues

d = 0.001, § = 0.003,5 = 0.003,y =

0.002,b =10, = 0.05, COoVID-19.

| x=075 x=085 x=095_ x=1 | | x075  x-085 x=095_ x=1 |
St(t) I (t)
120
100
150
80
60 100
40
50
20
t t
20 40 60 80 100 20 40 60 80 100
(a) Variations in class S; against the time ¢ (b) Variations in class Z; against the time ¢
| x=075 x=085 x=095_ x=1 | | x075_ x=085 x=095_ x=1 |
Gt Re(t)
600
100
500
80
400
60
300
40
200
100 20
t t
20 40 60 80 100 20 40 60 80 100

(¢c) Variations in class Q; against the time ¢

(d) Variations in class R; against the time ¢

Fig. 3. Structure of the model classes in CF sense at various values of order %, when vaccination fraction g = 0.
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| x=0.75,__ x=0.85, _x=0.95__ x=1 |

St(t)

100

80

60

40

20
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| x=0.75,__x=0.85, _x=0.95, _ x=1 |

l(t)
120

100

80

60

40

20

t

t

20 40 60 80 100 20 40 60 80 100
(a) Variations in class S; against the time ¢ (b) Variations in class Z; against the time ¢
| x=075 x=085 x=095_ x=1 | | x075  x-085 x=095_ x=1 |
Gi() Re(t)
400 500
400
300
300
200
200
100
100
t t
20 40 60 80 100 20 40 60 80 100

(c) Variations in class Q, against the time ¢

(d) Variations in class R; against the time ¢

Fig. 4. Structure of the model classes in CF sense at various values of order %, when vaccination fraction g = 0.5.

6. Solution of the generalised Caputo fractional model (5)
6.1. Existence and uniqueness analysis

In this concern, to prove the existence of a unique solution of
the proposed modified Caputo type fractional order model, we
again write the given model into compact form as

CDrvat = g] (t, y[),

DX I =G5 (t, St

CD?’J,‘QI = {gg (t, Qt

CD?‘U%t = g4(t, ﬂ[)

)7
40
) (40)

Now we just adopt the first equation of the above system to
derive the necessary results.

EDFOG (L) =91 (t, Fr),
L1(0) =,

(40a)
(40b)

The equivalent Volterra integral equation of the proposed IVP is

1-% t
PO =710 + Lo [ e - ey e sode (41)
I'n) Jo
Theorem 11. Erturk and Kumar (2020) (Existence). Let
0<%n<1,NgeRK>0 and T*>0. Let 9 :={(t,%):

te[0,T),|%t — S| <K} and take the function %;:% — R be
continuous. Further, describe M := Sup ¢,)c4|%1(t, ¥+)| and

T,
1
: « (KT (x+1)0%\*
mzn{T ; <T> }

Then, there exists a function %, € C[0,T] that satisfies the IVP (40a)
and (40b).

ifM =0,

(42)

otherwise.

Lemma 1. Erturk and Kumar (2020) If the assumptions of the state-
ment of Theorem 1 hold, the function &, € C[0,T] satisfies the IVP
(40a) and (40b) if and only if it satisfies the non-linear Volterra inte-

gral Eq. (41).

Theorem 12. Erturk and Kumar (2020) (Uniqueness). Consider
Z+(0) € R,K > 0andT" > 0. Also, let 0 < » < landm = [%]. For the
set % as given in Theorem 9 and assume % : ¥ — R be continuous.
Assume that %, agrees to the Lipschitz condition with respect to the
second variable, i.e.

|g1(t7yf1) 7g1(t7yfz)| < V|yf1 7yf2‘7

for some constant V > 0 which does not dependent to t, %, ,and%,.
Then, a unique solution &, € C|0, T] exists for the IVP (40a) and (40b).

6.2. Derivation of the solution via modified Predictor-Corrector
algorithm

Now we construct the numerical solution of the proposed
Caputo fractional model using a modified form of the PC algo-
rithm as mentioned in Naik et al. (2020) with some appropriate
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| x075 x-085  x=095_ x=1 | | x075  x-085 x=095_ x=1 |
Si(t) Ie(t)
100 60
80 50
40
60
30
40
20
" L
e 10
t t
20 40 60 80 100 20 40 60 80 100
(a) Variations in class S; against the time ¢ (b) Variations in class Z; against the time ¢
| x=075_ x=085 x=095_ x=1 | | x075  x=085 x=095_ x=1 |
Gr(t) Re(t)
100 700
600
80
500
60 400
0 300
200
20
100
t t
20 40 60 80 100 20 40 60 80 100
(¢) Variations in class Q; against the time ¢ (d) Variations in class R; against the time ¢

