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In the oil and natural gas industry, artificial intelligence (AI) technology has penetrated into all links from
exploration and development to construction sites. This paper investigates the application of artificial
intelligence in each link of oil reservoir. It is found in investigation that each algorithm plays a different
and important role at each stage and every link of oil accumulation development cannot leave the coop-
eration of artificial intelligence. But, the application of AI is mostly scattered, forming a physical isolation,
a lot of single information-island. This situation increases the communication cost of cross-departmental
data cooperation and the repetitive screening and recognition work has seriously affected work effi-
ciency. To address unsolved problems with the current application of AI, AI-based geo-engineering inte-
gration in unconventional oil and gas are proposed this article considers. Integrate data islands, and
realize internal resource sharing, treat exploration and development as an organic whole, extend explo-
ration to development. This article takes the well factory operation mode, meanwhile, the real-time syn-
chronization and coordination of all links has been fully realized. This kind of integration of geology and
engineering is helpful to realize coordination and cooperation at all levels, regions, and disciplines, effec-
tively benefiting development of unconventional oil and gas reservoirs.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

AI began in the 1960s and enjoyed a notable success. AI pro-
vides new ideas to unconventional oil and gas development (Li
et al., 2020; Yang and Zou, 2019). Liu et al. (2018) use hybrid intel-
ligent systems (HIS) to optimize the development effect is the main
application method of AI in the field of reservoir development and
development. AI also provides a more accurate method for select-
ing the level of stimulation measures. Xinjiang Oilfield Company
adopted BP-NN and LM algorithms, and used GR to optimize the
construction plan, and realized the scientific decision-making and
fine optimization of the parameters of the fracturing plan (Maity
and Ciezobka, 2019). Al-Fattah developed a rigorous and advanced
data-driven model called GANATS which can describe and predict
global crude oil demand. Al-Fattah (2021). After oil and gas reser-
voirs are exploited, crude oil transportation and preservation are
key issues. An intelligent simulation decision-making system for
crude oil storage and transportation scheduling is designed based
on the C++ Builder 6 program development platform (Yuan,
2018). Ahmadi et al. (2012) developed a unified particle swarm
optimization method based on neural networks to predict asphal-
tene precipitation, which method is based on ANN to predict
asphaltene qualitative precipitation. AI plays an important role in
oil and gas storage applications (Koroteev and Tekic, 2021;
Kuang et al., 2021; Maryam and Abbas, 2018).

However, the above methods each form a system, there is cur-
rently no systematic summary of AI in the integration of geological
engineering in unconventional oil and gas (Xie et al., 2017; Chen
et al., 2021). This study analyzes AI in the construction of reservoir
geo-engineering and the cases of AI-based integrated work plat-
forms. Finally, the future research directions and suggestions for
the integration of artificial intelligence in unconventional oil and
gas geological engineering are put forward. It provides a reference
for the application of artificial intelligence integration in uncon-
ventional oil reservoirs.
2. The trend of geo-engineering integration

The status of unconventional oil and gas in global energy supply
has become increasingly prominent and has become an important
part of oil and gas production, reshaping the global energy map
and pattern (Jia, 2017; Tong et al., 2018; Zou et al., 2018).

Unconventional oil and gas, taking tight oil with higher heat as
an example, strong heterogeneity, poor seepage ability, low single
well production, low oil and gas field recovery rate and unstable
production are also among its characteristics (Jiao, 2019; Yang
and Zou, 2019; Sun, 2019). In the traditional oilfield management
model, the continuous process of geology and engineering is artifi-
cially divided, and there is a lack of inheritance and reciprocating
correction process between the data. If the construction result of
the back-end project cannot be fed back to the geology department
in time, the reservoir model cannot be revised in time (Yang et al.,
2020).

