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A B S T R A C T

The goal is to take advantage of the Earth-ionosphere wave guide’s fundamentally two-dimensional wave
propagation, utilizing the normalized Airy functions (NAFs) in a complex domain. It is demonstrated that the
typical working formula of VLF radio-mode theory may be obtained simply from orthogonality reflections,
devoid of the requirement of sophisticated argumentation in the open unit disk. The combination of the
expressions is given by considering the symmetry-convex illustration of the NAFs.
1. Introduction

Beginning in the first decade of the 20th century, conformal map-
pings were first used to solve Laplace’s equation and other steady-state
issues in mathematical physics. All integral equations found in any
conformal mapping problem are Fredholm integral equations of the sec-
ond type with a limited kernel, with the exception of Symm’s integral
equation, which is of the first kind with a kernel that contains a log-
arithmic singularity. The second class of Fredholm integral equations
are never ill-conditioned, and accurate error estimates are available
for them (Kythe, 2019). Assuring that the solution is periodic and
singular is the ideal approach for creating a computational technique
based on an integral equation formulation. This allows for the efficient
use of the extremely precise trapezoid rule on smooth contours. It is
also important to search for the fact that the mapping onto canonical
areas (such as the unit disk, annuls, or slit disks) results in systems of
linear equations rather than systems of nonlinear equations that must
be solved.

The Earth-ionosphere waveguide pattern propagation of VLF (Very
Low Frequency) radio waves is an enthralling phenomenon that is
important for communications over long distances and for the research
of electromagnetic wave propagation in the Earth’s atmosphere. Let us
divide this notion down into its key elements to better comprehend it:

• The Earth-Ionosphere waveguide is a geological route that con-
nects the Earth’s surface to the ionosphere, a layer of electrons
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in the Earth’s outer atmosphere. The ionosphere is a layer of
electrically charged particles that exists between 30 miles (50
km) and 600 miles (1000 km) beyond the Earth’s surface and can
absorb and distort radio signals.

• VLF radio waves are electromagnetic waves with frequencies
ranging from 3 kHz to 30 kHz; however, the actual frequency
range might vary significantly. Although they are capable of
traversing the Earth’s atmosphere and transmitting faraway in-
formation with very minimal power, these waves are frequently
utilized for communication over long distances.

• VLF radio waves may propagate in a special mode known as the
‘‘ground wave’’ or ‘‘surface wave’’ pattern in the Earth-ionosphere
waveguide. This type of radiation includes VLF waves interacting
with the Earth’s surface and ionosphere.

The Earth is shown as a spherical entity in the theory of radio
transmission, and layers of the atmosphere are frequently deified as
spheres. In order to investigate the geoenvironmental issues in shallow,
low-conductivity sedimentary layers, explore the groundwater, and
pinpoint the location of anomalous source bodies underneath, VLF
electromagnetic technology is applied. The frequency region between
15 and 30 kHz is where VLF electromagnetic technology is applied. The
carrier waves of long-distance, strong communications transmission
used by military groups are also used by VLF. When a VLF transmitter
travels across the surface of the Earth, strong signals transported over
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the resistible section of the crystalline rock mass will be picked up. In
addition to water-bearing cracks, VLF technique may identify any linear
conductive substance. The aerial use of VLF methods is particularly
well-liked. Both conductive and resistible objects may be effectively
searched for using this technique (Gandhi and Sarkar, 2016).

The propagating spherical wave functions are typically substituted
by the Airy functions (AFs) and Legendre functions in the approximate
outcome because of their asymptotic expansions. The solutions to the
Airy differential equation 𝜙′′(𝜁 ) − 𝜁𝜙(𝜁 ) = 0 are known as the Air
functions (AFs). Two essays by G. B. Airy included the first integral
representation of the function Ai(𝜁). Olivier and Soares presented a
study on the optics of a raindrop containing a detailed explanation of
the Airy hypothesis (Olivier and V, 2010). The AFs have a significant
role in electromagnetism, the propagation of radio waves, the study
of electromagnetic diffraction, the propagation of light and optical
studies. They are also extensively used in research in Olivier (2002).
The applications of AFs are presented depending on two properties of
these functions, symmetry and convexity. Symmetry property is used
in radial studies (see Anikin et al. (2019), Minin et al. (2021), Chen
et al. (2019)). While the convexity property is employed in the lenses
investigations (see Suarez and Gesualdi (2020), Len (2022), Indenbom
(2022)).