Fig. 5. Structure of the model classes in modified Caputo sense at various values of order », when vaccination fraction q = 1.

changes. Here we start with Volterra integral Eq. (41), which equivalently

provides k

o e 1
1w pt Febee1) = Se(0) + =—— / t0. —2)" ' 9(2V°, F(zV7))dz.
PO = 70) + Lo [ e - ey e sode S NO g2 (G A
I'n) Jo ! (47)
Here, first we recall that a unique solution of the proposed model
exists under suitable conditions on the function ¢; on some interval

[0, T]. We divide the interval [0, T] into N non-uniform subintervals

Here, to simulate the integrals from the right-side of Eq. (47), we
apply the trapezoidal quadrature rule for the weight function

{[te; tes1], k = 0,1,...,N — 1} taking the mesh points (t7,, —2)*"". We shift the function ;(z'/7, #(z'/7)) by its piecewise
R linear interpolants with choosing nodes at the ¢7(j = 0,1,...,k + 1),
) /; - (44)  and then we get
tk+1:(ka+h) ,k=0,1,... N—-1, o )
. (L —2) T (217, 7(2V)7))dz ~ T
here h = L. We now analyse the approximations %,k =0,1,...,N, J
to solve numerically the proposed IVP. First of all, assuming the K(k —) = (k—j—w)(k—j+ 1)") (48)
approximation Sy = S(G)(i=1,2,....k), we estimate

(8, S4(ty)) + ((k7j+ D (k—j+u+ 1)(k*]‘)u>
Y4 (tj+17=9}t(tj+1))]’

SLte ~ St(trsa) by means of the integral equation

gl bt 20-1 /40 g\ %1
Ziltir) = 74(0) + (%) /0 E e = &) NG yde (45) Substituting the above approximation into Eq. (47), we get the
o . corrector formula for ¢ (ty.1),k=0,1,...,N -1,
Substituting z = &%, we get
" t Oﬁ%h% k
o~ - _ G ~ 9 . @ . f/) .
ey[(tk+]) = ,7[(0) +W /k ! (tz+] 72)% lg](z]/o—”qt(zl/o-))dz7 ‘/t(tk+1) fl(o) +F(%+2) j:ZOa],k+1 1 (t] f(t]))
0
46 o *h*
(46) + mgl (w1, S e(trsn))s (49)
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where

Ajk+1 = {

At the end, we aim to change the quantity %;(ty,;) from the
right-side of Eq. (49) with the predictor term 7 (t;.;) that can
be calculated by applying the one-step Adams-Bashforth rule to
the integral Eqn. (46). We then substitute %,(z'/?,:(z'/?)) by

kwrl

—k-n(k+1)*ifj=0
Y (k= =2k —j+ 1) i1 <j< k.
(30)

(k—j+2

Journal of King Saud University — Science 34 (2022) 101914

quantities a;x.; given in (50). We can repeat this procedure to
approximate all equations of the system (40). So, the numerical
solution formulae for the adopted model (40) can be written as:

‘g)[kfl %<¢[

+r%+2 Zajk+1 ql t}7 )+r %+2) g](tk+l)¢g+l)7

jtkn ~ ]t(o) g (tk+1 ’ ]I;/Hl )7

o *h*
4+2 ZaJ k+1%2 t}v/t) wz
] 0

(53)
"@rk+1 ~ ’Qt(o) + g I( M+2 Zaj k+1(q3(tl”ztj) + 1o I( M+2 53(““*’1 ’szn )