Taking China as an example, all major oil fields throughout
China seeks to become new kinds of oil fields under the integrated
management model of geo-engineering. It successfully established
and realized the ‘‘ integration of exploration and development
2

deployment, integration of exploration and development manage-
ment, integration of exploration and development research, inte-
gration of reserves and production. In the specific work, the
integration of production and scientific research, the integration
of engineering and geology, and the integration of oil testing with
development” is the overall framework of the main content (Li
et al., 2020; Redutskiy, 2017; Wan et al., 2020; Yao, 2014).
3. A powerful tool-AI

Artificial intelligence (AI) refers to intelligently developed
machines that is programed to learn, think, perceive, and solve
problems like humans. With the leap in computer processing capa-
bilities and the continuous innovation of algorithms, AI technology
has achieved unprecedented development and penetrated into all
aspects of life. In the energy sector, AI is indispensable as well.
3.1. Why supportive?

Artificial intelligence (AI) refers to intelligently developed
machines that is programed to learn, think, perceive, and solve
problems like humans. AI algorithms are often used in oil reser-
voirs. Each algorithm has its own principle.

ANN is the ability to model complex non-linear processes with-
out the need to establish any relationship between input and out-
put variables. Fuzzy Logic can use ‘‘human language” to describe
problems and their fuzzy solutions. GR is simple chromosome-
like data structures that encode potential solutions to specific
problems. The principle of SVM is based on statistical learning the-
ory and structural minimization. Case-based reasoning (CBR) is to
reuse one or more similar cases that have been previously solved in
new problems.

The efficient application of AI requires combined use of algo-
rithms for optimization purposes. Meanwhile each question is
unique, and model developed needs to consider the nature of the
problem.
3.2. Summary of commonly used AI technologies in the oil and gas
sector

In order to understand the characteristics of each algorithm in
depth and provide a basis for algorithm optimization in AI oilfield
exploration and development, the characteristics of some widely
used algorithms in the field are summarized. The application of
artificial intelligence in the reservoir can be classified as follows
according to the algorithm.

ANN are used for reservoir characterization, optimization
design of production stimulation measures, drill bit selection,
and optimization of field operations. Fuzzy logic has been used
reservoir characterization, production enhancement measures,
enhanced oil recovery, and decision analysis. Genetic algorithms
is used for real-time optimization of the entire oil and gas produc-
tion process. Support vector machine methods commonly used in
oilfields are used to identify flooded layers. The literature shows
that drilling plans can be optimized and executed through CBR.
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However, it is worth noting that in practical applications, AI
may have defects such as difficulty in reaching the optimal solu-
tion, overfitting, and large demand for computing capacity.
3.3. The influences of AI on the petroleum industry and oil and gas
economic design

The influences of AI on the economic design of the oil and gas
industry is reflected by the selection of one or more models for
comparison and correction through value assessment. For exam-
ple, what accounts for the increase in costs? Through the analysis
of the single well data with the big data of artificial intelligence in
each oil field, it can be understood that the increase of relevant
costs is directly related to the actual production. At the same time,
the artificial intelligence system is used to simulate the impact of
each oil field’s production capacity construction on the ROI, and
finally the reasonable economic design is obtained.

The design of oil well and petroleum industry by artificial intel-
ligence is mainly embodied in the overall optimization of new and
old data. Through the value evaluation, the benefit index of each
scheme is determined to provide scientific basis for the final opti-
mization decision. According to the specific situation, one or more
modes can be selected for mutual comparison and correction.
Fig. 1. The integration o

Table 1
Application of AI in reservoir geology.

