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The paper deals with the computation of solutions of fuzzy Volterra integral equations with degenerate
kernel by applying a hybrid method. The proposed method is built on Laplace transform coupled with
Adomian Decomposition Method; Laplace Adomian Decomposition Method abbreviated as (LADM). In
the considered equation the unknown function has a solution in terms of infinite series expansion and
hence LADM becomes more accurate to give the exact solution. Firstly, using the fuzzy number in term
of parametric form, the fuzzy Volterra integral equation is converted to two crisp integral equations and
then LADM is applied to get the exact fuzzy solutions of fuzzy linear Volterra integral equations. For the
illustration, some examples of considered equations are solved to highlight the robustness, efficiency and
the applicability of the developed scheme. The obtained results play an important role in developing the
theory of fuzzy analytical dynamic equations.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The study of fuzzy integral equations is of more interest and fast
growing, especially the relation to fuzzy control, which has been
developed recently. Mostly, mathematical models are applied in
various problems of Chemistry, Engineering, Biology, Physics, and
other many fields are based on integral equations, should be
Mostly, mathematical models are applied in various problems of
Chemistry, Engineering, Biology, Physics, and other many fields
are based on differential, fractional order differential and integral
equations see Atangana (2018), Atangana (2020, 2017). Particu-
larly, the Volterra linear integral equations of second kind (Bede,
2004; Congxin and Ma, 1990; Chang and Zadeh, 1972; Friedman
et al., 1996, 1997) is one of the most powerful types of integral
equations to deal with such type of problems. Clearly, each model
has some parameters which may be inherited to some vagueness.
To solve these models we should mention such studied problems
under uncertainty which leads to the presentation of fuzzy con-
cept. The numerical idea for solving the Fredholm fuzzy linear inte-
gral equations of second kind by using the Adomian method were
presented by Babolian et al. (2005). Also Friedman et al. (1999)
presented the embedding method for the solution of fuzzy Volterra
and Fredholm integral equations. In another numerical scheme,
which was proposed by Abbasbandy et al. (2007) for the solutions
of second kind fuzzy linear Fredholm integral equations, the
authors applied the parametric form of fuzzy number to transform
the fuzzy linear Fredholm integral equations into two systems of
linear integral equation in deterministic cases. Recently, to solve
the second kind of non-linear fuzzy Volterra–Fredholm integral
equations by using the algorithm of homotopy perturbation
method was presented by Attari et al. (2011). Molabahrami et al.
(2011) used fuzzy parametric pair to transform the fuzzy Fredholm
linear integral equation into two systems of linear integral equa-
tions as in crisp form, then they applied homotopy analysis method
for obtaining the approximate solutions of the systems. To get the
solutions of fuzzy Volterra and Fredholm integral equations, there
are many research papers which presented the integration meth-
ods numerically for the solution of fuzzy-valued function
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(Friedman et al., 1999; Goetschel et al., 1986; Maltok, 1987; Nanda,
1989; Park et al., 1995; Wu, 1999, 2000). Moreover, there are some
analytical and computational methods for the solution of fuzzy
Volterra and fuzzy Volterra integro-differential equation
(Salahshour and Allahviranloo, 2013; Alikhani et al., 2012). The
classical Volterra integral equation is given by

m yð Þ ¼ h yð Þ þ k1

Z y

b1

k y; sð Þm sð Þds: ð1Þ

Here we remark that we investigate the given problem in Eq. (1)
under fuzzy concept for analytical solution. The fuzzy form of the
given equation is provided by

m y;a1ð Þ ¼ h y;a1ð Þ þ k1

Z y

b1

k y; sð Þm s;a1ð Þds; ð2Þ

where the unknown fuzzy parametric function m y;a1ð Þ ¼
m y;a1ð Þ; m y;a1ð Þð Þ is to be determined. Further, h y;a1ð Þ ¼
h y;a1ð Þ;h y;a1ð Þ