In this effort, we employ the properties of Airy functions to de-
termine the solution of a complex variable wave equation. To discuss
the behavior of the solution of the wave equation, we firstly present
the Airy functions in the normalized form (NAFs). This will help us
to investigate the geometric properties. We prove that the normalized
formula involves some interesting special functions. To examine the
propagation of 2D-waves in a complex domain, we proceeded to find
the symmetry-convex depiction of the NAFs. Our aim is to illustrate a
set of sufficient conditions to obtain the one-one (univalent) outcome,
which is very important in the complex wave equation. The basic
working formula for the VLF-Radio-mode theory is shown to be easily
derivable from orthogonality considerations without the requirement
for in-depth justification in the open unit disk. By considering the
symmetry-convex behavior of the NAFs, the expression is combined.
Section 2 presents the methodology, Section 3 indicates the results with
the discussion and Section 4 involves the final conclusion.

2. Methodology

This section deals with different concepts that will be used in the
outcome.

2.1. Normalization of airy functions

Airy functions are a type of special function that occurs in various
fields of science and engineering, notably in the investigations of
wave incidents, quantum physics, especially differential equations. The
integral pattern is used to come up with the Airy functions.

𝛬(𝜁 ) = ∫
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here 𝛬 indicates the Airy function and 𝜁 is a complex variable,
atisfying the power series in terms of the well known gamma function
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We request to normalize Airy functions by 𝑓 (0) = 0 and 𝑓 ′(0) = 1. This
process allows us to study the geometric formula of these functions.
The normalization can be viewed by the series
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The next result shows some properties of the normalized Airy functions
(see Fig. 1).

Proposition 2.1. In terms of special functions, the following results are
valid

•
A1(𝜁 ) =

𝐺(4∕3)31∕3∕𝐺(1∕3)
𝐺(5∕3)32∕3∕𝐺(2∕3)

−
𝐺(4∕3)31∕3∕𝐺(1∕3)

(

𝐼−1∕3(
2𝜁3∕2

)(𝜁3∕2)1∕3 −
𝜁𝐼1∕3((2𝜁3∕2)∕3)

3∕2 1∕3

)

,

3 3 (𝜁 )



Journal of King Saud University - Science 36 (2024) 103099S.B. Hadid and R.W. Ibrahim
Fig. 1. The ComplexPlot3D of the Airy functions 𝛬1 , 𝛬2 (the first row) and the normalized Airy functions A1 ,A2 (the second row) respectively using MATHEMATICA 13.3.
where 𝐺 is the Barnes function and 𝐼𝑛(𝜁 ) is the modified Bessel
function.
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where 0𝐹1 indicates the generalized hypergeometric function.

2.2. Airy symmetric-convex differential operator

We proceed to define the symmetric-convex differential operator us-
ing the above normalized Airy functions. Consider the analytic function
ℵ(𝜁 ) ∈ 𝛥 ∶= {𝜁 ∈ C ∶ |𝜁 | < 1} with the power series
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In general, we have the following 𝑘−formula (see Fig. 2)
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Note that, when 𝛼 = 0 and 𝜆𝑛 ≈ 1, when obtain the Salagean differential
operator (Salagean, 2006).