Geological link method Author

Lithology identification CNN (Chen et al., 20
INN Kulga et al. (2
FSVM Cao et al. (201
SVM + ANN Han et al. (201
SVM + BP Ge et al. (2019

Reservoir evaluation SVM + ANN + RBF HIS Duan et al. (20
PSO + SVM Yin (2016)
Hybridgenetic algorithm Yin et al. (201

Crack identification A NN (Ahmed et al.,
Nanda et al., 2

ANN + Fuzzy Fan (2016)
CNN Wu et al. (201
ML + DBA + S VM Anderson et al
BP Huang et al. (2

3

4. AI and geo-engineering integration

In the concept of unconventional oil and gas reservoir geologi-
cal engineering integration, ‘‘geology” and ‘‘engineering” are not
synonymous with disciplines in a narrow sense. ‘‘Geology” broadly
refers to the comprehensive multi-disciplinary research work cen-
tered on reservoirs, including reservoir characterization, geological
modeling, geomechanics, and reservoir engineering evaluation.
‘‘Engineering” refers to a series of engineering technologies from
drilling to production in the process of exploration and develop-
ment, including drilling, fracturing, oil production, reservoirs, eco-
nomic evaluation, etc. Under the traditional oilfield management
model, geological and engineering data are physically and logically
separated. Having separately stored data, data are analyzed inde-
pendently by different departments. It results in low communica-
tion efficiency and duplication of work (Fu et al., 2019; Li et al.,
2019; Shu et al., 2020).

The integration of geo-engineering (Fig. 1) requires interaction
between geology and engineering, which provides a basis for engi-
neering operations such as drilling and fracturing. As the progress
of engineering operations changes, timely updating of new data
also helps to update the geological model in real time. Because
each link of the exploration and development of unconventional
oil and gas fields involves a large amount of heterogeneous data,
f gen-engineering.

Application

20; Wu et al., 2021) Characterization of tight reservoirs, low resistivity
pay identification018)

8)
7)
)
20) Reservoir physical parameters Reservoir physical

parameters
7)
2019; Jing et al., 2020;
019)

Crack pressure, closure pressure

Three-dimensional crack distribution
8) Fractured reservoir category
. (2016) Automatically identify cracks
016) Crack density



Fig. 2. Learners integrated with different intelligent algorithms.

Fig. 3. Geological analysis data intelligent platform.
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the massive data processing advantage of AI brings opportunities
for real-time communication and collaborative processing of all
links of geological engineering.

4.1. Application of AI in reservoir geology

Reservoir-centric geological modeling and reservoir characteri-
zation are the basis for engineering construction. With the techno-
logical progress of exploration and development, the foundation of
geological data, application scenarios and application purposes are
constantly undergoing profound changes. Table 1 summarizes part
of the AI technology application research involved in reservoir
geology.

Generally speaking, artificial neural network algorithm is one of
the most widely used algorithms in the geological link of uncon-
ventional oil reservoirs. The research ideas of ensemble learning,
especially selective ensemble learning, are gradually used by
researchers (Li et al., 2021). At present, learners integrated with
different intelligent algorithms have been used to classify lithol-
ogy. Learners based on lithology classification are used to further
identify the physical properties of the reservoir and combine the
geological information to determine the weight of each intelligent
method in the learner (Fig. 2).

It is evident that scholars nowadays are no longer limited to the
application of traditional methods, but are constantly trying new
methods, seeking more general knowledge representation and rea-
4

soning algorithms to achieve better application effects. There are
still deficiencies in geological evaluation based on artificial intelli-
gence, and the classification accuracy and scope of application
need to be further improved. Algorithm optimization and opti-
mization are still the direction of AI research. At the same time, this
selection and integration approach is applicable to all aspects of
geological engineering and has great application prospects.

In the research of reservoir geology, AI is not only applied to a
single technical link, but also gradually applied to the construction
of a geological intelligence platform, which partially reflects the
concept of integration. The application of AI in logging data inter-
pretation and other links is the technical preparation and founda-
tion for the ultimate realization of geo-engineering integration.

In order to enable the sharing of reliable geological information
obtained by AI in the geological process, and to improve the infor-
mation management level and data processing efficiency of oil-
fields, a geological analysis data intelligent platform came into
being as the technical foundation of geo-engineering integration
(Zhao et al., 2018) (Fig. 3).