Jj=0
%1(t;, &¢(t;)) at each integral in Eq. (47), obtaining
Rey,y = Re(0) + x+2 Zaj ke194(t;, lt) n+2 g (tkH,ZQ 1)
. % Jj=0
PP (ter) = (0 Z ft" (t7., — 2% (t, 7(t;))dz
where
(51)
k k
- 12 = (k=311 (& #4(6). SE(ter) = S2(0) + 5 D[k 1) = (k=)1%1(6, 7(t),
- )
. . k
. Therefore, our P-C scheme, for approximating &,,, ~ %¢(tk.1), f‘;(tku) ~ 7,(0) + F(; Z[(k Sl - (k 7].)%}(52(%]&%))7
is given by pary
,Mh% k . . k -
Lt = 71(0) +m;aj.k+lgl (t, %) 2 (teyr) = JZ[ (k+1-j"—(k-})) 193(t5, 2:(t5)),
k
Khu B* N
2 Gt ST 52 DA [(k+1—j)" = (k—J)"19a(t;, Z:(t;)).
+ 1—*(% + 2) ( k+15 fkﬂ) ( ) ]z:():
where &, = 4(t;),j=0,1,...,k, and the predicted value (54)
ka o~ SP(ty1) can be simulated as shown in Eq. (51) with the
| x=075_ x=085_ x=0905_ x=1 | | x075_ x=085_ x=0.95_ x=1 |
I (t) G
60
100
50
80
40
60
30
40
20
10 20
0 20 40 60 80 100 0 0 20 40 60 80 100 1
(a) Plot of S; versus Z; (b) Plot of S; versus Q;
I x=0.75,__ x=0.85,  x=0.95__ x=1 I I x=0.75,_ x=0.85,  x=0.95,_ x=1 I
Ry(t) Ri(t)
700 700
600 600
500 500
400 400
300 300
200 200
100 100
/ n n n n
0 20 40 60 80 100 St 20 30 20 50 60 1t(®

(c) Plot of S; versus R,

(d) Plot of R; versus Z;

Fig. 6. Variations in the model classes compare to each other, when vaccination fraction q = 1.
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6.2.1. Stability analysis

Theorem 13. If %1(t, ) satisfies a Lipschitz condition on the second
variable and ¥ (j=1,...,k+1) are the solutions of the above
approximations (53) and (54). Then, the proposed scheme (53) and
(54) are conditionally stable.

Proof. Let S,,,S,(j=0,....,r+1)and S (r=0
turbations of S,S; and Sfm. respectively. Then, the proposed
approximation equations are received by analysing Egs. (53) and

N —1) be per-

Journal of King Saud University - Science 34 (2022) 101914

r
(lMl:rH | + Zaj,r+1 St)') ’
j=1

0~*h*mya, o
where {; = maX0<k<N{\5to| t Torz

and Kumar (2020), we derive

. H’Mh”ml
|an1 ‘ < Co + F(

%+2) (57)

Se,|}. Also, as used in Erturk

”h%m1
1St < 1o + T 1) Z jirs11Sg). (58)
where 17, = maXo<r<n{|Se, | +“;"%%b'° Sty |} Substituting [S! | from

Eq. (58) into Eq. (57) results

(54) |Str+1‘ < Yo
“h“m1 0 h mq
- ~ 0t - + Tx+2) ( T+ 1) Zb] r+1 ‘St | + Za] r+1 ‘St (59)
St =St +mzbﬁr+l(%(tj75q +Sy) — %1(8;,Sy)), (55)
=0
7%h%m1 T Mh/{m] ~
here by,.1 = [(r+1 )" — (r— )" Y0t Rt ) 2 (Foer Tyt +am S (60)
stm Sto + T :Jl:z (g] (tr+1,st " +Sfr+1) gl(twhstrﬂ))"r H—Mh%ml(g%‘z r 1
o (56) <% WZU+1 =17 181, (61)
,{fz Za}rﬂ Y1(t, Sy, +5t) Y1(t,St)), =1
where 7, = max{{, +“h";$no}. C.2 is a +ve constant only
Using the Lipschitz condition, we simulate depends on % (Lemma 1 used in Erturk and Kumar (2020)) and h
| x=075 x=085 x=095_ x=1 | | x075  x-085 x=095_ x=1 |
Si(t) l(t)
120
100
150
80
60 100
40
50
20
20 40 60 80 100 ' 20 40 60 80 100 '
(a) Variations in class S; against the time ¢ (b) Variations in class Z; against the time ¢
I x=0.75,__ x=0.85,_ x=0.95,__ x=1 I I x=0.75,__ x=0.85,_ x=0.95,_ x=1 I
Gr(H) Ri(t)
80
500
400 60
300
40
200
20
100
20 40 60 80 100 7 20 20 60 80 100 |

(¢) Variations in class Q; against the time ¢

(d) Variations in class R; against the time ¢

Fig. 7. Structure of the model classes in CF sense at various values of order %, when vaccination fraction g = 0.
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is supposed to be small enough. Lemma 2 as mentioned in Erturk
and Kumar (2020) gives |St:1| < €Y,. which finishes the proof. O