2.3. Wave equation with a univalent solution

We recommend using the parametric Koebe function in this en-
deavor to define the wave equation. The convex univalent function
family includes an extreme function known as the Koebe function. The
Koebe function 𝜅(𝜁 ) = 𝜁∕(1 − 𝜁 )2 extends a slit along the ray from the
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Fig. 2. The ComplexPlot3D of ASCDO, which is acting on 𝜁∕(1 − 𝜁 ) with A1 in the first row and A2 in the second row, when 𝑘 = 1, 𝛼 = 0.25, 0.5, 0.75.
point with radius 1/4 to the point 𝜁 = 0 and translates 𝛥 onto the
complex plane. Using the rotate Koebe function of the form (see Fig. 3)

𝜅𝜏 (𝜁 ) =
𝜁

(1 − 𝑒𝑖𝜏𝜁 )2
= 𝜁 +
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∑
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The suggested functional operator 𝛺𝑘
𝛼 can be acted on 𝜅(𝜁 ) to obtain

the generalized series
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We then use the proposed operator to solve the wave equation of a
complex variable. This equation is of the form
(

𝜕2

𝜕𝜏2
+ 𝜀2 𝜕

2

𝜕𝜁2

)

𝛺𝑘
𝛼(𝜁 ; 𝜏) = 𝛹 (𝜁 ), (2.3)

where 𝛺𝑘
𝛼(𝜁 ; 𝜏) is the 𝑘−iterative wave amplitude in 𝛥 joining the

convex factor 𝛼 ∈ [0, 1] and 𝛹 is the nonlinear functional of the wave
satisfying 𝛹 (0) = 0 and 𝛹 ′(0) = 1. A special case is studied in Wait
(1964), when 𝛹 (𝜁 ) = 0 and 𝛺𝛼(𝜁 ; 𝜏) = 𝛬(𝜁 ; 𝜏).

We will propose a univalent result to our wave equation. In wave
equations, the univalent solution is crucial (see Broer and Sarluy
(1964), Ibrahim et al. (2020), Ibrahim and Baleanu (2021), Hadid and
Ibrahim (2022)). The outcomes of the wave equations are assumed to
be incorrect for infinite layers because they are not univalent functions;
hence, the wave’s peaks will invariably move more quickly than the
through and eventually reach these levels. In the next section, we
deal with the main sufficient condition to obtain an analytic univalent
solution satisfying the inequality ℜ(𝛺𝑘

𝛼(𝜁 ; 𝜏)
′) > 0 where ′ = (𝑑∕𝑑𝜁 );

or in other words, the solution is a bounded turning function in the
complex domain 𝛥. In this case, the gradients keep growing, but
gradually these effects start to take effect and this expansion is slowed
down.

3. Results and discussions

The recent section admits the results regarding the univalent out-
come of Eq. (2.3) for different suggestions on 𝛹 (𝜁 ).
4
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𝛼(0; 𝜏)] =
0 and [𝛺𝑘

𝛼(0; 𝜏)]
′ = 1. Substituting −𝜁 by 𝜁 in the inequality (3.1), we

have

ℜ

(

𝜁 [𝛺𝑘
𝛼(−𝜁 ; 𝜏)]

′

[𝛺𝑘
𝛼(𝜁 ; 𝜏)] − [𝛺𝑘

𝛼(−𝜁 ; 𝜏)]

)

> 0. (3.2)

Combining with inequality (3.1), we have

ℜ

(

𝜁
(

[𝛺𝑘
𝛼(−𝜁 ; 𝜏)]

′ − [𝛺𝑘
𝛼(−𝜁 ; 𝜏)]

′)

[𝛺𝑘
𝛼(𝜁 ; 𝜏)] − [𝛺𝑘

𝛼(−𝜁 ; 𝜏)]

)

> 0. (3.3)

This implies that [𝛺𝑘
𝛼(𝜁 ; 𝜏)] − [𝛺𝑘

𝛼(−𝜁 ; 𝜏)] is univalent in 𝛥. According
to Kaplan theorem of uni-valency (Kaplan, 1952), we conclude that
[𝛺𝑘

𝛼(𝜁 ; 𝜏)] is univalent solution of Eq. (2.3). □

More conditions on [𝛺𝑘
𝛼(𝜁 ; 𝜏)] to be univalent solution in the next

results.