The platform is a basic preparation for the integration of geol-
ogy and engineering. Its idea is to use artificial neural networks
(ANN), BP neural network methods, support vector methods,
genetic algorithms and other artificial intelligence methods to dis-
play seismic interpretation results, structural models, and three-
dimensional visualization of attribute models, dynamic models,
dynamic production profiles, etc. Moreover, the platform can



Table 2
Application of AI in engineering.

Engineering link method application

Drilling ANN (Gidh et al., 2012) Drilling plan optimization, drill bit optimization, wellbore stability, construction
optimization

BP + GA (Opeyemi, 2016) Drilling platform selection, stuck control and corrective measures
CBR (Tiago et al., 2012) Real-time risk monitoring and decision-making

Wellpattern design QGA Layout and optimization of well patterns
ANN (Saputelli et al., 2002)
PSO (Mellit et al., 2009) Preferred measures
GA Well spacing involves

fracture BP Optimal fracturing parameters,
BP + GA Fracturing effect prediction
ANN (Saputelli et al., 2002; Wei et al., 2020) Fracturing effect

test CNN (Al-Kaabi et al., 1993; Juniardi et al.,
1993)

Wellbore dynamic liquid level recognition

Capacity evaluation ANN BP(Mohaghegh et al., 1994) Water saturation, flow law, reservoir dynamic analysis capacity forecast
FCM + SVM (Anifowose et al., 2011; Shi et al.,
2018)

Reservoir dynamic analysis (water content)

GNN + IPSO (Ahmadi, 2012) Capacity forecast
SVM (Ahmadi et al., 2013; Ahmadi, 2015)
ANN + FCM (Sebakhy and Emad, 2009)
PCA + APSO + LSSVM (Ahmadi, 2015) Production management
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correlate the change rules between data, predict development indi-
cators, evaluate the effects of measures, adjust process parameters,
tap the potential of reservoir production, achieving the goal of
data-driven decision-making in oil fields.

4.2. AI applications in engineering

Due to many production problems in the development of oil
fields, engineering technology optimization is imminent. Engineer-
ing optimization can improve technology, increase capital returns
and ensure the stability of manpower. With the help of artificial
intelligence analysis and optimization engineering theory and
method, to promote the intelligent transformation and upgrading
of petroleum industry.

The ‘‘ engineering ” link is to screen, optimize and guide the
implementation of a series of drilling and production, as well as
to assess solutions. It makes continuous adjustment and improve-
ment of engineering technical solutions, enriching knowledge and
engineering operation from drilling to fracturing in a systematic
way. This paper focuses on the application areas of different AI
algorithms in drilling, fracturing, and productivity evaluation
(Table 2).

Among them, drilling is an important construction link of the
project, and its construction cost is high. The selection of equip-
ment and plans before drilling, and the real-time monitoring of
construction during drilling will affect the drilling effect. A large
number of factors that need to be considered in the prediction of
each link. Complex situations, and unpredictable construction con-
ditions all set barriers for drilling. AI has been successfully applied
in various aspects of drilling design, construction, and testing,
which has improved the adaptability of the drilling process to com-
plex situations.

Fracturing is the main measure and means to increase produc-
tion of oil and gas reservoirs, and high-efficiency fracturing is of
great significance for improving the recovery of unconventional
oil and gas. To improve the effect and efficiency of fracture predic-
tion and optimize fracturing plan, it is necessary to introducing AI
and machine learning methods to analyze the geological and engi-
neering process parameters that affect the fracturing effect.

In the engineering process, it is also necessary to establish a col-
laborative engineering decision-making and construction platform
to realize the integrated technology construction of fracturing, dril-
ling and productivity evaluation, in order to achieve integration
and factorization, combined with the summary in Table 2.
5