6.3. Graphical results

In this section, we check the correctness of our numerical
algorithm by simulating number of graphs at different fractional
order values x. Here, we have considered the same initial popula-
tions #¢(0) = 100, .#,(0) = 10, 2,(0) = 5, %,(0) = 0, and parameter
values d = 0.001, 8§ = 0.003,6 = 0.003,y = 0.002,b = 10, # = 0.05,
p =0.003,07, = 0.003, 0, = 0.002,q = 1 as in the CF sense simula-
tions. In the subFigs. 5a, 5b, 5¢, 5d, we show the variations in
S, I, 2, and 2, against the time variable t. Here the variations
in the dynamics of the model can be clearly explored at the var-
ious derivative order values. We observe that when the frac-
tional order value changes then the differences between phases
of the plot lines increase. Also, Fig. 6 shows the relations
between the given classes at various values of . More con-
cretely, in subFig. 6a we plot the variations &, versus .#;, and
in 6b we graph the variations &, versus 2,. Meanwhile, in sub-
figure 6¢ we plot the variations .%; versus %;, and in 6d we plot
the variations #; versus .#,. The fractional order values which
we used here are »=0.75,0.85,0.95,1 as in the case of CF.
Now, to simulate the role of vaccines on the proposed modified
Caputo model classes, we change the value of the vaccination

| x=0.75,_ x=0.85, _x=0.95__ x=1 |

Journal of King Saud University — Science 34 (2022) 101914

fraction q. Here, in the family of Fig. 7, the subFigs. 7a, 7b, 7c,
7d demonstrate the variations in %;,.7;, 2;,, and %, against the
time variable t at the vaccination fraction g = 0, where all other
values are the same as used above. Similarly, Fig. 8 demon-
strates the changes in the model classes when the vaccination
rate g = 0.5. By the comparison of Fig. 7 and 8, we can easily
observe that when the value of vaccination fraction g increases
then the population of infectious humans decreases. This clearly
means that a high vaccine rate gives much safety and becomes
the only way to control the COVID-19. Now, as many countries
like India, USA, UK, Spain, and Brazil have a good rate of vacci-
nation which is a strong answer against COVID-19 infection.
Vaccine availability alongwith quarantine and other optimal con-
trol facilities makes these countries much stronger to fight
against this virus. From the given graphical observations, we
can observe that the both kernel properties (exponential decay
kernel in CF sense and singular kernel in modified Caputo sense)
work well to study the given COVID-19 epidemic dynamics. All
graphs are performed by using Mathematica software. The varia-
tions in the separate classes for both derivatives which are given
in Figs. 1 and 5 are probably same but the dynamics of the
given classes slightly change. This fact can be observed compar-
ing the group of Figs. 2 and 6. It is clearly observed that vacci-
nation fraction g plays a very important role in the given
dynamics and increment in the vaccine rate can decrease the
Covid-19 infection.

| x=0.75,_ x=0.85,  x=0.95, _x=1 |

Si(t) I (t)
120
100
—
100 —
80
80
60
60
40
40
20 20
t {
20 40 60 80 100 20 40 60 80 100
(a) Variations in class S; against the time ¢ (b) Variations in class Z; against the time ¢
| x=075_ x=085 x=095_ x=1 | | x075_ x=085  x=095_ x=1 |
Gi(t) Re(t)
400
300
250 300
200
. 200
100
100
50
t {

20 40 60 80 100

(¢) Variations in class Q; against the time ¢

20 40 60 80 100

(d) Variations in class R against the time ¢

Fig. 8. Structure of the model classes in CF sense at various values of order %, when vaccination fraction g = 0.5.
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7. Conclusion

In this study, two new non-classical COVID-19 epidemic models
have been proposed. As a novelty, we include vaccine rate. Firstly,
we have proposed a classical order model and then we have justi-
fied the fractional-order models by analysing the positivity and
boundedness of solutions. The disease-free and endemic equilib-
rium points are calculated along with basic reproductive number.
We have satisfied the existence of unique solution for both variable
order Caputo-Fabrizio and generalised Caputo-type fractional
models. We used two different fractional numerical algorithms
along with their stability analysis to solve the proposed models.
A deep and long discussion on graphical simulations is given mak-
ing use of Mathematica software. The current study provides a
description of the propagation of COVID-19 disease and supporting
analysis proves the correctness of our results. In future, the current
model can be validated by using real data from different countries.
Also, some other fractional derivatives can be used to solve the cur-
rent dynamical model.
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