� �
is known fuzzy parametric form function and

the real-valued function k y; sð Þ is also known and is said to be the
kernel of integral equation and k1 2 R; y 2 b1;b2½ � and b2 < 1 where
b1; b2 are real constants. This article shows the simplicity of LADM
to solve the linear fuzzy Volterra integra equation given in Eq. (2).
Here we remark that the symbol a1 designates the a-cut in the
given problem. In many problems which of differential equations
which are converted to their corresponding integral equations, the
kernel k y; sð Þ, may be singular or nonsingular and depend on the
nature of differential operator of the investigated fuzzy dynamic
equation (Kilbas et al., 2006; Caputo and Fabrizio, 2015; Atangana
and Baleanu, 2016; Atangana and Koca, 2019; Atangana and
Gómez-Aguilar, 2019; Gupta and Dangar, 2014; Abdeljawad,
2019). If the fuzzy dynamic equation is integer order its correspond-
ing fuzzy integral equation contains kernel of integer order. The
deterministic system build on ordinary differential equation is the
most acceptable mathematical instrument when modeled utilize
fractional order differential operator, a hallmark of which is their
powerful memory report. This is noticeable from a number of recent
studies (Qureshi, 2020; Qureshi and Memon, 2020; Qureshi and
Atangana, 2019) wherein it is convey that in contrast to classical
differential operators, fractional order operator better analyze the
chaotic pattern of various diseases. Therefore in recent times in
most cases, the mentioned non integer order differential equations
are converted to integral equations of Volterra or Fredholm type to
study them. In addition, various engineering and physical systems
build upon deterministic nature of governing equations have
recently been investigated under non integer order differential
operators (see Qureshi et al., 2019; Qureshi and Kumar, 2019;
Atangana and Qureshi, 2019; Qureshi and Aziz, 2020;Akgül et al.,
2019; Owolabi and Atangana, 2019; Akgüla, 2019; Akgül, 2018;
Atangana and Hammouch, 2019; Atangana and Akgül, 2020). In
Least Square Approximation (LSA), the convergence series depend
upon the operator defined and for the existing numbers ci which
minimize the function. The necessary condition for convergence
of LSA is that the partial derivative of function is zero (see Ameri
and Nezhad, 2017). On the other side the hybrid method solution
for the given problem obtain in a series form show the higher con-
vergence of the algorithm. The mention algorithm need not any
type of linearization or discretization and also need not an extra
parameter as needed in LSA which catch the solution of the method.
Further the qualitative theory of existence of solutions to Volterra
integral equations in one and two dimensions has also investigated,
(for detail see Bica and Ziari, 2019; Bica, 2013; Song et al., 1999;
Subrahmanyam and Sudarsanam, 1996; Park and Jeong, 2000). Fur-
ther numerical solutions for the said problem via using wavelet
(Sahu and Ray, 2017) have been established. Here we remark that
wavelet technique need discretization of date by using collocation
2

points techniques which need extra memory and waste time. The
mentioned numerical techniques are more powerful to handle non-
linear problems rather than linear problems. Further, our study is
devoted to analytical aspect and hence we are interesting to find
the analytical solution for the considered problem.

This paper is arranged as follow: Section 1 is the introduction
part, Section 2 consists of some basic necessary preliminaries
about the fuzzy calculus. Section 3, contains the main work and
in Section 4, some examples are handled by using the suggested
method. Finally, a brief conclusion is given in Section 5.
2. Preliminaries

Some basic definitions are given which used throughout the
paper.

Definition 1 Goetschel et al., 1986. A fuzzy number is a mapping
m : R ! 0;1½ �, which is an upper semi-continuous, fuzzy convex,
normal and closure(supp m) is compact, where suppm ¼
x 2 R : m xð Þ > 0f g represent the support of m.

Let E1 be the set of all fuzzy numbers on R. The a1-level set of m,
is denoted by

m½ �a1 ¼ x 2 R : m xð Þ P a1f g if 0 < a1 � 1;
cl suppmð Þif a1 ¼ 0;ð

�

and is a closed bounded interval m a1ð Þ; m a1ð Þ½ �, where, m a1ð Þ is the
left-hand endpoint and m a1ð Þ the right-hand endpoint of m½ �a1
respectively.

Definition 2 Friedman et al., 1996. A pair of functions

m a1ð Þ; m a1ð Þð Þ 0 6 a1 � 1;

is a parametric form of fuzzy number, which has the given
properties:

(i) m a1ð Þ is a non-decreasing bounded left continuous in 0;1ð �
and at 0 right continuous.

(ii) m a1ð Þ is a non-increasing bounded left continuous in 0;1ð �
and at 0 right continuous.

(iii) m a1ð Þ 6 m a1ð Þ;0 6 a1 � 1.