4.3. Application case analysis

Although the idea of integration has been reflected in the two
links of geology and engineering, the true realization of AI geo-
engineering integration still requires further interaction and inte-
gration of the two links. Currently, practitioners around the world
are constantly conducting integrated exploration of unconventional
oil and gas. In Sichuan China, Fuling marine shale gas, Dagang Oil-
field and other complex oilfields have combined their own charac-
teristics and made continuous efforts to integrate development
compatible with their own geological and production characteris-
tics. For the integration of geo-engineering in unconventional oil
and gas, further promotion of chemistry has certain practical signif-
icance. In the meantime, Green field Heavy Oil Asset in Kuwait ’s
data integration management ideas in the oilfield planning and
construction process have seenmore gratifying applications. Below,
the application cases are analyzed to gain experience and explore
future research directions (Redutskiy, 2017; Wen et al., 2018; Liu,
2017; Ling et al., 2010; Salaheldin, 2018).
4.3.1. Western South China Sea Oilfield
The integration of AI has achieved remarkable application effect

in oil and gas production (Shen, 2018; Zhang and Zhu, 2013). Based
on Western South China Sea Oilfield, the research and develop-
ment of integrated functions such as test design, real-time opti-
mization and adjustment, post-test productivity analysis and
well test interpretation are carried out.

Conventional methods are not suitable for complex reservoirs
in Western South China Sea Oilfield, the opening/closing time
and production system allocation are unreasonable, and there is
no combination of pre-drilling prediction and post-drilling correc-
tion. In response to the above problems, the study proposed the
following four steps.

(1) Establish the prediction model of reservoir, fluid physical
property and productivity parameters.

(2) Study on test design method based on parameter prediction.
(3) Research on real-time optimization and adjustment method

of test working system.
(4) Development of well test design and real-time optimization

decision system.

Based on the above 4 steps, the test experience of domestic and
foreign oil fields is used for reference by this research. Big data
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ideas were applied, including reservoir and fluid property parame-
ter prediction modules were established. The test plan is designed
and the module is adjusted in real time. The productivity analysis
and well test interpretation module and the knowledge generation
and management module are also included in the R&D software
system. Use the mature rules of the developed blocks to predict
the physical properties of reservoirs and fluids, and design a rea-
sonable testing system (Fig. 4). According to the actual measure-
ment dynamics on site, real-time adjustment of the work system,
production capacity forecast analysis.

This research can flexibly generate the parameter prediction
model, construct the knowledge base for parameter prediction,
design the test scheme, determine the reasonable test process, col-
lect the real-time data during the test and optimize the test work-
ing system.
4.3.2. Dagang complex fault block oil field
Dagang Oilfield is a typical complex fault block oilfield. Geo-

engineering integration in Dagang Oilfield (Zhao et al., 2018)
(Fig. 5), the degree of waterflooding control increased from 63.5%
to 80.1%, the degree of injection-production connectivity increased
from52.2% to 81.7%, and the injection-production response rate
increased from 65.5% to 80.2%. The labor productivity has
increased by 30%, and the system saves energy and reduces con-
sumption by more than 10%,provide practical guidance for the con-
Fig. 4. Geo-engineering integration in

Fig. 5. Geo-engineering integ

6

struction of integration of geology and engineering and enable
integration from concept to reality.

In terms of AI application in each link, ANN and fuzzy logic are
applied to reservoir characterization. The quantitative characteri-
zation accuracy reaches 0.2 m. The application of fuzzy logic com-
prehensively considers the development and distribution of
interlayers, the degree of reservoir production, the degree of water
flooding, the adaptability of the split injection process, and the
needs of tertiary production. The method is applied to the
decision-making analysis. In the engineering application, the sup-
port vector method is used to diagnose the working condition of
the pumping unit. The drilling is optimized and executed through
CBR Plan and PSO develop new wells and drilling simulators, com-
bining parameter integration schemes to optimize on-site develop-
ment. ANN is used to select drill bits and optimize on-site
operations.
4.3.3. Marine shale gas in southern China (Fuling shale gas)
With long-term unremitting efforts, the Fuling shale gas field

has become the world’s largest shale gas field outside of North
America. Through technological innovation, integrated innovation
and management innovation, the integrated development model
is actively implemented. The entire working process and ideas
are based on exploration and development, surface and under-
ground, scientific research and production integrated research
Western South China Sea Oilfield.

ration in Dagang Oilfield.