Proposition 3.2. Consider Eq. (2.3). Let the operator 𝛺𝑘
𝛼(𝜁 ; 𝜏) satisfies

the inequality

ℜ
(

[𝛺𝑘
𝛼(𝜁 ; 𝜏)]

′ + 𝑓 (𝜁 )[𝛺𝑘
𝛼(𝜁 ; 𝜏)]

′′) > 0, (3.4)

where 𝑓 (𝜁 ) is analytic in 𝛥 with ℜ{𝑓 (𝜁 )} > 0. Then [𝛺𝑘
𝛼(𝜁 ; 𝜏)] is univalent

outcome for Eq. (2.3).

Proof. Suppose that the inequality (3.4) is valid. Define an admissible
function 𝛩 ∶ C2 → C, as follows:

𝛩(𝜌, 𝜍) = 𝜌(𝜁 ) + 𝑓 (𝜁 )𝜍(𝜁 ).

Then by the condition (3.4), and assuming that

𝜌(𝜁 ) ∶= [𝛺𝑘(𝜁 ; 𝜏)]′, 𝜍(𝜁 ) ∶= 𝜁 [𝛺𝑘(𝜁 ; 𝜏)]′′,
𝛼 𝛼
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Fig. 3. The plot on the left is the real part and the right is the imaginary part of 𝜅𝜏 (𝜁 ).
we confirm that

ℜ
(

𝛩
(

[𝛺𝑘
𝛼(𝜁 ; 𝜏)]

′, 𝜁[𝛺𝑘
𝛼(𝜁 ; 𝜏)]

′′)) > 0.

In view of Miller and Mocanu (1978)-Theorem 5, we obtain

ℜ
(

[𝛺𝑘
𝛼(𝜁 ; 𝜏)]

′) > 0,

which yields that [𝛺𝑘
𝛼(𝜁 ; 𝜏)] is univalent solution of Eq. (2.3). □

Proceeding to discover more condition on [𝛺𝑘
𝛼(𝜁 ; 𝜏)] to be univalent.

The next result is a connection between [𝛺𝑘
𝛼(𝜁 ; 𝜏)] and 𝛹 (𝜁 ) in Eq. (2.3).

Proposition 3.3. Consider Eq. (2.3), where 𝛹 (𝜁 ) is a bounded function
in 𝛥 such that

inf
(

𝛹 (𝜁1) − 𝛹 (𝜁2)
𝜁1 − 𝜁2

)

> 0, 𝜁1, 𝜁2 ∈ 𝛥.

If

|

|

|

|

|

𝜁
[𝛺𝑘

𝛼(𝜁 ; 𝜏)]
−

𝜁
𝛹 (𝜁 )

|

|

|

|

|

≤
2 inf

(

𝛹 (𝜁1) − 𝛹 (𝜁2)
𝜁1 − 𝜁2

)

[sup𝜁∈𝛥 (𝛹 (𝜁 ))]2
;

then [𝛺𝑘
𝛼(𝜁 ; 𝜏)] is univalent solution for Eq. (2.3).

Proof. Let [𝛺𝑘
𝛼(𝜁 ; 𝜏)] = 𝜁 +

∑∞
𝑛=2 𝜗𝑛𝜁

𝑛 and 𝛹 (𝜁 ) = 𝜁 +
∑∞
𝑛=2 𝜓𝑛𝜁

𝑛. Define
the function 𝛶 ∶ 𝛥→ 𝛥, as follows:

𝛶 (𝜁 ) = [
𝜁

𝑘 −
𝜁

]′′.
5

[𝛺𝛼(𝜁 ; 𝜏)] 𝛹 (𝜁 )
Clearly, 𝛶 (𝜁 ) is analytic in 𝛥. Integrating both sides, we obtain

[
𝜁

[𝛺𝑘
𝛼(𝜁 ; 𝜏)]

−
𝜁

𝛹 (𝜁 )
]′ = 𝜓2 − 𝜗2 + ∫

𝜁

0
𝛶 (𝑡)𝑑𝑡.