For any different fuzzy numbers

m ¼ m a1ð Þ; m a1ð Þð Þ; x ¼ x a1ð Þ;x a1ð Þð Þ;
and for arbitrary scaler j1, the various operations are defined as
follow,

(i) Addition: m a1ð Þ þx a1ð Þ; m a1ð Þ þx a1ð Þ
� �

¼ m a1ð Þ þx a1ð Þ;
�

m a1ð Þ þx a1ð ÞÞ.
(ii) Subtraction: m a1ð Þ�x a1ð Þ;m a1ð Þ�x a1ð Þ

� �
¼ m a1ð Þ�x a1ð Þ;
�

m a1ð Þ�x a1ð ÞÞ.
(iii) Scaler multiplication:

j1 � m a1ð Þ ¼ j1m a1ð Þ;j1m a1ð Þð Þ j1 P 0;
j1m a1ð Þ;j1m a1ð Þð Þ j1 < 0:

�

Definition 3 Friedman et al., 1996. Let D1 : E1 � E1 ! Rþ [ 0f g be a
mapping, m ¼ m a1ð Þ; m a1ð Þð Þ and x ¼ x a1ð Þ;x a1ð Þð Þ are any two
fuzzy numbers in parametric form. Then the Hausdorff distance
between m;xð Þ are defined as:

D1 m;xð Þ ¼ sup
a12 0;1½ �

max jm a1ð Þ �x a1ð Þj; jm a1ð Þ �x a1ð Þjf g:
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In E1, a metric D1 as defined above have following properties
(see Puri and Ralescu, 1986):

(i) D1 mþ t;xþ tð Þ ¼ D1 m;xð Þ for all m; t;x 2 E1;
(ii) D1 j1 � m;j1 �xð Þ ¼ jj1jD1 m;xð Þ for all j1 2 R; m;x 2 E1;
(iii) D1 mþ l;xþ tð Þ 6 D1 m;xð Þ þ D1 l; tð Þ for all m;x;l; t 2 E1;
(iv) E1;D1ð Þ is a complete metric space.
Definition 4 Allahviranloo and Barkhordari Ahmadi, 2010. Sup-
pose that y1; y2 2 E1. If there exist y3 2 E1 such that

y1 ¼ y2 þ y3

then y3 is said to be H-difference of y1 and y2 and denoted as y1 � y2.
Definition 5 Friedman et al., 1999. Consider the fuzzy function
h : R ! E1. Then h is said to be continuous if for any rooted
y0 2 b1; b2½ �, if for every � > 0, there exist d > 0 such that if
jy� y0j < d which implies that

D1 h yð Þ; h y0ð Þð Þ < �:
Definition 6 Park et al., 1999. A level wise continuous mapping
h : b1; b2½ � � R ! E1 is defined at a 2 b1; b2½ �, if the set-valued map-
ping ha1 yð Þ ¼ h yð Þ½ �a1 is continuous at y ¼ a with respect to the
Hausdorff metric D1 for all a1 2 0;1½ �.
Theorem 1 Park et al., 1999. Consider

(i) h yð Þ is a levelwise continuous function on a; aþ y0½ �, y0 > 0,
(ii) k y; sð Þ is a levelwise continuous function on M : a 6 s 6

y 6 aþ y0 and D1 m yð Þ; h y0ð Þð Þ < y1, where y1 > 0
(iii) For any y; s; m sð Þð Þ; y; s;x sð Þð Þ 2 M, we have
D1 k y; s; m sð Þð Þ½ �a1 ; k y; s;x sð Þð Þ½ �a1� �
6 MD1 m sð Þ½ �a1 ; x sð Þ½ �a1� �

;

where the constant M > 0 is given and for any a1 2 0;1½ �. Then,
the levelwise continuous solution m yð Þ exist and unique for Eq.
(2) and defined for y 2 a; aþ hð Þ, where h ¼ min y0;

y1
N

� �
, and

N ¼ D1 k y; s; m sð Þð Þ; y; s;x sð Þð Þð Þ 2 M.
Theorem 2 (Fuzzy Convolution Theorem). Salahshour et al., 2012
Let /1;/2 are fuzzy valued function of exponential order p, which
are piecewise continuous on 0;1½ Þ, then
L /1 	 /2ð Þ sð Þ½ � ¼ L /1 sð Þ½ � � L /2 sð Þ½ �; ð3Þ
where L represent the Laplace transform.
3. Basic idea

In this section, we propose a basic idea to solve the fuzzy Vol-
terra linear integral equations with convolution class kernel apply-
ing LADM. Suppose that a kernel function k y; sð Þ is in the form of
y� sð Þ which is a separable kernel i.e. k y; sð Þ ¼ Pn

i¼0hi yð Þgi sð Þ and
satisfies the conditions of Theorem 1 such that the solution of Eq.
(2) exists and may be unique. We assume that for any
b1 6 y; s 6 b2 in k y; sð Þ. Let the parametric form of Eq. (2) are writ-
ten as

m y;a1ð Þ ¼ h y;a1ð Þ þ k1
R y
b1

k y; sð Þm s;a1ð Þð Þds;
m y;a1ð Þ ¼ h y;a1ð Þ þ k1

R y
b1

k y; sð Þm s;a1ð Þð Þds;