Fig. 6. Geo-engineering integration in Fuling Shale Gas.
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and on-site implementation, achieving high-level, high-speed,
high-quality, and high-efficiency development (Xiao et al., 2018)
(Fig. 6).

In combine with the concept of geo-engineering integration, the
intelligent geological engineering platform is used to identify
address before fracturing, and the fracturing is performed in com-
bination with different geological conditions. Fracture construction
design, refined zoning and refined design are combined with each
other. During the fracturing construction, through the joint display
of the real-time occurrence of micro-seismic events and the
dynamic changes of the construction curve, the construction situ-
ation, the formation situation and the crack characteristics are ana-
lyzed and judged. The next construction measures are adjusted to
ensure the construction Safe and smooth. Geological model is
updated via the implementation of monitoring fracturing effect
and real-time adjustment and post-fracturing evaluation and anal-
ysis (applying PSO and CBR). On this basis, use virtual well technol-
ogy to perform drilling and layout optimization on subsequent
development wells, and evaluate potential geological engineering
challenges and risks.

The integrated application of geo-engineering in Fuling shale
gas fully integrates engineering and geology, providing reference
for other unconventional oil and gas resource development in
China.
4.3.4. Green field heavy oil asset in Kuwait
Green field is an attempt by young oil fields to integrate geo-

engineering data management. Green field Heavy Oil Asset in
Kuwait uses data integration and visualization technology for Well,
Reservoir and Facility Management (WRFM) (Kharghoria et al.,
2019). It is still in the early stage of construction. The data volume
is relatively small in comparison to mature and old oil fields, but
data integration in the practice of this oil field shows a clearer
application prospect.

In accordance with the above three cases, it is clear that the data
mining and interaction potential of AI has not been fully utilized in
terms of communication management and decision-making in the
construction of integration of geo-engineering. The integration is
mostly reflected in new wells, new blocks, and new oil fields. Even
in old oil fields such as Dagang Oil Field, production is increased
through the construction of new areas. The improvement and
application of old well and old data remains problematic. Further-
more, there is lack of insightful and deep analysis on the impact of
the real-time update of engineering data on geological data.
Although there is work involving the matching of production
parameters and geological parameters, the research on the rela-
tionships and the corresponding decision-making mechanism
needs to be further strengthened. Therefore, in the work of uncon-
7

ventional oil and gas geo-engineering integration can be combined
with this phenomenon to explore the integration of old well areas,
old data and new data, and new technologies, ultimately achieving
a more comprehensive real-time shared database and algorithm
library.
5. Conclusions

The application cases suggest the realization of geo-engineering
integration to some extent. However, the challenges faced still
require further assistance from high-tech such as AI. Based on
summary work and case analysis, findings are summarized as
follows:

(1) Taking the well factory operation mode as an example, it is
of certain significance when combining historical successful
cases, establishing a standardized case model, forming a ref-
erence sample library, and combining CBR and other tech-
nologies for program design.

(2) The comprehensive algorithm has higher accuracy and bet-
ter effect than a single algorithm. The establishment of cor-
responding algorithm libraries for each link and the
realization of different algorithm optimization for different
reservoir structures are one of the potential directions of
geological engineering algorithm research.

(3) The unification of the formats of old data and new data, geo-
logical data and engineering data is still one of the chal-
lenges faced in effective database construction. The
realization of data transformation and big data integration
is the key to complete geo-engineering integration.

(4) The previous artificial intelligence is very effective in every
aspect, but when each sector is applied to each other,
because each department is independent, the application
or query of data will be delayed. The integration of geology
and engineering enables internal resource sharing, treating
exploration and development as an organic whole, which
accelerates the implementation process of exploration and
development, and shorten the conversion of resources to
reserves, reduces the time for reserves to production conver-
sion, and saves funds spent on exploration and development
and oilfield construction.
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