Consequently, we have

[
𝜁

[𝛺𝑘
𝛼(𝜁 ; 𝜏)]

−
𝜁

𝛹 (𝜁 )
] = (𝜓2 − 𝜗2)𝜁 + ∫

𝜁

0
𝑑𝑠∫

𝑠

0
𝛶 (𝑡)𝑑𝑡.

Therefore, a computation implies that

[𝛺𝑘
𝛼(𝜁 ; 𝜏)] =

𝛹 (𝜁 )
1 + (𝜓2 − 𝜗2)𝛹 (𝜁 ) + 𝛹 (𝜁 ) (𝜒(𝜁 )∕𝜁 )

,

where

𝜒(𝜁 ) = ∫

𝜁

0
𝑑𝑠∫

𝑠

0
𝛶 (𝑡)𝑑𝑡.

A calculation yields that
(

𝜒(𝜁 )
𝜁

)′
= 1
𝜁2 ∫

𝜁

0
𝑡𝜒 ′′(𝑡)𝑑𝑡 = 1

𝜁2 ∫

𝜁

0
𝑡𝛶 (𝑡)𝑑𝑡.

By the conditions of the proposition, we get

|

|

|

|

𝜒(𝜁2)
𝜁2

−
𝜒(𝜁1)
𝜁1

|

|

|

|

=
|

|

|

|

|

∫

𝜁2

𝜁1

(

𝜒(𝜁 )
𝜁

)′
𝑑𝜁

|

|

|

|

|

≤

⎛

⎜

⎜

⎜

⎜

⎝

2 inf
(

𝛹 (𝜁1) − 𝛹 (𝜁2)
𝜁1 − 𝜁2

)

[sup𝜁∈𝛥 (𝛹 (𝜁 ))]2

⎞

⎟

⎟

⎟

⎟

⎠

(

|𝜁2 − 𝜁1|
2

)

,
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T
𝛥

C
|

|

|

|

|

t

P
N

[

w
|

|

|

|

|

C

[

w
∑

where 𝜁1 ≠ 𝜁2. Next, we aim to show that [𝛺𝑘
𝛼(𝜁1; 𝜏)] ≠ [𝛺𝑘

𝛼(𝜁2; 𝜏)] or
|

|

|

[𝛺𝑘
𝛼(𝜁1; 𝜏)] − [𝛺𝑘

𝛼(𝜁2; 𝜏)]
|

|

|

> 0, 𝜁1 ≠ 𝜁2.

|

|

|

[𝛺𝑘
𝛼(𝜁1; 𝜏)] − [𝛺𝑘

𝛼(𝜁2; 𝜏)]
|

|

|

=

|

|

|

|

|

𝛹 (𝜁1) − 𝛹 (𝜁2) + 𝛹 (𝜁2)𝛹 (𝜁1)
(

𝜒(𝜁2)
𝜁2

−
𝜒(𝜁1)
𝜁1

)

|

|

|

|

|

|

|

|

|

|

1 + (𝜓2 − 𝜗2)𝛹 (𝜁1) + 𝛹 (𝜁1)
(

𝜒(𝜁1)
𝜁1

)

|

|

|

|

|

|

|

|

|

|

1 + (𝜓2 − 𝜗2)𝛹 (𝜁2) + 𝛹 (𝜁2)
(

𝜒(𝜁2)
𝜁2

)

|

|

|

|

|

>
|𝛹 (𝜁1) − 𝛹 (𝜁2)| − inf

(

𝛹 (𝜁1) − 𝛹 (𝜁2)
𝜁1 − 𝜁2

)

(

𝜁2 − 𝜁1
)

|

|

|

|

|

1 + (𝜓2 − 𝜗2)𝛹 (𝜁1) + 𝛹 (𝜁1)
(

𝜒(𝜁1)
𝜁1

)

|

|

|

|

|

|

|

|

|

|

1 + (𝜓2 − 𝜗2)𝛹 (𝜁2) + 𝛹 (𝜁2)
(

𝜒(𝜁2)
𝜁2

)

|

|

|

|

|

≥ 0.