(
ð4Þ

considered k y; sð Þ ¼ y� s and k1 ¼ 1, Eq. (4) becomes
3

m y;a1ð Þ ¼ h y;a1ð Þ þ R y
b1

y� sð Þm s;a1ð Þds;
m y;a1ð Þ ¼ h y;a1ð Þ þ R y

b1
y� sð Þm s;a1ð Þds:

(
ð5Þ

Now applying the Laplace transform and Theorem 2 to Eq. (5),
one has

L m y;a1ð Þ½ � ¼ L h y;a1ð Þ½ � þ L
R y
b1

y� sð Þm s;a1ð Þds
h i

;

L m y;a1ð Þ½ � ¼ L h y;a1ð Þ
h i

þ L
R y
b1

y� sð Þm s;a1ð Þds
h i

;

8><
>:
L m y;a1ð Þ½ � ¼ L h y;a1ð Þ½ � þ L y½ � � L m y;a1ð Þ½ �;
L m y;a1ð Þ½ � ¼ L h y;a1ð Þ

h i
þ L y½ � � L m y;a1ð Þ½ �;

(

L m y;a1ð Þ½ � ¼ L h y;a1ð Þ½ � þ 1
s2 L m y;a1ð Þ½ �;

L m y;a1ð Þ½ � ¼ L h y;a1ð Þ
h i

þ 1
s2 L m y;a1ð Þ½ �:

8<
: ð6Þ

Now applying the inverse Laplace transform on Eq. (6), and sim-
plify one has

m y;a1ð Þ ¼ h y;a1ð Þ þ L�1 1
s2 L m y;a1ð Þ½ �	 


;

m y;a1ð Þ ¼ h y;a1ð Þ þ L�1 1
s2 L m y;a1ð Þ½ �	 


:

(
ð7Þ

Let the solution of Eq. (2) can be written in series as

m y;a1ð Þ ¼
X1
i¼0

mi y;a1ð Þ;

m y;a1ð Þ ¼
X1
i¼0

mi y;a1ð Þ

8>>>><
>>>>:

ð8Þ

Putting Eq. (8) in Eq. (7), we get

X1
i¼0

mi y;a1ð Þ ¼ h y;a1ð Þ þ L�1 1
s2 L

X1
i¼0

mi y;a1ð Þ
" #" #

;

X1
i¼0

mi y;a1ð Þ ¼ h y;a1ð Þ þ L�1 1
s2 L

X1
i¼0

mi y;a1ð Þ
" #" #

:

8>>>>><
>>>>>:

ð9Þ

Comparing both side of Eq. (9) termwise respectively, we get

m0 y;a1ð Þ ¼ h y;a1ð Þ;
m0 y;a1ð Þ ¼ h y;a1ð Þ;

(

m1 y;a1ð Þ ¼ L�1 1
s2 L m0 y;a1ð Þ½ �	 


;

m1 y;a1ð Þ ¼ L�1 1
s2 L m0 y;a1ð Þ½ �	 


;

(

m2 y;a1ð Þ ¼ L�1 1
s2 L m1 y;a1ð Þ½ �	 


;

m2 y;a1ð Þ ¼ L�1 1
s2 L m1 y;a1ð Þ½ �	 


:

(

and so on and we write general terms as

mnþ1 y;a1ð Þ ¼ L�1 1
s2 L mn y;a1ð Þ½ �	 


;

mnþ1 y;a1ð Þ ¼ L�1 1
s2 L mn y;a1ð Þ½ �	 


;

(
ð10Þ

where n P 0. The initial guess h y;a1ð Þ in above iteration scheme are
very important because the solution of Eq. (2) are more rapidly con-
vergence to the exact solution.
4. Application

In this section, three examples are given to described the appli-
cation of proposed algorithm.
Example 1. Considered the fuzzy linear Volterra integral equation
Ameri and Nezhad, 2017 of second kind
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m y;a1ð Þ ¼ h y;a1ð Þ þ
Z y

0
y� sð Þm sð Þds; ð11Þ

for a known function h y;a1ð Þ ¼ 3þ a1;8� 2a1½ �;0 6 y � 1 and the
given integral equation has exact solution is m y;a1ð Þ ¼
3þ a1;8� 2a1½ � cosh yð Þ. To solve this integral equation by applying

LADM.

Parametric form of Eq. (11) can be written as

m y;a1ð Þ ¼ 3þ a1ð Þ þ R y
0 y� sð Þm s;a1ð Þds;

m y;a1ð Þ ¼ 8� 2a1ð Þ þ R y
0 y� sð Þm s;a1ð Þds:

(
ð12Þ

Applying the Laplace transform and convolution Theorem 2 to
Eq. (12), one has

L m y;a1ð Þ½ � ¼ L 3þ a1ð Þ½ � þ L
R y
0 y� sð Þm s;a1ð Þds	 


;

L m y;a1ð Þ½ � ¼ L 8� 2a1ð Þ½ � þ L
R y
0 y� sð Þm s;a1ð Þds	 


;

(

L m y;a1ð Þ½ � ¼ L 3þ a1ð Þ½ � þ L y½ � � L m y;a1ð Þ½ �;
L m y;a1ð Þ½ � ¼ L 8� 2a1ð Þ½ � þ L y½ � � L m y;a1ð Þ½ �;

�

L m y;a1ð Þ½ � ¼ L 3þ a1ð Þ½ � þ 1
s2 L m y;a1ð Þ½ �;

L m y;a1ð Þ½ � ¼ L 8� 2a1ð Þ½ � þ 1
s2 L m y;a1ð Þ½ �:

(

Now applying the inverse Laplace transform, and simplify, we
get

m y;a1ð Þ ¼ 3þ a1ð Þ þ L�1 1
s2 L m y;a1ð Þ½ �	 


:

m y;a1ð Þ ¼ 8� 2a1ð Þ þ L�1 1
s2 L m y;a1ð Þ½ �	 


:

(
ð13Þ

Let the series solution of Eq. (11) be as

m y;a1ð Þ ¼
X1
i¼0

mi y;a1ð Þ;

m y;a1ð Þ ¼
X1
i¼0

mi y;a1ð Þ:

8>>>><
>>>>:

ð14Þ

Putting Eq. (14) in Eq. (13)

X1
i¼0

mi y;a1ð Þ ¼ 3þ a1ð Þ þ L�1 1
s2 L

X1
i¼0

mi y;a1ð Þ
" #" #

;

X1
i¼0

mi y;a1ð Þ ¼ 8� 2a1ð Þ þ L�1 1
s2 L

X1
i¼0

mi y;a1ð Þ
" #" #

;

8>>>>><
>>>>>:
which may written as

m0 y;a1ð Þ þ m1 y;a1ð Þ þ m2 y;a1ð Þ þ � � �
¼ 3þ a1ð Þ þ L�1 1

s2 L m0 y;a1ð Þ½ �	 
þ L�1 1
s2 L m1 y;a1ð Þ½ �	 
þ � � �

m0 y;a1ð Þ þ m1 y;a1ð Þ þ m2 y;a1ð Þ þ � � �
¼ 8� 2a1ð Þ þ L�1 1

s2 L m0 y;a1ð Þ½ �	 
þ L�1 1
s2 L m1 y;a1ð Þ½ �	 
þ � � � :

8>>>><
>>>>:

ð15Þ
Comparing termwise of Eq. (15) on both side respectively, we

obtain

m0 y;a1ð Þ ¼ 3þ a1;

m0 y;a1ð Þ ¼ 8� 2a1;

�

m1 y;a1ð Þ ¼ L�1 1
s2 L m0 y;a1ð Þ½ �	 


;

m1 y;a1ð Þ ¼ L�1 1
s2 L m0 y;a1ð Þ½ �	 


;

(

m2 y;a1ð Þ ¼ L�1 1
s2 L m1 y;a1ð Þ½ �	 


;

m2 y;a1ð Þ ¼ L�1 1
s2 L m1 y;a1ð Þ½ �	 


:

(

4

The general terms are given by

mnþ1 y;a1ð Þ ¼ L�1 1
s2 L mn y;a1ð Þ½ �	 


;

mnþ1 y;a1ð Þ ¼ L�1 1
s2 L mn y;a1ð Þ½ �	 


;

(
ð16Þ

where n P 0. Taking the lower limit solution of Eq. (11), and
simplify

m0 y;a1ð Þ ¼ 3þ a1;

m1 y;a1ð Þ ¼ L�1 1
s2 L m0 y;a1ð Þ½ �	 
 ¼ 3þ a1ð Þ y2

2! ;

m2 y;a1ð Þ ¼ L�1 1
s2 L m1 y;a1ð Þ½ �	 
 ¼ 3þ a1ð Þ y4

4! ;

m3 y;a1ð Þ ¼ L�1 1
s2 L m2 y;a1ð Þ½ �	 
 ¼ 3þ a1ð Þ y6

6! ;

m4 y;a1ð Þ ¼ L�1 1
s2 L m3 y;a1ð Þ½ �	 
 ¼ 3þ a1ð Þ y8

8!