hus, we conclude that [𝛺𝑘
𝛼(𝜁 ; 𝜏)] is univalent solution of Eq. (2.3) in

. □

There are some special cases of Proposition 3.3, as follows:

orollary 3.4. If
(

𝜁
[𝛺𝑘

𝛼(𝜁 ; 𝜏)]

)′′
|

|

|

|

|

≤ 2,

hen [𝛺𝑘
𝛼(𝜁 ; 𝜏)] is univalent solution.

roof. By putting 𝛹 (𝜁 ) = 𝜁 in Proposition 3.3, we get the outcome.
ote that

𝛺𝑘
𝛼(𝜁 ; 𝜏)] =

𝜁
(1 + 𝜁 )2+𝑐

,

here
(

𝜁
[𝛺𝑘

𝛼(𝜁 ; 𝜏)]

)′′
|

|

|

|

|

= (2 + 𝑐)(1 + 𝑐)(1 + 𝜁 )𝑐 , 𝑐 > 0. □

By Corollary 3.4, we have

orollary 3.5. If

𝛺𝑘
𝛼(𝜁 ; 𝜏)] =

𝜁
1 +

∑∞
𝑛=1 𝜓𝑛𝜁𝑛

,

here
∞

𝑛=2
𝑛(𝑛 − 1)|𝜓𝑛| ≤ 2,

then [𝛺𝑘
𝛼(𝜁 ; 𝜏)] is univalent solution.

We have the final remarks on this study.

Remark 3.6.

• Because 𝑛−1 is an integer, there exist solutions that are periodic.
It is known that the solution is not always periodic, hence this
constraint is unnecessary. Also, the boundary conditions will be
used to calculate the value of 𝜏. Additionally, it is stated that
ℜ𝜏 > 0 without losing generality, and focus is placed just on
outcomes that behave as exp(𝑖𝜏). This corresponds to waves that
are attenuated in the direction of positive 𝜏. The waves moving in
the opposite direction of 𝜏 have the iterative symmetrical shape.

• This paper’s development of the idea lends itself rather naturally
to several generalizations. This can be an intriguing circumstance
whenever the height of the top boundary varies along the route
propagation. The normalized analytic function is conceived of as a
function of 𝜁 in the open unit disk, that ultimately arrives at the
normalized univalent result in the complicated structure under
study.
6

• On the basis of basic principles, it is reasonable to assume that
a waveguide slowly changing characteristics will not be signifi-
cantly different from a waveguide with a constant cross section.
A normalized waveguide with a univalent function may be iden-
tified by the modes’ structure. In the current situation, it is
normalized to a value that is close to unity for ideal ground
conductivity.

• Fading in the magnitudes and cycles of VLF signals may be caused
by a variety of sources, and it is frequently more apparent over
long propagation pathways. A few of the most prevalent reasons
of fading in VLF transmissions are as follows: Multipath Propaga-
tion, Atmospheric Noise, Terrain and Ground Conductivity, and
Sunlight and Geomagnetic Phenomena. Various approaches and
signal processing technologies, including as diversity reception,
adaptive equalizing, and correction of error coding, are employed
to counteract the impact of fading in VLF telecommunication.

4. Conclusion

In the above study, we formulated a symmetric-convex differential
expression normalized Airy functions in a complex domain. We con-
sidered this formula as a differential operator acting on a normalized
class of analytic functions. In the next step of this investigation, we
illustrated a wave equation involving the suggested operator (ASCDO)
as a solution. Since we aimed to study the behavior of the solution
geometrically, we presented the most sufficient conditions on ASCDO
to be univalent solved. Univalent solution is a very delicate property on
the theory of the wave equation of a complex variable. This property
brings a lot of geometric presentations for the solution based on the
geometric function theory.
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