8>>>>>>>>><
>>>>>>>>>:

ð17Þ

and so on. The other terms may be in same fashion computed. Now
to find the upper limit solution of Eq. (11), we get

m0 y;a1ð Þ ¼ 8� 2a1;

m1 y;a1ð Þ ¼ L�1 1
s2 L m0 y;a1ð Þ½ �	 
 ¼ 8� 2a1ð Þ y2

2! ;

m2 y;a1ð Þ ¼ L�1 1
s2 L m1 y;a1ð Þ½ �	 
 ¼ 8� 2a1ð Þ y4

4! ;

m3 y;a1ð Þ ¼ L�1 1
s2 L m2 y;a1ð Þ½ �	 
 ¼ 8� 2a1ð Þ y6

6! ;

m4 y;a1ð Þ ¼ L�1 1
s2 L m3 y;a1ð Þ½ �	 
 ¼ 8� 2a1ð Þ y8

8!

8>>>>>>>>><
>>>>>>>>>:

ð18Þ

and so on. Putting Eqs. (17) and (18) in Eq. (14) and simplifying, we
achieve the closed form as

m y;a1ð Þ ¼ 3þ a1ð Þ cosh y;

m y;a1ð Þ ¼ 8� 2a1ð Þ cosh y;

�

which is the exact solution of Eq. (11) and can be written also as

m y;a1ð Þ ¼ 3þ a1;8� 2a1½ � cosh y:

Next in Fig. 1, we provide graphical presentation of fuzzy solu-
tions at the given values of uncertainty a1 as.

Example 2. Let the fuzzy linear Volterra integral equation (Ameri
and Nezhad, 2017)

m y;a1ð Þ ¼ h y;a1ð Þ þ
Z y

0
y� sð Þm s;a1ð Þds; ð19Þ

where h y;a1ð Þ ¼ a1;2� a1½ � 1� y� y2

2

� �� �
;0 6 y � 1 and the exact

solution is a1;2� a1½ � 1� sinh yð Þð Þ.
To solve the Eq. (19) by LADM.
Considered the parametric form of Eq. (19) which is given by

m y;a1ð Þ ¼ a1 1� y� y2

2

� �
þ R y

0 y� sð Þm s;a1ð Þds;

m y;a1ð Þ ¼ 2� a1ð Þ 1� y� y2

2

� �
þ R y

0 y� sð Þm s;a1ð Þds:

8><
>: ð20Þ

Applying the Laplace transform together with convolution The-
orem 2 and after the inverse Laplace transform, we get

m y;a1ð Þ ¼ a1 1� y� y2

2

� �
þ L�1 1

s2 L m y;a1ð Þ½ �	 

;

m y;a1ð Þ ¼ 2� a1ð Þ 1� y� y2

2

� �
þ L�1 1

s2 L m y;a1ð Þ½ �	 

:

8><
>: ð21Þ

Let the solution of Eq. (19) in the form of infinite series as

m y;a1ð Þ ¼
X1
i¼0

mi y;a1ð Þ;

m y;a1ð Þ ¼
X1
i¼0

mi y;a1ð Þ:

8>>>><
>>>>:

ð22Þ
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Putting Eq. (22) in Eq. (21), one has

X1
i¼0

mi y;a1ð Þ ¼ a1 1� y� y2

2

� �
þ L�1 1

s2 L
X1
i¼0

mi y;a1ð Þ
" #" #

;

X1
i¼0

mi y;a1ð Þ ¼ 2� a1ð Þ 1� y� y2

2

� �
þ L�1 1

s2 L
X1
i¼0

mi y;a1ð Þ
" #" #

:

8>>>>><
>>>>>:

ð23Þ

Comparing termwise of Eq. (23) both side respectively

m0 y;a1ð Þ ¼ a1 1� y� y2

2

� �
;

m0 y;a1ð Þ ¼ 2� a1ð Þ 1� y� y2

2

� �
;

8><
>:
m1 y;a1ð Þ ¼ L�1 1

s2 L m0 y;a1ð Þ½ �	 

;

m1 y;a1ð Þ ¼ L�1 1
s2 L m0 y;a1ð Þ½ �	 


;

(

m2 y;a1ð Þ ¼ L�1 1
s2 L m1 y;a1ð Þ½ �	 


;

m2 y;a1ð Þ ¼ L�1 1
s2 L m1 y;a1ð Þ½ �	 


;

(

the remaining terms may be in same way computed. The general
terms are written as

mnþ1 y;a1ð Þ ¼ L�1 1
s2 L mn y;a1ð Þ½ �	 


;

mnþ1 y;a1ð Þ ¼ L�1 1
s2 L mn y;a1ð Þ½ �	 


; n P 0:

(
ð24Þ

Taking first lower limit fuzzy solution of Eq. (19), and simplify,
one gets

m0 y;a1ð Þ ¼ a1 1� y� y2

2!

� �
;

m1 y;a1ð Þ ¼ L�1 1
s2 L m0 y;a1ð Þ½ �	 
 ¼ a1

y2

2! � y3

3! � y4

4!

� �
;

m2 y;a1ð Þ ¼ L�1 1
s2 L m1 y;a1ð Þ½ �	 
 ¼ a1

y4

4! � y5

5! � y6

6!

� �
;

m3 y;a1ð Þ ¼ L�1 1
s2 L m2 y;a1ð Þ½ �	 
 ¼ a1

y6

6! � y7

7! � y8

8!

� �

8>>>>>>>>><
>>>>>>>>>:

ð25Þ
5

and so on. Now taking upper limit fuzzy solution of Eq. (19), and
simplify

m0 y;a1ð Þ ¼ 2� a1ð Þ;
m1 y;a1ð Þ ¼ L�1 1

s2 L m0 y;a1ð Þ½ �	 
 ¼ 2� a1ð Þ y2

2! � y3

3! � y4

4!

� �
;

m2 y;a1ð Þ ¼ L�1 1
s2 L m1 y;a1ð Þ½ �	 
 ¼ 2� a1ð Þ y4

4! � y5

5! � y6

6!

� �
;

m3 y;a1ð Þ ¼ L�1 1
s2 L m2 y;a1ð Þ½ �	 
 ¼ 2� a1ð Þ y6

6! � y7

7! � y8

8!

� �

8>>>>>>><
>>>>>>>:

ð26Þ

and so on. Putting Eqs. (25) and (26)in Eq. (22) and simplify, we get

m y;a1ð Þ ¼ a1 1� sinh yð Þ;
m y;a1ð Þ ¼ 2� a1ð Þ 1� sinh yð Þ;

�

which also can be written in closed form as

m y;a1ð Þ ¼ a1;2� a1½ � 1� sinh yð Þ:
hence exact solution of the problem. Next in Fig. 2, we provide
graphical presentation of fuzzy solutions at the given values of
uncertainty a1 as

Example 3. Suppose the following fuzzy linear Volterra integral
equation (Salahshour and Allahviranloo, 2013)

m y;a1ð Þ ¼ a1 � 1;1� a1½ �yþ
Z y

0
m s;a1ð Þds; ð27Þ

0 6 y � 1 and the exact solution is m y;a1ð Þ ¼ a1 � 1ð Þ; 1� a1ð Þ½ �
sinh yþ cosh y� 1ð Þ. Let the parametric form of Eq. (27) is

m y;a1ð Þ ¼ a1 � 1ð Þyþ R y
0 m s;a1ð Þds;

m y;a1ð Þ ¼ 1� a1ð Þyþ R y
0 m s;a1ð Þds:

(

Applying the Laplace transform together with convolution The-
orem 2 and the inverse Laplace transform, we obtain

m y;a1ð Þ ¼ a1 � 1ð Þyþ L�1 1
s L m y;a1ð Þ½ �	 


;

m y;a1ð Þ ¼ 1� a1ð Þyþ L�1 1
s L m y;a1ð Þ½ �	 


:

(
ð28Þ

Eq. (27) has solution in the form of series as



Fig. 2. Graphical presentation of fuzzy solutions at the given values of a1 for Example 2.
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m y;a1ð Þ ¼
X1
i¼0

mi y;a1ð Þ;

m y;a1ð Þ ¼
X1
i¼0

mi y;a1ð Þ:

8>>>><
>>>>:

ð29Þ

Putting Eq. (29) in Eq. (28),

X1
i¼0

mi y;a1ð Þ ¼ a1 � 1ð Þyþ L�1 1
s L

X1
i¼0

mi y;a1ð Þ
" #" #

;

X1
i¼0

mi y;a1ð Þ ¼ 1� a1ð Þyþ L�1 1
s L

X1
i¼0

mi y;a1ð Þ
" #" #

:

8>>>>><
>>>>>:

ð30Þ
Fig. 3. Graphical presentation of fuzzy solution

6

Comparing terms of Eq. (30) on both side respectively, we get

m0 y;a1ð Þ ¼ a1 � 1ð Þy;
m0 y;a1ð Þ ¼ 1� a1ð Þy;

�

m1 y;a1ð Þ ¼ L�1 1
s L m0 y;a1ð Þ½ �	 


;

m1 y;a1ð Þ ¼ L�1 1
s L m0 y;a1ð Þ½ �	 


;

(

m2 y;a1ð Þ ¼ L�1 1
s L m1 y;a1ð Þ½ �	 


;

m2 y;a1ð Þ ¼ L�1 1
s L m1 y;a1ð Þ½ �	 


(

and so on.
s at the given values of a1 for Example 3.
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mnþ1 y;a1ð Þ ¼ L�1 1
s L mn y;a1ð Þ½ �	 


;

mnþ1 y;a1ð Þ ¼ L�1 1
s L mn y;a1ð Þ½ �	 


; n P 0:

(
ð31Þ

Taking first lower limit solution of Eq. (27), and simplify

m0 y;a1ð Þ ¼ a1 � 1ð Þ;
m1 y;a1ð Þ ¼ L�1 1

s L m0 y;a1ð Þ½ �	 
 ¼ a1 � 1ð Þ y2

2! ;

m2 y;a1ð Þ ¼ L�1 1
s L m1 y;a1ð Þ½ �	 
 ¼ a1 � 1ð Þ y3

3! ;

m3 y;a1ð Þ ¼ L�1 1
s L m2 y;a1ð Þ½ �	 
 ¼ a1 � 1ð Þ y4

4!

8>>>>><
>>>>>:

ð32Þ

and so on. To find the upper limit solution of Eq. (27), so one has

m0 y;a1ð Þ ¼ 1� a1ð Þ;
m1 y;a1ð Þ ¼ L�1 1

s L m0 y;a1ð Þ½ �	 
 ¼ 1� a1ð Þ y2

2! ;

m2 y;a1ð Þ ¼ L�1 1
s L m1 y;a1ð Þ½ �	 
 ¼ 1� a1ð Þ y3

3! ;

m3 y;a1ð Þ ¼ L�1 1
s L m2 y;a1ð Þ½ �	 
 ¼ 1� a1ð Þ y4

4! :

8>>>>>><
>>>>>>:

ð33Þ

The remaining terms can be in similarly computed. Putting Eqs.
(32) and (33) in Eq. (29) and simplify, we get

m y;a1ð Þ ¼ a1 � 1½ � sinh yþ cosh y� 1ð Þ;
m y;a1ð Þ ¼ 1� a1½ � sinh yþ cosh y� 1ð Þ:

�

Further in more simplified form, we have

m y;a1ð Þ ¼ a1 � 1;1� a1½ � sinh yþ cosh y� 1ð Þ:

Which is the exact solution of the give problem in closed form.
Next in Fig. 3, we provide graphical presentation of fuzzy solutions
at the given values of uncertainty a1 as

Remark 1. Here we state that in the above test problems,
Examples 1 and 2 have been solved numerically by least square
method in Ameri and Nezhad (2017). The concerned method is
purely a numerical procedure whose convergence is slower than
LADM which rapidly converges to exact solution of the problem.
Further the Example 3 has been solved in Salahshour and
Allahviranloo (2013) by using fractional differential transform
method (FDTM) and the same results were achieved as we have got
by the proposed method. The one thing which makes LADM more
papular is its simplicity in applications while FDTM is slightly
complicated in using. Further the convergence rate of the proposed
method is faster than differential FDTM (Naghipour and Manafian,
2015).
5. Conclusion

In this manuscript, we successfully handled series type analyt-
ical solutions to ‘‘fuzzy Volterra integral equations” corresponding
to separable type kernels. For the required purposes we adopted
‘‘LADM” and developed two sequences of upper and lower limit
solutions as general algorithm. Then we have tested our proposed
scheme on three different problems. Also we stressed that the
same solution may be computed in more easy way instead of using
complicated method. From the results we concluded that LADM
can be applied as a powerful tool in solving both linear and nonlin-
ear problems of fuzzy integral equations. In future work, this
method will be applied to investigate the solutions of fuzzy Fred-
holm and Volterra non-linear integral equations with different
kind of crisp and fuzzy kernels.
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